用户名: 密码: 验证码:
抗肿瘤和治疗2型糖尿病活性分子的筛选及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高通量筛选是新药发现和研发的重要手段,有效的提高了药物研发的效率和缩短药物研发周期。一个完整的高通量筛选平台包括配套的仪器设备,经济、快捷的生物活性检测方法,以及结构丰富多样的化合物库。天然产物库是新药发现和研发的重要资源,具有资源丰富,种类多样等特点。本论文中所用的天然产物库是包括10,000个醇提物组分和50,000个高效液相组分分别来自500种和171种中草药。通过整合自动液体处理站,微孔板自动分液器,多功能酶标仪以及384pin tool建立了自动化的384格式的高通量筛选平台。在高通量平台构建过程中,建立了8种用来检测酪氨酸激酶活性的酪氨酸激酶模型,2种用来检测胰高血糖素样肽受体(GLP1R)激动剂的细胞模型和10种检测细胞毒性的模型经实践验证,本论文研究所构建的高通量筛选平台能够达到每天5万样次的筛选通量。
     白血病和淋巴瘤是循环系统来源的恶性血液病,血液系统来源的肿瘤和实体瘤在机制和病理上有很多不同,因此开发特异性针对血液系统来源的肿瘤治疗的药物,对于实现肿瘤治疗的“个体化”具有重要的意义。而在构建的细胞模型中,BaF3是一种小鼠原B细胞具有生长周期短的特点,因此以该细胞模型为基础从天然产物库中筛选治疗白血病的活性分子。经过前期的高通量筛选,发现了一种活性组分对BaF3细胞具有很强的细胞增殖抑制能力,但是对于实体瘤细胞A549, SNU16, SNU638等的细胞增殖抑制能力要弱50倍以上。通过对活性组分进行分离纯化及结构鉴定,活性跟踪,最终鉴定活性组分为人参环氧炔醇。用流式细胞仪检测人参环氧炔醇对实体瘤细胞A549和BaF3细胞的细胞凋亡和周期指标的影响,检测结果表明人参环氧炔醇对BaF3细胞在细胞凋亡和细胞周期的影响明显高于实体瘤细胞A549。人参环氧炔醇对于其他血液瘤细胞,T细胞白血病Jurkat和淋巴瘤细胞Raji也有较高的细胞增殖抑制能力。这一现象说明人参环氧炔醇对白血病和淋巴瘤细胞具有选择性的杀伤作用,是治疗白血病和淋巴瘤的活性分子。
     GLP1受体(GLP1R)是2型糖尿病治疗的一个重要靶点。在体内,GLP1结合细胞上的GLP1R之后激活受体,然后使得葡萄糖依赖性的胰岛素基因表达升高,促进胰岛素的分泌。机体自身分泌的GLP1在体内的半衰期很短,易被二肽基肽酶(DPP-IV)降解而失去活性,因此寻找长效的GLP1R的激动剂是治疗2型糖尿病的一个药物研发方向。本论文研究建立了用于高通量筛选的检测GLP1R激动剂活性的-细胞模型,对来源于中草药的天然产物库进行筛选。发现了一个来源于脆蛇具有GLP1R激动剂的活性组分。和目前治疗2型糖尿病的一个临床药物Exenatide很像,该活性组分是一个具有DPP-IV的耐受性的肽类化合物。活体脆蛇的各个器官的蛋白活性检测显示活性组分主要集中在胃肠道,这与其它物种的GLP1高表达区域相吻合。本论文通过转录组测序鉴定出了脆蛇的GLP1序列。用该序列化学合成的脆蛇GLP1仍然具有GLP1R激动剂活性,但是丧失了部分DPP-IV的耐受性。说明天然脆蛇GLP1的DPP-IV耐受性可能与其二级结构或者翻译后的修饰有关。
High throughput screening (HTS) is an important tool in current drug discovery. A complete HTS platform is consisted of a set of compatible equipments which is capable of precision liquid handling and highly sensitive signal acquisition, a chemical compound library which includes compounds with variety chemical scaffolds and biological activities, and a collection of HTS-compatible methods to measure biological activities. Natural product library is a good source for the drug discovery because of its abaundant and diversity. The chemical library used in this study includes10,000flash fractions and50,000HPLC fractions extracted from respectively500and171different herbs widely used in Traditional Chinese Medicine (TCM). This study combined liquid handling, dispenser, molecular device M5and384pin tool to esdablish a384format HTS platform. During the construction of the HTS system, eight assays to measure the cellular kinase activity of different tyrosine kinase, two assays to measure different GLP1R agonist activity, and10assays to masure cytotoxcicity were established. A throughput of50,000wells/day was routinely achieved in our subsequent screens using this HTS platform.
