用户名: 密码: 验证码:
异氰酸酯单体的结构对聚氨酯的制备和微相分离形态的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯由异氰酸酯和醇组分通过逐步聚合制备而成,广泛应用在泡沫、弹性体、涂料、胶黏剂、纤维和生物材料等领域。聚氨酯的分子主链由软段和硬段交替连接而成。含有较低玻璃化转变温度(T_g)的软段组成连续的基质,赋予材料低温柔顺性;而含有较高T_g或者熔点(Tm)的硬段通过物理交联形成微区,这些微区在低T_g的软段基质中起到了增强填料的作用,提高材料的性能,如机械性能、热性能以及耐溶剂性。聚氨酯的优异性能与其化学结构和加工条件形成的微相形态结构有关。阐明结构和形态之间的关系对于开发和应用这些材料有重要的意义。
     采用非等量的甲苯二异氰酸酯(TDI)与三官能团的三羟甲基丙烷(TMP)反应制备聚氨酯预聚物,通过凝胶渗透色谱仪(GPC)对化学反应过程进行跟踪。研究表明TMP的位阻效应是影响分子量分布的最主要因素,特别是影响分子量较高的区域。最优化的NCO/OH比值为3.0,反应温度为50℃。通过GPC分析归属了TDI、TMP-TDI、TMP-2TDI、TMP-3TDI、2TMP-5TDI以及3TMP-7TDI组分。采用电喷雾质谱(ESI-MS)对GPC的归属进行确认。此外,一些其他的副产物,如脲和脲基甲酸酯在ESI-MS和核磁氢谱(1H NMR)中能够识别。脲基甲酸酯的含量随反应温度的升高而增多。结果表明TDI-TMP型聚氨酯预聚物的定量分析不仅能够避免或者减少副反应的发生,而且能够为薄膜蒸发器的设计以及控制分离过程提供基本数据。
     对TDI-TMP型聚氨酯预聚物在不同温度下的反应动力学进行研究。通过反滴定法和高效液相色谱(HPLC)分别测定异氰酸酯的浓度和TDI异构体的含量,实现对整个聚合反应过程进行跟踪。该聚合过程采用逐步滴加进料的方法,化学反应能够很好地符合二级反应动力学模型。采用三种工业常见的TDI混合物,其2,4-TDI和2,6-TDI含量的比值分别为65:35、80:20和100:0。通过研究反应温度、初始化学计量比和TDI异构体对残余2,4-TDI和2,6-TDI含量的影响,建立残余TDI异构体单体和溶剂的稳定回收模型,不同批次间制备的聚氨酯预聚物化学结构重复性好。该模型已经应用到工厂进行连续化生产具有可控化学结构组成的聚氨酯预聚物。
     以三种具有不同对称性和平面结构的二异氰酸酯单体为原料,采用溶液聚合的方法制备聚脲,选用的二异氰酸酯单体包括2,6-TDI、2,4-TDI和4,4’–二苯基甲烷二异氰酸酯(MDI),讨论异氰酸酯结构的对称性对相分离形态、氢键行为和分子动力学的影响。结果表明,对称的异氰酸酯结构有利于硬段通过双配位氢键自组装形成线条状的硬段微区。微相分离的硬段微区在聚合物中起到物理交联点的作用,进而影响分子动力学。采用小角X光散射(SAXS)定量微相分离的程度。通过宽频介电松弛谱(DRS),以聚合物的动力学为分子探针,研究微相分离的微区的存在和变化过程。SAXS结果表明微相分离的程度随异氰酸酯结构对称性的增加而增加。尽管差示扫描量热仪(DSC)没有发现2,6-TDI和2,4-TDI型聚脲的软段T_g有明显差别,但是DRS结果表明当异氰酸酯的对称性从2,6-TDI降低到2,4-TDI,由于软相基质内存在更多硬段的混合,软段的移动性降低。由于脲内存在强的双配位氢键,共聚物的Maxwell-Wagner-Sillars (MWS)界面极化过程的介电强度能够稳定维持在220℃的高温。
     采用傅里叶红外光谱(FTIR)研究2,6-TDI、2,4-TDI和MDI型聚脲的变温氢键行为。结果表明在170℃以上脲链节开始分解,两个与缩二脲有关的新峰在1727cm~(-1)和1678cm~(-1)出现。在较低的退火温度150℃下不存在任何副反应,TDI型聚脲在加热和冷却过程中具有相同的氢键行为,有序脲羰基的含量随温度的升高而降低,无序和自由的脲羰基含量逐渐增加。然而,在异氰酸酯结构不共平面的MDI型聚脲中,可能由于在溶液浇注制模过程中得到的是“淬火”的形态,退火处理明显有利于有序脲羰基的增多,这也与原子力显微镜(AFM)观测到的硬段棒状微区长度和宽度逐渐增大相符合。结合广角X射线衍射(WAXD)和SAXS的发现,结果显示微结构与退火温度联系密切。DSC分析表明随退火温度的增加,软段T_g的温度逐渐减小,表明微相分离的程度在增强。
Polyurethanes, formed by the step growth polymerization of isocyanates and polyols, proveto be a highly versatile class of materials having applications such as foams, elastomers, coatings,adhesives, fibers and biomaterials. Polyurethanes are composed of soft segments and hardsegments arranged alternately. The soft segments with a low glass transition temperature (T_g)form the continuous matrix, which exhibits low temperature flexibility. The hard segments withhigh T_gor melting points (Tm) tend to self-assemble into domains through physical crosslink.These domains mostly act as reinforcing filler in the low T_gcontinuous matrix and improve theproperties of the material, such as mechanical, thermal performances and solvent resistance. Theexcellent performances of polyurethane are generally attributed to their morphology structure ofthe materials formed by their special chemical structure and processing conditions. Understandingthe structure-property relationship is crucial in the development and application of thesematerials.
     Polyurethane prepolymer prepared from nonequivalent amounts of toluene diisocyanate(TDI) over trifunctional trimethylolpropane (TMP) was followed by gel permeationchromatography (GPC). Steric hindrance of TMP is considered as the main factor affecting themolar mass distribution, especially in the higher molecular weight region. An optimum reactioncondition is the initial NCO/OH ratio of3.0and the reaction temperature of50℃. Thenpolyurethane prepolymer could be purified through the thin film evaporator with excellentproperties. The components, such as TDI, TMP-TDI, TMP-2TDI, TMP-3TDI,2TMP-5TDI and3TMP-7TDI, are observed in GPC analyses, and the results are further verified by electrosprayionization mass spectrometry (ESI-MS). Additionally, other side products such as urea andallophanate are presented in ESI-MS and1H NMR analyses. The formation of allophanates ishighly dependent on reaction temperature. These results indicate that the quantitative analyses forthe TDI-TMP based polyurethane prepolymer do not only favor to avoid or reduce the sidereactions, but also supply fundamental data for designing thin film evaporator and controlling theseparating process.
     Reaction kinetics of TDI-TMP polyurethane prepolymer at various temperatures is studied. The progress of the polymerization reaction was monitored by measuring the concentration ofisocyanate groups and TDI isomers by means of back-titration and High Performance LiquidChromatography (HPLC), respectively. The kinetics of dropwise addition method, compared withthe conventional one-shot method, is well described by a second order equation. This procedure isoptimized by comparing the deviations between experimental data and theoretically calculateddata. The effects of temperature, initial stoichiometry and TDI isomers on the amount of excess2,4-TDI and2,6-TDI were investigated. Three commercially available TDI mixtures, that is,65:35,80:20and100:0ratio of2,4-TDI/2,6-TDI respectively were used. A recycling model ofunreacted TDI isomers and solvent is established to reach a stable process and yield polyurethaneprepolymer with good reproducibility. This model has been applied in the chemical plant toprepare polyurethane prepolymer with precisely defined chemical compositions in a continuousprocess.
     Three diisocyanates with different symmetry and planarity,2,6-TDI,2,4-TDI and4,4’-diphenylmethane diisocyanate (MDI), were used to synthesize polyureas in solution. Theeffects of diisocyanate symmetry on the phase separated morphology, hydrogen bonding behaviorand molecular dynamics are studied. The symmetrical diisocyanate structure allows excellentself-assemble of hard segments into ribbon like domains by strong bidentate hydrogen bonding.The strongly microphase separated domains in these polymers act as physical crosslinks, and they areexpected to strongly influence molecular dynamics. Small-angle X-ray scattering (SAXS) was utilizedto quantify microphase separation characteristics, and broadband dielectric relaxation spectroscopy(DRS) revealed the sensitivity of polymer dynamics to the presence and changes in microphaseseparated domains in the polymers. SAXS results indicate that the degree of microphase separationis enhanced by the symmetric diisocyanate structure. DRS results show that the soft segmentmobility is significantly reduced due to the hard segment mixing into soft matrix when thesymmetry of the diisocyanate is decreased from2,6-TDI to2,4-TDI, although no pronounceddifference of soft segments T_gis detected in differential scanning calorimeter (DSC). Thedielectric strength of Maxwell-Wagner-Sillars (MWS) interfacial polarization process in allcopolymers displays a temperature independent plateau extending well over220℃because of the presence of strong bidentate hydrogen bonding between urea containing segments.
     The temperature dependence of hydrogen bonding for polyureas based on2,6-TDI and2,4-TDI and MDI has been studied by Fourier transform infrared spectroscopy(FTIR). Theresults show that urea linkages decompose above170℃, and two new peaks at1727cm~(-1)and1678cm~(-1)associated with the formation of biuret are evident. At a lower annealing temperature at150℃without side reactions, TDI based polyureas exhibit reversible behavior for hydrogenbonds during heating and cooling processes. The intensity of ordered urea carbonyls decreaseswith temperature while the intensity of the free and disordered urea carbonyls increase gradually.However, in MDI based polyureas with noncoplanar diisocyanate structure, thermal annealingcauses the rise of the ordered urea carbonyls due to the “quenched” morphology formed bysolution casting, consistent with the increased length and width of ribbon like hard domainsobserved in AFM. In combination with the findings from Wide-angle X-ray diffraction (WAXD)and SAXS, the results suggest that the microstructure is also highly dependent on the annealingtemperature. DSC analysis demonstrates that the soft segment T_gdecreases with increasingannealing temperature, indicating a higher degree of microphase separation morphology formed.
引文
[1] Bayer O. Das di-isocyanat-polyadditionsverfahren (polyurethane)[J]. Angewandte Chemie,1947,59(9):257-272
    [2] Steabsr W. Elastic[P]. United States:2929804,1960
    [3] Schollenberger C.S. Polyurethan vc, a virtually crosslinked elastomer[J]. Rubber Chemistry andTechnology,1962,35(3):742
    [4] Cooper S.L.,Tobolsky A.V. Properties of linear elastomeric polyurethanes[J]. Journal of Applied PolymerScience,1966,10(12):1837-1844
    [5] Hentschel W. Notizen[J]. Berichte der deutschen chemischen Gesellschaft,1884,17(1):1284-1289
    [6] Clough S.B., Schneider N.S.,King A.O. Small-angle x-ray scattering from polyurethane elastomers[J].Journal of Macromolecular Science, Part B,1968,2(4):641-648
    [7] Liaw D.J. The relative physical and thermal properties of polyurethane elastomers. Effect of chainextenders derived from dihydroxynaphthalene[J]. Die Angewandte Makromolekulare Chemie,1997,245(1):89-104
    [8] Ionescu M. Chemistry and technology of polyols for polyurethanes[M]. Smithers Rapra Technology,2005:18-19
    [9] Wegener G., Brandt M., Duda L., et al. Trends in industrial catalysis in the polyurethane industry[J].Applied Catalysis A-General,2001,221(1-2):303-335
    [10] Farrissey W.J., Ricciardi R.J.,Sayigh A.A.R. Reactions of1,3-diphenyl-4-(phenylimino)-2-uretidinone[J].Journal of Organic Chemistry,1968,33(5):1913-1917
    [11] Mcelroy W.R. Production of polyurethane-polyisocyanates[P]. United States:2969386,1961
    [12] Rabizzoni A.,Trovati A. Process for preparing high molecular weight polyisocyanates[P]. United States:3883577,1975
    [13] Marans N.S.,Gluecksmann A. Removal of unreacted tolylene diisocyanate from urethane prepolymers[P].United States:4061662,1977
    [14] Heiss H.L. Prepolymer composition[P]. United States:3384624,1968
    [15] Alois G. Isocyanates and method of preparing same[P]. United States:3183112,1965
    [16] Liebsch D., Becher D., Kress R., et al. Process for removing distillation residue from crudeisocyanates[P]. United States:3897314,1975
    [17]张心亚,何勇,黄洪,等.具有低游离异氰酸酯单体的聚氨酯预聚物的制备方法[P].中国:201210187494.X2012
    [18]张心亚,张鑫芳,何勇,等.低游离异氰酸酯单体的聚氨酯三聚体固化剂的制备方法[P].中国:201210187546.3,2012
    [19]张心亚,张鑫芳,何勇,等.一种六亚甲基二异氰酸酯缩二脲的制备方法[P].中国:201210187491.6,2012
    [20] Sato M. Studies on1-alkenyl isocyanates and their derivatives[J]. Journal of Organic Chemistry,1961,26(3):770-779
    [21] Sato M. The rate of the reaction of isocyanates with alcohols.2.[J]. Journal of Organic Chemistry,1962,27(3):819-825