     Leukemia and lymphoma are hematologic malignancies, which may have different mechanisms and pathology from solid tumors. Specific drug discovery for leukemia treatment is crucial for personal cancer treatment. Because BaF3is rat pro-B cells, which expand rapidly it was used to as a cellular model to screen for inhibitors against leukemia. After the screening, one active fraction was found with high potency against the proliferation of BaF3. This fraction has little inhibitory effect on the growth of solid tumor cells, such as A549, SNU16and SNU638. After further extraction and purification procedures, the structure of active component is identified as panaxydol. Using the flow cytometry analysis, panaxydol was found to induce the apoptosis of BaF3/, but not of A549cells. Cytotoxic activity of panaxydol is also confirmed in Jurkat and Raji cells which are originally isolated from patients with leukemia and lymphoma.
     Glucagon-like peptide1receptor (GLP1R) is a validated target for type2diabetes treatment. In vivo, GLP1R can be activated by binding with GLP1peptide and subsequently increase glucose-dependent insulin gene expression and insulin secretion in L cells. Due to the activity DPP-IV, the endogenous GLP1peptide is cleaved and lost its activity, so a longer half-life GLP1R agonist is in great interest as a candidate in treating type2diabetes. A HTS to screen for GLP1R agonists from a natural product compound library derived from Traditional Chinese Medicine (TCM) was conducted. One fraction extracted from dry Ophisaurus harti was found to have specific GLP1agonist activity. Similar to Exenatide, a clinical-proven GLP1R agonist in treating type2diabetes, active fraction also showed sensitivity to trypsin digestion and resistant to DPP-Ⅳ cleavage, revealing its peptidic nature and DPP-Ⅳ resistance. Interestingly, Exenatide was originally identified from Heloderma Suspectum, a lizard species that belong to the same suborder of Anguimorpha as the host animals of active fraction. The active ingredient was later identified as O. harti GLP1through transcriptome analysis. The O. harti GLP1peptide was chemically synthesized based on its sequence, and was demonstrated to preserve its GLP1R agonist activity. However, chemically synthesized GLP1peptide is not DPP-Ⅳ resistant, and we suspect this was due to lack of special secondary structure, or post-translational modification which only presented in biologically generated GLP1.
引文
1. Fox, S., et al., High-throughput screening:update on practices and success. J Biomol Screen,2006.11(7):p.864-9.
    2.路群,顾觉奋,药物高通量筛进技术应用研究进展.今日药学,2010.20(2-5).
    3. Giuliano, K.A., J.R. Haskins, and D.L. Taylor, Advances in high content screening for drug discovery. Assay Drug Dev Technol,2003.1(4):p.565-77.
    4. Sundberg, S.A., High-throughput and ultra-high-throughput screening: solution-and cell-based approaches. Curr Opin Biotechnol,2000.11(1):p. 47-53.
    5. Gopinathan, S., A. Nouraldeen, and A.G. Wilson, Development and application of a high-throughput formulation screening strategy for oral administration in drug discovery. Future Med Chem.2(9):p.1391-8.
    6. Sanz, L., et al., Development of a computer-assisted high-throughput screening platform for anti-angiogenic testing. Microvasc Res,2002.63(3):p. 335-9.
    7. Drews, J., Case histories, magic bullets and the state of drug discovery. Nat Rev Drug Discov,2006.5(8):p.635-40.
    8. Fernandes, P.B., Technological advances in high-throughput screening. Curr Opin Chem Biol,1998.2(5):p.597-603.
    9.吕秋军,高月,受体药物筛进研究进展.中国药学杂志,1999.34(1):p.6.
    10. Baker, J.T., et al., Natural product drug discovery and development:new perspectives on international collaboration. J Nat Prod,1995.58(9):p. 1325-57.
    11. Newman, D.J., G.M. Cragg, and K.M. Snader, Natural products as sources of new drugs over the period 1981-2002. J Nat Prod,2003.66(7):p.1022-37.
    12. Shang, A., et al., Placebo-controlled trials of Chinese herbal medicine and conventional medicine comparative study. Int J Epidemiol,2007.36(5):p. 1086-92.
    13. Zhu, X., et al., Chinese herbal medicine for primary dysmenorrhoea. Cochrane Database Syst Rev,2007(4):p. CD005288.
    14. Radha, V., S. Nambirajan, and G. Swarup, Association of Lyn tyrosine kinase with the nuclear matrix and cell-cycle-dependent changes in matrix-associated tyrosine kinase activity. Eur J Biochem,1996.236(2):p. 352-9.