    [22] Han Q.W.,Urban M.W. Kinetics and mechanisms of catalyzed and noncatalyzed reactions of OH andNCO in acrylic polyol-1,6-hexamethylene diisocyanate (HDI) polyurethanes. VI[J]. Journal of AppliedPolymer Science,2002,86(9):2322-2329
    [23] Han J.L., Yu C.H., Lin Y.H., et al. Kinetic study of the urethane and urea reactions of isophoronediisocyanate[J]. Journal of Applied Polymer Science,2008,107(6):3891-3902
    [24] Herman D.S., Kinning D.J., Thomas E.L., et al. A compositional study of the morphology of18-armedpoly(styrene-isoprene) star block copolymers[J]. Macromolecules,1987,20(11):2940-2942
    [25] Hansen C.M. The universality of the solubility parameter[J]. Product R&D,1969,8(1):2-11
    [26] Hansen C.M.50years with solubility parameters-past and future[J]. Progress in Organic Coatings,2004,51(1):77-84
    [27] Camberlin Y.,Pascault J.P. Phase segregation kinetics in segmented linear polyurethanes: Relationsbetween equilibrium time and chain mobility and between equilibrium degree of segregation andinteraction parameter[J]. Journal of Polymer Science: Polymer Physics Edition,1984,22(10):1835-1844
    [28] Leung L.M.,Koberstein J.T. Small-angle scattering analysis of hard-microdomain structure andmicrophase mixing in polyurethane elastomers[J]. Journal of Polymer Science: Polymer Physics Edition,1985,23(9):1883-1913
    [29] Yontz D.J.,Hsu S.L. A mass spectrometry analysis of hard segment length distribution in polyurethanes[J].Macromolecules,2000,33(22):8415-8420
    [30] Garrett J.T., Runt J.,Lin J.S. Microphase separation of segmented poly(urethane urea) blockcopolymers[J]. Macromolecules,2000,33(17):6353-6359
    [31] Wilkes G.L. Kinetic behavior of the thermal and mechanical properties of segmented urethanes[J].Journal of Applied Physics,1975,46(10):4148-4152
    [32] Lee H.S.,Hsu S.L. An analysis of phase-separation kinetics of model polyurethanes[J]. Macromolecules,1989,22(3):1100-1105
    [33] Garrett J.T., Lin J.S.,Runt J. Influence of preparation conditions on microdomain formation inpoly(urethane urea) block copolymers[J]. Macromolecules,2002,35(1):161-168
    [34] Ahn T.O., Choi I.S., Jeong H.M., et al. Thermal and mechanical-properties of thermoplastic polyurethaneelastomers from different polymerization methods[J]. Polymer International,1993,31(4):329-333
    [35] Peebles L.H. Sequence length distribution in segmented block copolymers[J]. Macromolecules,1974,7(6):872-882
    [36] Peebles L.H. Hard block length distribution in segmented block copolymers[J]. Macromolecules,1976,9(1):58-61
    [37] Abouzahr S.,Wilkes G.L. Structure property studies of polyester-based and polyether-based mdi-bdsegmented polyurethanes-effect of one-stage vs two-stage polymerization conditions[J]. Journal ofApplied Polymer Science,1984,29(9):2695-2711
    [38] Krol P.,Pilch-Pitera B. Phase structure and thermal stability of crosslinked polyurethane elastomers basedon well-defined prepolymers[J]. Journal of Applied Polymer Science,2007,104(3):1464-1474
    [39] Harrell L.L. Segmented polyurethans. Properties as a function of segment size and distribution[J].Macromolecules,1969,2(6):607-612
    [40] Versteegen R.M., Sijbesma R.P.,Meijer E.W. Synthesis and characterization of segmented copoly(etherurea)s with uniform hard segments[J]. Macromolecules,2005,38(8):3176-3184
    [41] Versteegen R.M., Kleppinger R., Sijbesma R.P., et al. Properties and morphology of segmentedcopoly(ether urea)s with uniform hard segments[J]. Macromolecules,2006,39(2):772-783
    [42] Bonart R.,Muller E.H. Phase separation in urethane elastomers as judged by low-angle x-ray-scattering.1.Fundamentals[J]. Journal of Macromolecular Science-Physics,1974, B10(1):177-189
    [43] Paik Sung C.S., Smith T.W.,Sung N.H. Properties of segmented polyether poly(urethaneureas) based on2,4-toluene diisocyanate.2. Infrared and mechanical studies[J]. Macromolecules,1980,13(1):117-121
    [44] Korley L.T.J., Pate B.D., Thomas E.L., et al. Effect of the degree of soft and hard segment ordering on themorphology and mechanical behavior of semicrystalline segmented polyurethanes[J]. Polymer,2006,47(9):3073-3082
    [45] Choi T., Masser K.A., Moore E., et al. Segmented polyurethanes derived from novel siloxane-carbonatesoft segments for biomedical applications[J]. Journal of Polymer Science Part B-Polymer Physics,2011,49(12):865-872
    [46] Koberstein J.T.,Stein R.S. Small-angle x-ray scattering studies of microdomain structure in segmentedpolyurethane elastomers[J]. Journal of Polymer Science: Polymer Physics Edition,1983,21(8):1439-1472
    [47] Koberstein J.T., Galambos A.F.,Leung L.M. Compression-molded polyurethane block copolymers.1.Microdomain morphology and thermomechanical properties[J]. Macromolecules,1992,25(23):6195-6204
    [48] Vanbogart J.W.C., Gibson P.E.,Cooper S.L. Structure-property relationships inpolycaprolactone-polyurethanes[J]. Journal of Polymer Science Part B-Polymer Physics,1983,21(1):65-95
    [49] Hernandez R., Weksler J., Padsalgikar A., et al. Microstructural organization of three-phasepolydimethylsiloxane-based segmented polyurethanes[J]. Macromolecules,2007,40(15):5441-5449
    [50] Choi T., Weksler J., Padsalgikar A., et al. Microstructural organization of polydimethylsiloxane softsegment polyurethanes derived from a single macrodiol[J]. Polymer,2010,51(19):4375-4382
    [51] Rueda-Larraz L., d’Arlas B.F., Tercjak A., et al. Synthesis and microstructure–mechanical propertyrelationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as softsegment[J]. European Polymer Journal,2009,45(7):2096-2109
    [52] Speckhard T.A., Hwang K.K.S., Cooper S.L., et al. Properties of polyisobutylene polyurethane blockcopolymers:3. Hard segments based on4,4′-dicyclohexylmethane diisocyanate (H12MDI) and butanediol[J]. Polymer,1985,26(1):70-78
    [53] Li Y.J., Kang W.X., Stoffer J.O., et al. Effect of hard-segment flexibility on phase-separation ofsegmented polyurethanes[J]. Macromolecules,1994,27(2):612-614
    [54] Corcuera M.A., Rueda L., Saralegui A., et al. Effect of diisocyanate structure on the properties andmicrostructure of polyurethanes based on polyols derived from renewable resources[J]. Journal ofApplied Polymer Science,2011,122(6):3677-3685
    [55] Kojio K., Nakashima S.,Furukawa M. Microphase-separated structure and mechanical properties ofnorbornane diisocyanate-based polyurethanes[J]. Polymer,2007,48(4):997-1004
    [56] Prisacariu C., Buckley C.P.,Caraculacu A.A. Mechanical response of dibenzyl-based polyurethanes withdiol chain extension[J]. Polymer,2005,46(11):3884-3894
    [57] Barbeau P., Gerard J.F., Magny B., et al. Effect of the diisocyanate on the structure and properties ofpolyurethane acrylate prepolymers[J]. Journal of Polymer Science Part B: Polymer Physics,2000,38(21):2750-2768
    [58] Schneider N.S., Paiksung C.S., Matton R.W., et al. Thermal transition behavior of polyurethanes based ontoluene diisocyanate[J]. Macromolecules,1975,8(1):62-67
    [59] Sung C.S.P.,Schneider N.S. Infrared studies of hydrogen bonding in toluene diisocyanate basedpolyurethanes[J]. Macromolecules,1975,8(1):68-73
    [60] Brunette C.M., Hsu S.L.,Macknight W.J. Hydrogen-bonding properties of hard-segment modelcompounds in polyurethane block copolymers[J]. Macromolecules,1982,15(1):71-77
    [61] Aneja A., Wilkes G.L.,Rightor E.G. Study of slabstock flexible polyurethane foams based on variedtoluene diisocyanate isomer ratios[J]. Journal of Polymer Science Part B-Polymer Physics,2003,41(3):258-268
    [62] Blackwell J.,Gardner K.H. Structure of the hard segments in polyurethane elastomers[J]. Polymer,1979,20(1):13-17
    [63] Born L.,Hespe H. On the physical crosslinking of amine-extended polyurethane urea elastomers-acrystallographic analysis of bis-urea from diphenyl methane-4-isocyanate and1,4-butane diamine[J].Colloid and Polymer Science,1985,263(4):335-341
    [64] Prisacariu C., Olley R.H., Caraculacu A.A., et al. The effect of hard segment ordering in copolyurethaneelastomers obtained by using simultaneously two types of diisocyanates[J]. Polymer,2003,44(18):5407-5421
    [65] Park K., Lim W.H., Ko E.A., et al. Effect of molecular shape of diisocyanate units on themicroscopic/macroscopic phase separation structure of polyurethanes[J]. Journal of Polymer Science PartB-Polymer Physics,2011,49(12):890-897
    [66] Choi T., Weksler J., Padsalgikar A., et al. Novel hard-block polyurethanes with high strength andtransparency for biomedical applications[J]. Journal of Biomaterials Science-Polymer Edition,2011,22(7):973-980
    [67] Chattopadhyay D.K., Sreedhar B.,Raju K. Effect of chain extender on phase mixing and coatingproperties of polyurethane ureas[J]. Industrial&Engineering Chemistry Research,2005,44(6):1772-1779
    [68] Blackwell J., Nagarajan M.R.,Hoitink T.B. Structure of polyurethane elastomers-effect of chain extenderlength on the structure of MDI diol hard segments[J]. Polymer,1982,23(7):950-956
    [69] Bonart R., Morbitze.L,Muller E.H. X-ray investigations concerning physical structure of crosslinking inurethane elastomers.3. Common structure principles for extensions with aliphatic diamines and diols[J].Journal of Macromolecular Science-Physics,1974, B9(3):447-461
    [70] Sheth J.P., Aneja A., Wilkes G.L., et al. Influence of system variables on the morphological and dynamicmechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: Acomparative perspective[J]. Polymer,2004,45(20):6919-6932
    [71] Hicks E.M., Ultee A.J.,Drougas J. Spandex elastic fibers: Development of a new type of elastic fiberstimulates further work in the growing field of stretch fabrics[J]. Science,1965,147(3656):373-379
    [72] Sheth J.P., Klinedinst D.B., Wilkes G.L., et al. Role of chain symmetry and hydrogen bonding insegmented copolymers with monodisperse hard segments[J]. Polymer,2005,46(18):7317-7322
    [73] Klinedinst D.B., Yilgor E., Yilgor I., et al. Structure-property behavior of new segmented polyurethanesand polyureas without use of chain extenders[J]. Rubber Chemistry and Technology,2005,78(5):737-753
    [74] Das S., Cox D.F., Wilkes G.L., et al. Effect of symmetry and h-bond strength of hard segments on thestructure-property relationships of segmented, nonchain extended polyurethanes and polyureas[J]. Journalof Macromolecular Science, Part B,2007,46(5):853-875
    [75] Das S., Yilgor I., Yilgor E., et al. Structure-property relationships and melt rheology of segmented,non-chain extended polyureas: Effect of soft segment molecular weight[J]. Polymer,2007,48(1):290-301
    [76] Yilgor I., Yilgor E., Guler I.G., et al. Ftir investigation of the influence of diisocyanate symmetry on themorphology development in model segmented polyurethanes[J]. Polymer,2006,47(11):4105-4114
    [77] Yilgor I., Yilgor E., Das S., et al. Time-dependent morphology development in segmented polyetherureacopolymers based on aromatic diisocyanates[J]. Journal of Polymer Science Part B-Polymer Physics,2009,47(5):471-483
    [78] Qin Z.Y., Macosko C.W.,Wellinghoff S.T. Synthesis and characterization of model urethanecompounds[J]. Macromolecules,1985,18(3):553-557
    [79] Mattia J.,Painter P. A comparison of hydrogen bonding and order in a polyurethane andpoly(urethane-urea) and their blends with poly(ethylene glycol)[J]. Macromolecules,2007,40(5):1546-1554
    [80] Ni Y., Becquart F., Chen J., et al. Polyurea–urethane supramolecular thermo-reversible networks[J].Macromolecules,2013,46(3):1066-1074
    [81] Mahmood N., Khan A.U., Khan M.S., et al. In situ ft-ir-atr studies on the structure development ofpolyurethane-urea systems[J]. Journal of Applied Polymer Science,2011,122(2):1012-1018
    [82] Wang S.-K.,Sung C.S.P. Fluorescence and ir characterization of cure in polyurea, polyurethane, andpolyurethane urea[J]. Macromolecules,2002,35(3):883-888
    [83] Yen F.S., Lin L.L.,Hong J.L. Hydrogen-bond interactions between urethane-urethane and urethane-esterlinkages in a liquid crystalline poly(ester-urethane)[J]. Macromolecules,1999,32(9):3068-3079
    [84]罗宁,王得宁.聚醚型聚氨酯脲的氢键研究[J].高分子通报,1998,(3):37-43
    [85]罗宁.二苯基甲烷二异氰酸酯—二乙基甲苯二胺聚脲的光谱分析和热分析[J].合成橡胶工业,1997,20(1):25-28
    [86] Yen F.S.,Hong J.L. Hydrogen-bond interactions between ester and urethane linkages in small modelcompounds and polyurethanes[J]. Macromolecules,1997,30(25):7927-7938
    [87] Teo L.S., Chen C.Y.,Kuo J.F. Fourier transform infrared spectroscopy study on effects of temperature onhydrogen bonding in amine-containing polyurethanes and poly(urethane urea)s[J]. Macromolecules,1997,30(6):1793-1799
    [88] MarcosFernandez A., Lozano A.E., Gonzalez L., et al. Hydrogen bonding in copoly(ether-urea)s and itsrelationship with the physical properties[J]. Macromolecules,1997,30(12):3584-3592
    [89]罗宁.变温红外光谱研究多前段聚氨酯脲的微相分离行为[J].高分子学报,1996,(4):423-428