    15. Hunter, T., The role of tyrosine phosphorylation in cell growth and disease. Harvey Lect,1998.94:p.81-119.
    16. Blume-Jensen, P. and T. Hunter, Oncogenic kinase signalling. Nature, 2001.411(6835):p.355-65.
    17. Seidler, J., et al., Identification and prediction of promiscuous aggregating inhibitors among known drugs. J Med Chem,2003.46(21):p.4477-86.
    18. Knight, Z.A. and K.M. Shokat, Features of selective kinase inhibitors. Chem Biol,2005.12(6):p.621-37.
    19. Weisberg, E., et al., Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell,2005.7(2):p.129-41.
    20. Baselga, J., Targeting tyrosine kinases in cancer:the second wave. Science,2006.312(5777):p.1175-8.
    21. Levis, M. and D. Small, FLT3 tyrosine kinase inhibitors. Int J Hematol, 2005.82(2):p.100-7.
    22. Lopes de Menezes, D.E., et al., CHIR-258:a potent inhibitor of FLT3 kinase in experimental tumor xenograft models of human acute myelogenous leukemia. Clin Cancer Res,2005.11(14):p.5281-91.
    23. Trudel, S., et al., CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood,2005.105(7):p. 2941-8.
    24. Shawver, L.K., D. Slamon, and A. Ullrich, Smart drugs:tyrosine kinase inhibitors in cancer therapy. Cancer Cell,2002.1(2):p.117-23.
    25. Li, Z., et al., Erlotinib effectively inhibits JAK2V617F activity and polycythemia vera cell growth. J Biol Chem,2007.282(6):p.3428-32.
    26. Dudek, A.Z., et al., Skin rash and bronchoalveolar histology correlates with clinical benefit in patients treated with gefitinib as a therapy for previously treated advanced or metastatic non-small cell lung cancer. Lung Cancer,2006. 51(1):p.89-96.
    27. Palacios, R. and M. Steinmetz,11-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell,1985.41(3):p.727-34.
    28. Daley, G.Q. and D. Baltimore, Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci U S A,1988.85(23): p.9312-6.
    29. Warmuth, M., et al., Ba/F3 cells and their use in kinase drug discovery. Curr Opin Oncol,2007.19(1):p.55-60.
    30. Hu, J.F., et al., Application of capillary-scale NMR for the structure determination of phytochemicals. Phytochem Anal,2005.16(2):p.127-33.
    31. Hu, J.F., et al., Miniaturization of the structure elucidation of novel natural products-two trace antibacterial acylated caprylic alcohol glycosides from Arctostaphylos pumila. Planta Med,2005.71(2):p.176-80.
    32. Mayr, L.M. and P. Fuerst, The future of high-throughput screening. J Biomol Screen,2008.13(6):p.443-8.
    33. Johnston, C.L., et al., Fibroblast growth factor receptors (FGFRs) localize in different cellular compartments. A splice variant of FGFR-3 localizes to the nucleus. J Biol Chem,1995.270(51):p.30643-50.
    34. Jones, H.E., et al., Insulin-like growth factor-1 receptor signalling and acquired resistance togefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer,2004.11(4):p.793-814.
    35. Warshamana-Greene, G.S., et al., The insulin-like growth factor-1 receptor kinase inhibitor, NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy. Clin Cancer Res,2005.11(4):p.1563-71.
    36. Claeson, P. and L. Bohlin, Some aspects of bioassay methods in natural-product research aimed at drug lead discovery. Trends Biotechnol, 1997.15(7):p.245-8.
    37. Grabley, S., R. Thiericke, and I. Sattler, Tools for drug discovery:natural product-based libraries. Ernst Schering Res Found Workshop,2000(32):p. 217-52.
    38. Sarett, L.H., The impact of natural product research on drug discovery. Prog Drug Res,1979.23:p.51-62.
    39. Konkimalla, V.B. and T. Efferth, Anti-cancer natural product library from traditional chinese medicine. Comb Chem High Throughput Screen,2008. 11(1):p.7-15.
    40. L.E., K., Leukemias in children. Pediatric Radiation Oncology.,2007:p. 15-39.
    41. Pui, C.H. and WE. Evans, Treatment of acute lymphoblastic leukemia. N Engl J Med,2006.354(2):p.166-78.
    42. Knox, E.G., Childhood cancers and atmospheric carcinogens. J Epidemiol Community Health,2005.59(2):p.101-5.
    43. Zhang, X.W., et al., Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science.328(5975):p.240-3.
    44. Cross, N.C. and A. Reiter, Tyrosine kinase fusion genes in chronic myeloproliferative diseases. Leukemia,2002.16(7):p.1207-12.