    [90] Luo N., Wang D.N.,Ying S.K. Crystallinity and hydrogen bonding of hard segments in segmentedpoly(urethane urea) copolymers[J]. Polymer,1996,37(16):3577-3583
    [91] Luo N., Wang D.N.,Yang S.K. Hydrogen bonding between urethane and urea: Band assignment for thecarbonyl region of ftir spectrum[J]. Polymer,1996,37(14):3045-3047
    [92] Pimentel G.C.,Sederholm C.H. Correlation of infrared stretching frequencies and hydrogen bonddistances in crystals[J]. Journal of Chemical Physics,1956,24(4):639-641
    [93] Wang C.B.,Cooper S.L. Morphology and properties of segmented polyether polyurethaneureas[J].Macromolecules,1983,16(5):775-786
    [94] Luo N., Wang D.N.,Ying S.K. Hydrogen-bonding properties of segmented polyether poly(urethane urea)copolymer[J]. Macromolecules,1997,30(15):4405-4409
    [95] Yilgor E., Burgaz E., Yurtsever E., et al. Comparison of hydrogen bonding in polydimethylsiloxane andpolyether based urethane and urea copolymers[J]. Polymer,2000,41(3):849-857
    [96] Pongkitwitoon S., Hernandez R., Weksler J., et al. Temperature dependent microphase mixing of modelpolyurethanes with different intersegment compatibilities[J]. Polymer,2009,50(26):6305-6311
    [97] McKiernan R.L., Heintz A.M., Hsu S.L., et al. Influence of hydrogen bonding on the crystallizationbehavior of semicrystalline polyurethanes[J]. Macromolecules,2002,35(18):6970-6974
    [98] Chen C.P., Dai S.A., Chang H.L., et al. Polyurethane elastomers through multi-hydrogen-bondedassociation of dendritic structures[J]. Polymer,2005,46(25):11849-11857
    [99] Samuels S.L.,Wilkes G.L. The rheo-optical and mechanical behavior of a systematic series of hard-softsegmented urethanes[J]. Journal of Polymer Science: Polymer Symposia,1973,43(1):149-178
    [100] Tao H.J., Fan C.F., Macknight W.J., et al. Application of a molecular simulation technique for predictionof phase-separated structures of semirigid model polyurethanes[J]. Macromolecules,1994,27(7):1720-1728
    [101] Aneja A., Wilkes G.L., Yilgor I., et al. Exploring urea phase connectivity in molded flexiblepolyurethane foam formulations using LiBr as a probe[J]. Journal of Macromolecular Science-Physics,2003, B42(6):1125-1139
    [102] Sheth J.P., Aneja A.,Wilkes G.L. Exploring long-range connectivity of the hard segment phase in modeltri-segment oligomeric polyurethanes via lithium chloride[J]. Polymer,2004,45(17):5979-5984
    [103] Choi T., Weksler J., Padsalgikar A., et al. Influence of soft segment composition on phase-separatedmicrostructure of polydimethylsiloxane-based segmented polyurethane copolymers[J]. Polymer,2009,50(10):2320-2327
    [104] Hernandez R., Weksler J., Padsalgikar A., et al. A comparison of phase organization of model segmentedpolyurethanes with different intersegment compatibilities[J]. Macromolecules,2008,41(24):9767-9776
    [105] Laity P.R., Taylor J.E., Wong S.S., et al. A review of small-angle scattering models for randomsegmented poly(ether-urethane) copolymers[J]. Polymer,2004,45(21):7273-7291
    [106] Chu B.,Hsiao B.S. Small-angle x-ray scattering of polymers[J]. Chemical Reviews,2001,101(6):1727-1762
    [107] Yarusso D.J.,Cooper S.L. Microstructure of ionomers-interpretation of small-angle x-ray-scatteringdata[J]. Macromolecules,1983,16(12):1871-1880
    [108] Visser S.A.,Cooper S.L. Analysis of small-angle x-ray-scattering data for model polyurethane ionomers-evaluation of hard-sphere models[J]. Macromolecules,1991,24(9):2584-2593
    [109] Bonart R.,Muller E.H. Phase separation in urethane elastomers as judged by low-angle x-ray-scattering.2. Experimental results[J]. Journal of Macromolecular Science-Physics,1974, B10(2):345-357
    [110] Russell T.P., Lin J.S., Spooner S., et al. Intercalibration of small-angle x-ray and neutron-scatteringdata[J]. Journal of Applied Crystallography,1988,21(6):629-638
    [111] Fedors R.F. A method for estimating both the solubility parameters and molar volumes of liquids[J].Polymer Engineering&Science,1974,14(2):147-154
    [112] Tyagi D., Mcgrath J.E.,Wilkes G.L. Small-angle x-ray studies of siloxane-urea segmented copolymers[J].Polymer Engineering and Science,1986,26(20):1371-1398
    [113] Castagna A.M., Pangon A., Choi T., et al. The role of soft segment molecular weight on microphaseseparation and dynamics of bulk polymerized polyureas[J]. Macromolecules,2012,45(20):8438-8444
    [114] Castagna A.M., Fragiadakis D., Lee H., et al. The role of hard segment content on the moleculardynamics of poly(tetramethylene oxide)-based polyurethane copolymers[J]. Macromolecules,2011,44(19):7831-7836
    [115] Mok M.M., Masser K.A., Runt J., et al. Dielectric relaxation spectroscopy of gradient copolymers andblock copolymers: Comparison of breadths in relaxation time for systems with. Increasing interphase[J].Macromolecules,2010,43(13):5740-5748
    [116] Okrasa L., Czech P., Boiteux G., et al. Molecular dynamics in polyester-or polyether-urethane networksbased on different diisocyanates[J]. Polymer,2008,49(11):2662-2668
    [117] Valentova H., Nedbal J., Ilavsky M., et al. Dsc, dielectric and dynamic mechanical behavior of two-andthree-component ordered polyurethanes[J]. Polymer,2005,46(12):4175-4182
    [118] Raftopoulos K.N., Pandis C., Apekis L., et al. Polyurethane-poss hybrids: Molecular dynamics studies[J].Polymer,2010,51(3):709-718
    [119] Raftopoulos K.N., Janowski B., Apekis L., et al. Molecular mobility and crystallinity inpolytetramethylene ether glycol in the bulk and as soft component in polyurethanes[J]. EuropeanPolymer Journal,2011,47(11):2120-2133
    [120]何平笙.新编高聚物的结构与性能[M].北京市:科学出版社,2009:357-371
    [121] Kremer F.,Sch nhals A. Broadband dielectric spectroscopy[M].3ed.; New York: Springer,2003:1-10
    [122] Stockmay.Wh. Dielectric dispersion in solutions of flexible polymers[J]. Pure and Applied Chemistry,1967,3-4(15):539-554
    [123] Fulcher G.S. Analysis of recent measurements of the viscosity of glasses[J]. Journal of the AmericanCeramic Society,1925,8(6):339-355
    [124] Hodge I.M. Strong and fragile liquids-a brief critique[J]. Journal of Non-Crystalline Solids,1996,202(1-2):164-172
    [125] Cole K.S.,Cole R.H. Dispersion and absorption in dielectrics i. Alternating current characteristics[J].Journal of Chemical Physics,1941,9(4):341-351
    [126] Davidson D.W.,Cole R.H. Dielectric relaxation in glycerol, propylene glycol, and normal-propanol[J].Journal of Chemical Physics,1951,19(12):1484-1490
    [127] Havrilia.S,Negami S. A complex plane representation of dielectric and mechanical relaxation processesin some polymers[J]. Polymer,1967,8(4):161-210
    [128] Van Turnhout J.,Wubbenhorst M. Analysis of complex dielectric spectra. Ii. Evaluation of the activationenergy landscape by differential sampling[J]. Journal of Non-Crystalline Solids,2002,305(1-3):50-58
    [129] Wubbenhorst M.,Van Turnhout J. Analysis of complex dielectric spectra. I. One-dimensional derivativetechniques and three-dimensional modelling[J]. Journal of Non-Crystalline Solids,2002,305(1-3):40-49
    [130] Chattopadhyay D.K., Sreedhar B.,Raju K.V.S.N. Thermal stability of chemically crosslinkedmoisture-cured polyurethane coatings[J]. Journal of Applied Polymer Science,2005,95(6):1509-1518
    [131] Choi H.S., Lim C.H.,Noh S.T. Surface modification with waterborne fluorinated non-ionic polyurethanedispersion[J]. Journal of Industrial and Engineering Chemistry,2002,8(6):524-529
    [132] Delebecq E., Pascault J.P., Boutevin B., et al. On the versatility of urethane/urea bonds: Reversibility,blocked isocyanate, and non-isocyanate polyurethane[J]. Chem Rev,2013,113(1):80-118
    [133] Su T., Wang G.Y., Xu X.D., et al. Preparation and properties of waterborne polyurethaneurea consistingof fluorinated siloxane units[J]. Journal of Polymer Science Part A: Polymer Chemistry,2006,44(10):3365-3373
    [134] Krol P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Propertiesand applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers[J].Progress in Materials Science,2007,52(6):915-1015
    [135] Chattopadhyay D.K.,Raju K.V.S.N. Structural engineering of polyurethane coatings for highperformance applications[J]. Progress in Polymer Science,2007,32(3):352-418
    [136] Courtois J., Baroudi I., Nouvel N., et al. Supramolecular soft adhesive materials[J]. AdvancedFunctional Materials,2010,20(11):1803-1811
    [137] Sanchez-Adsuar M.S., Pastor-Blas M.M.,Martin-Martinez J.M. Properties of polyurethane elastomerswith different hard/soft segment ratio[J]. Journal of Adhesion,1998,67(1-4):327-345
    [138] Aneja A., Wilkes G.L., Yurtsever E., et al. Influence of lithium chloride on the morphology of flexibleslabstock polyurethane foams and their plaque counterparts[J]. Polymer,2003,44(3):757-768
    [139] Gooch A., Nedolisa C., Houton K.A., et al. Tunable self-assembled elastomers using triplyhydrogen-bonded arrays[J]. Macromolecules,2012,45(11):4723-4729
    [140] Furukawa M., Mitsui Y., Fukumaru T., et al. Microphase-separated structure and mechanical propertiesof novel polyurethane elastomers prepared with ether based diisocyanate[J]. Polymer,2005,46(24):10817-10822
    [141] Wisse E., Spiering A.J.H., Pfeifer F., et al. Segmental orientation in well-defined thermoplasticelastomers containing supramolecular fillers[J]. Macromolecules,2009,42(2):524-530
    [142] Kim Y.H., Lee J.W., Choi S.J., et al. Properties of rigid polyurethane foams blown by hfc-365mfc anddistilled water[J]. Journal of Industrial and Engineering Chemistry,2007,13(7):1076-1082
    [143] Heintz A.M., Duffy D.J., Nelson C.M., et al. A spectroscopic analysis of the phase evolution inpolyurethane foams[J]. Macromolecules,2005,38(22):9192-9199
    [144] Zhang J.,Hu C.P. Synthesis, characterization and mechanical properties of polyester-based aliphaticpolyurethane elastomers containing hyperbranched polyester segments[J]. European Polymer Journal,2008,44(11):3708-3714
    [145] Semsarzadeh M.A.,Navarchian A.H. Effects of nco/oh ratio and catalyst concentration on structure,thermal stability, and crosslink density of poly(urethane-isocyanurate)[J]. Journal of Applied PolymerScience,2003,90(4):963-972
    [146] Willeboordse F. The use of differential reaction kinetics in determining rate constants ofhydroxyl-isocyanate reactions[J]. The Journal of Physical Chemistry,1970,74(3):601-606
    [147] Krol P., Galina H.,Kaczmarski K. A three parameter kinetic model of formation of linear polyurethanefrom2,4-toluenediisocyanate and butane-1,4-diol[J]. Macromolecular Theory and Simulations,1999,8(2):129-136
    [148] Krol P. Kinetic model for the process giving linear polyurethanes, with consideration of substitutioneffects and different chemical reactivities of functional groups in toluene2,4-diisocyanate[J]. Journal ofApplied Polymer Science,1998,69(1):169-181
    [149] Krol P. Experimental verification of the kinetic model for the reaction yielding linear polyurethanes,claiming dependence of oligomer reactivities on molecular weights. Iii[J]. Journal of Applied PolymerScience,1996,61(12):2207-2219
    [150] Labrecque M., Malo J.L., Alaoui K.M., et al. Medical surveillance programme for diisocyanateexposure[J]. Occupational and Environmental Medicine,2011,68(4):302-307
    [151] Hettick J.M., Siegel P.D., Green B.J., et al. Vapor conjugation of toluene diisocyanate to specific lysinesof human albumin[J]. Analytical Biochemistry,2012,421(2):706-711
    [152] Suojalehto H., Linstrom I., Henriks-Eckerman M.L., et al. Occupational asthma related to low levels ofairborne methylene diphenyl diisocyanate (mdi) in orthopedic casting work[J]. American Journal ofIndustrial Medicine,2011,54(12):906-910
    [153] Majoros L.I., Dekeyser B., Hoogenboom R., et al. Solution prepolymerization as a new route forpreparing aliphatic polyurethane prepolymers using high-throughput experimentation[J]. Journal ofPolymer Science Part A: Polymer Chemistry,2009,47(15):3729-3739
    [154] Krol P.,Pilch-Pitera B. Urethane oligomers as raw materials and intermediates for polyurethaneelastomers. Methods for synthesis, structural studies and analysis of chemical composition[J]. Polymer,2003,44(18):5075-5101
    [155] Prochazka F., Nicolai T.,Durand D. Molar mass distribution of linear and branched polyurethane studiedby size exclusion chromatography[J]. Macromolecules,2000,33(5):1703-1709
    [156] Majoros L.I., Dekeyser B., Hoogenboom R., et al. Kinetic study of the polymerization of aromaticpolyurethane prepolymers by high-throughput experimentation[J]. Journal of Polymer Science Part A:Polymer Chemistry,2010,48(3):570-580
    [157] Murgasova R.,Hercules D. Polymer characterization by combining liquid chromatography with maldiand esi mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2002,373(6):481-489
    [158] Esser E., Keil C., Braun D., et al. Matrix-assisted laser desorption/ionization mass spectrometry ofsynthetic polymers.4. Coupling of size exclusion chromatography and maldi-tof using aspray-deposition interface[J]. Polymer,2000,41(11):4039-4046
    [159] Yang P.F., De Han Y., Li T.D., et al. H-1nmr analysis of the tolylene-2,4-diisocyanate-methanolreaction[J]. Chinese Chemical Letters,2010,21(7):853-855
    [160] Bartelink C.F., De Pooter M., Grunbauer H.J.M., et al. Controlled formation of isocyanate-terminatedstar polyethers avoiding chain extension[J]. Journal of Polymer Science Part A: Polymer Chemistry,2000,38(14):2555-2565
    [161] Moller M.,Moritz H.U. Kinetic investigations of trimethylolpropane-diisocyanate reactions[J]. Journalof Applied Polymer Science,2006,101(6):4090-4097
    [162] Dusek K., Spirkova M.,Havlicek I. Network formation of polyurethanes due to side reactions[J].Macromolecules,1990,23(6):1774-1781
    [163] Heintz A.M., Duffy D.J., Hsu S.L., et al. Effects of reaction temperature on the formation ofpolyurethane prepolymer structures[J]. Macromolecules,2003,36(8):2695-2704
    [164] Rokicki G.,Piotrowska A. A new route to polyurethanes from ethylene carbonate, diamines and diols[J].Polymer,2002,43(10):2927-2935
    [165] Sumi M., Chokki Y., Nakai Y., et al. Studies on the structure of polyurethane elastomers. I. Nmr spectraof the model compounds and some linear polyurethanes[J]. Die Makromolekulare Chemie,1964,78(1):146-156
    [166] Pegoraro M., Galbiati A.,Ricca G.1H nuclear magnetic resonance study of polyurethane prepolymersfrom toluene diisocyanate and polypropylene glycol[J]. Journal of Applied Polymer Science,2003,87(3):347-357
    [167] Król P.,Pilch-Pitera B. A study on the synthesis of urethane oligomers[J]. European Polymer Journal,2003,39(6):1229-1241
    [168] Furukawa M., Komiya M.,Yokoyama T. Characterization of polyurethane network elastomers[J]. DieAngewandte Makromolekulare Chemie,1996,240(1):205-211
    [169] Arman B., Reddy A.S.,Arya G. Viscoelastic properties and shock response of coarse-grained models ofmultiblock versus diblock copolymers: Insights into dissipative properties of polyurea[J].Macromolecules,2012,45(7):3247-3255
    [170] Wu S., Li W., Lin M., et al. Aromatic polythiourea dielectrics with ultrahigh breakdown field strength,low dielectric loss, and high electric energy density[J]. Advanced Materials,2013,25(12):1734-1738
    [171]张鑫芳,张心亚,何勇,等.HDI缩二脲的合成与表征研究进展[J].涂料工业,2011,41(10):71-75
    [172] Kothandaraman H.,Nasar A.S. The kinetics of the polymerization reaction of toluene diisocyanate withHTPB prepolymer[J]. Journal of Applied Polymer Science,1995,50(9):1611-1617
    [173] Kothandaraman H.,Nasar A.S. The kinetics of the polymerization reaction of toluene diisocyanate withpolyether polyols[J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry,1994,31(3):339-350
    [174] Manu S.K., Sekkar V., Scariah K.J., et al. Kinetics of glycidyl azide polymer-based urethane networkformation[J]. Journal of Applied Polymer Science,2008,110(2):908-914
    [175] Semsarzadeh M.A.,Navarchian A.H. Kinetic study of the bulk reaction between TDI and PPG inpresence of dbtdl and feaa catalysts using quantitative ftir spectroscopy[J]. Journal of PolymerEngineering,2003,23(4):225-240
    [176] Krol P.,Wojturska J. Kinetic study on the reaction of2,4-and2,6-tolylene diisocyanate with1-butanol inthe presence of styrene, as a model reaction for the process that yields interpenetratingpolyurethane-polyester networks[J]. Journal of Applied Polymer Science,2003,88(2):327-336
    [177]雷鸣,黄洪,何勇,等. TDI-TMP合成反应动力学研究[J].涂料工业,2011,41(6):22-24
    [178] Grepinet B., Pla F., Hobbes P., et al. Modeling and simulation of urethane acrylates synthesis. II.Kinetics of uncatalyzed reaction of toluene diisocyanate with a polyether diol[J]. Journal of AppliedPolymer Science,2001,81(13):3149-3160
    [179] Grepinet B., Pla F., Hobbes P., et al. Modeling and simulation of urethane acrylates synthesis. I. Kineticsof uncatalyzed reaction of toluene diisocyanate with a monoalcohol[J]. Journal of Applied PolymerScience,2000,75(5):705-712
    [180] He Y., Zhang X.Y., Zhang X.F., et al. Structural investigations of toluene diisocyanate (TDI) andtrimethylolpropane (TMP)-based polyurethane prepolymer[J]. Journal of Industrial and EngineeringChemistry,2012,18(5):1620-1627
    [181] Gunatillake P.A., Meijs G.F., McCarthy S.J., et al. Poly(dimethylsiloxane)/poly(hexamethylene oxide)mixed macrodiol based polyurethane elastomers. I. Synthesis and properties[J]. Journal of AppliedPolymer Science,2000,76(14):2026-2040
    [182] Wong S.W.,Frisch K.C. Catalysis in competing isocyanate reactions. I. Effect of organotin–tertiaryamine catalysts on phenyl isocyanate and n-butanol reaction[J]. Journal of Polymer Science Part A:Polymer Chemistry,1986,24(11):2867-2875
    [183] Dubois C.,Desilets S. Bulk polymerization of hydroxyl terminated polybutadiene (HTPB) with tolylenediisocyanate (TDI): A kinetics study using13C-nmr spectroscopy[J]. Journal of Applied PolymerScience,1995,58(4):827-834
    [184] Khandpur A.K., Foerster S., Bates F.S., et al. Polyisoprene-polystyrene diblock copolymer phasediagram near the order-disorder transition[J]. Macromolecules,1995,28(26):8796-8806
    [185] Aneja A.,Wilkes G.L. On the issue of urea phase connectivity in formulations based on molded flexiblepolyurethane foams[J]. Journal of Applied Polymer Science,2002,85(14):2956-2967
    [186] Aneja A.,Wilkes G.L. Exploring macro-and microlevel connectivity of the urea phase in slabstockflexible polyurethane foam formulations using lithium chloride as a probe[J]. Polymer,2002,43(20):5551-5561
    [187] Woodward P.J., Hermida Merino D., Greenland B.W., et al. Hydrogen bonded supramolecularelastomers: Correlating hydrogen bonding strength with morphology and rheology[J]. Macromolecules,2010,43(5):2512-2517
    [188] Bogoslovov R.B., Roland C.M.,Gamache R.M. Impact-induced glass transition in elastomericcoatings[J]. Applied Physics Letters,2007,90(22):
    [189] Asplund J.O.B., Bowden T., Mathisen T., et al. Synthesis of highly elastic biodegradable poly(urethaneurea)[J]. Biomacromolecules,2007,8(3):905-911
    [190] Grujicic A., LaBerge M., Grujicic M., et al. Potential improvements in shock-mitigation efficacy of apolyurea-augmented advanced combat helmet[J]. Journal of Materials Engineering and Performance,2012,21(8):1562-1579
    [191] Grujicic M., Bell W.C., Pandurangan B., et al. Blast-wave impact-mitigation capability of polyureawhen used as helmet suspension-pad material[J]. Materials&Design,2010,31(9):4050-4065
    [192] Sheth J.P., Wilkes G.L., Fornof A.R., et al. Probing the hard segment phase connectivity and percolationin model segmented poly(urethane urea) copolymers[J]. Macromolecules,2005,38(13):5681-5685
    [193] Fragiadakis D., Gamache R., Bogoslovov R.B., et al. Segmental dynamics of polyurea: Effect ofstoichiometry[J]. Polymer,2010,51(1):178-184
    [194] Roland C.M., Twigg J.N., Vu Y., et al. High strain rate mechanical behavior of polyurea[J]. Polymer,2007,48(2):574-578
    [195] Yilgor E., Isik M.,Yilgor I. Novel synthetic approach for the preparation of poly(urethaneurea)elastomers[J]. Macromolecules,2010,43(20):8588-8593
    [196] Aneja A.,Wilkes G.L. A systematic series of 'model' ptmo based segmented polyurethanes reinvestigatedusing atomic force microscopy[J]. Polymer,2003,44(23):7221-7228
    [197] Garrett J.T., Siedlecki C.A.,Runt J. Microdomain morphology of poly(urethane urea) multiblockcopolymers[J]. Macromolecules,2001,34(20):7066-7070
    [198] Kautz H., van Beek D.J.M., Sijbesma R.P., et al. Cooperative end-to-end and lateral hydrogen-bondingmotifs in supramolecular thermoplastic elastomers[J]. Macromolecules,2006,39(13):4265-4267
    [199] Klinedinst D.B., Yilg r I., Yilg r E., et al. The effect of varying soft and hard segment length on thestructure–property relationships of segmented polyurethanes based on a linear symmetric diisocyanate,1,4-butanediol and ptmo soft segments[J]. Polymer,2012,53(23):5358-5366
    [200] Xu Y., Petrovic Z., Das S., et al. Morphology and properties of thermoplastic polyurethanes withdangling chains in ricinoleate-based soft segments[J]. Polymer,2008,49(19):4248-4258
    [201] Yilgor E., Yurtsever E.,Yilgor I. Hydrogen bonding and polyurethane morphology. Ii. Spectroscopic,thermal and crystallization behavior of polyether blends with1,3-dimethylurea and a model urethanecompound[J]. Polymer,2002,43(24):6561-6568
    [202] Coleman M.M., Lee K.H., Skrovanek D.J., et al. Hydrogen-bonding in polymers.4. Infraredtemperature studies of a simple polyurethane[J]. Macromolecules,1986,19(8):2149-2157
    [203] Lee H.S., Wang Y.K., Macknight W.J., et al. Spectroscopic analysis of phase-separation kinetics inmodel polyurethanes[J]. Macromolecules,1988,21(1):270-273
    [204] Coleman M.M., Skrovanek D.J., Hu J.B., et al. Hydrogen-bonding in polymer blends.1. FTIR studies ofurethane ether blends[J]. Macromolecules,1988,21(1):59-65
    [205] Seymour R.W.,Cooper S.L. Thermal analysis of polyurethane block polymers[J]. Macromolecules,1973,6(1):48-53
    [206] Koberstein J.T.,Russell T.P. Simultaneous SAXS-DSC study of multiple endothermic behavior inpolyether-based polyurethane block copolymers[J]. Macromolecules,1986,19(3):714-720
    [207] Saiani A., Daunch W.A., Verbeke H., et al. Origin of multiple melting endotherms in a high hard blockcontent polyurethane.1. Thermodynamic investigation[J]. Macromolecules,2001,34(26):9059-9068
    [208] Ryan A.J., Macosko C.W.,Bras W. Order-disorder transition in a block copolyurethane[J].Macromolecules,1992,25(23):6277-6283
    [209] Fragiadakis D.,Runt J. Microstructure and dynamics of semicrystalline poly(ethylene oxide)-poly(vinylacetate) blends[J]. Macromolecules,2010,43(2):1028-1034
    [210] Pissis P., Apekis L., Christodoulides C., et al. Water effects in polyurethane block copolymers[J]. Journalof Polymer Science Part B-Polymer Physics,1996,34(9):1529-1539
    [211] Castagna A.M., Wang W.Q., Winey K.I., et al. Structure and dynamics of zinc-neutralized sulfonatedpolystyrene ionomers[J]. Macromolecules,2011,44(8):2791-2798
    [212] Wisse E., Govaert L.E., Meijer H.E.H., et al. Unusual tuning of mechanical properties of thermoplasticelastomers using supramolecular fillers[J]. Macromolecules,2006,39(21):7425-7432
    [213] Camberlin Y.,Pascault J.P. Quantitative dsc evaluation of phase segregation rate in linear segmentedpolyurethanes and polyurethaneureas[J]. Journal of Polymer Science Part A-Polymer Chemistry,1983,21(2):415-423
    [214] Yilgor E., Yilgor I.,Yurtsever E. Hydrogen bonding and polyurethane morphology. I. Quantummechanical calculations of hydrogen bond energies and vibrational spectroscopy of modelcompounds[J]. Polymer,2002,43(24):6551-6559
    [215] Lee H.S., Wang Y.K.,Hsu S.L. Spectroscopic analysis of phase-separation behavior of modelpolyurethanes[J]. Macromolecules,1987,20(9):2089-2095
    [216] Coleman M.M., Sobkowiak M., Pehlert G.J., et al. Infrared temperature studies of a simple polyurea[J].Macromolecular Chemistry and Physics,1997,198(1):117-136
    [217] Garrett J.T., Xu R.J., Cho J.D., et al. Phase separation of diamine chain-extended poly(urethane)copolymers: Ftir spectroscopy and phase transitions[J]. Polymer,2003,44(9):2711-2719
    [218] Painter P.C., Snyder R.W., Starsinic M., et al. Concerning the application of ft-ir to the study of coal-acritical-assessment of band assignments and the application of spectral-analysis programs[J]. AppliedSpectroscopy,1981,35(5):475-485
    [219] Skrovanek D.J., Howe S.E., Painter P.C., et al. Hydrogen-bonding in polymers-infrared temperaturestudies of an amorphous polyamide[J]. Macromolecules,1985,18(9):1676-1683
    [220] Senich G.A.,Macknight W.J. Fourier-transform infrared thermal-analysis of a segmented polyurethane[J].Macromolecules,1980,13(1):106-110
    [221] Coleman M.M., Skrovanek D.J., Howe S.E., et al. On the validity of a commonly employed infraredprocedure used to determine thermodynamic parameters associated with hydrogen-bonding inpolymers[J]. Macromolecules,1985,18(2):299-301
    [222] Shainyan B.A., Chipanina N.N., Aksamentova T.N., et al. Intramolecular hydrogen bonds in thesulfonamide derivatives of oxamide, dithiooxamide, and biuret. Ft-ir and dft study, aim and nboanalysis[J]. Tetrahedron,2010,66(44):8551-8556
    [223] Siemion P., Jab ońska J., Kapu niak J., et al. Solid state reactions of potato starch with urea and biuret[J].Journal of Polymers and the Environment,2004,12(4):247-255
    [224] Schaber P.A., Colson J., Higgins S., et al. Thermal decomposition (pyrolysis) of urea in an open reactionvessel[J]. Thermochimica Acta,2004,424(1-2):131-142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700