    45. Hu, Y., et al., Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet,2004.36(5):p.453-61.
    46. Brown, P., et al., Pediatric AML primary samples with FLT3/ITD mutations are preferentially killed by FLT3 inhibition. Blood,2004.104(6):p.1841-9.
    47. Sievers, E.L., et al., Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol,2001.19(13):p.3244-54.
    48. Coiffier, B., et al., Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia:a phase 1-2 study. Blood,2008.111(3):p. 1094-100.
    49. Murawski, N. and M. Pfreundschuh, New drugs for aggressive B-cell and T-cell lymphomas. Lancet Oncol.11(11):p.1074-85.
    50. Houghton, P.J., et al., Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatr Blood Cancer, 2008.50(1):p.37-45.
    51. Teachey, D.T., et al., mTOR inhibitors are synergistic with methotrexate:an effective combination to treat acute lymphoblastic leukemia. Blood,2008. 112(5):p.2020-3.
    52. O'Neil, J., et al., FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med, 2007.204(8):p.1813-24.
    53. Axelson, H., et al., Hypoxia-induced dedifferentiation of tumor cells--a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin Cell Dev Biol,2005.16(4-5):p.554-63.
    54. Maxwell, P.H., et al., Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci U S A,1997.94(15):p.8104-9.
    55. Urtasun, R.C., et al., Binding of 3H-misonidazole to solid human tumors as a measure of tumor hypoxia. Int J Radiat Oncol Biol Phys,1986.12(7):p. 1263-7.
    56. Ishihara, K., et al., Roles of bradykinin in vascular permeability and angiogenesis in solid tumor. Int Immunopharmacol,2002.2(4):p.499-509.
    57. Dell'Eva, R., et al., AKT/NF-kappaB inhibitor xanthohumol targets cell growth and angiogenesis in hematologic malignancies. Cancer,2007.110(9): p.2007-11.
    58. Moehler, T.M., et al., Angiogenesis in hematologic malignancies. Ann Hematol,2001.80(12):p.695-705.
    59. Stasi, R. and S. Amadori, The role of angiogenesis in hematologic malignancies. J Hematother Stem Cell Res,2002.11(1):p.49-68.
    60. Pandey, A., et al., Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis. Science,1995.268(5210):p. 567-9.
    61. Kontovinis, L.F., et al., Sunitinib treatment for patients with clear-cell metastatic renal cell carcinoma:clinical outcomes and plasma angiogenesis markers. BMC Cancer,2009.9:p.82.
    62. Plate, K.H., et al., Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature,1992.359(6398):p. 845-8.
    63. Estevez-Braun, A., et al., Antibiotic activity and absolute configuation of 8S-heptadeca-2(Z),9(Z)-diene-4,6-diyne-1,8-diol from Bupleurum salicifolium. J Nat Prod,1994.57(8):p.1178-82.
    64. Kobaisy, M., et al., Antimycobacterial polyynes of Devil's Club (Oplopanax horridus), a North American native medicinal plant. J Nat Prod,1997.60(11):p. 1210-3.
    65. Takai, S., et al., Effects of a lipoxygenase inhibitor, panaxynol, on vascular contraction induced by angiotensin Ⅱ. Jpn J Pharmacol,1999.80(1):p.89-92.
    66. Crosby, D.G. and N. Aharonson, The structure of carotatoxin, a natural toxicant from carrot. Tetrahedron,1967.23(1):p.465-72.
    67. Matsunaga, H., et al., [Relationship between antiproliferative activity of acetylenic alcohol, panaxydol, and its affinity for target cell membrane]. Gan To Kagaku Ryoho,1994.21(15):p.2585-9.
    68. Sohn, J., et al., Effect of petroleum ether extract of Panax ginseng roots on proliferation and cell cycle progression of human renal cell carcinoma cells. Exp Mol Med,1998.30(1):p.47-51.
    69. Wang, Z.J., et al., Induction of differentiation by panaxydol in human hepatocarcinoma SMMC-7721 cells via cAMPand MAP kinase dependent mechanism. Yakugaku Zasshi,2011.131(6):p.993-1000.
    70. Yan, Z., et al., Induction of apoptosis in human promyelocytic leukemia HL60 cells by panaxynol and panaxydol. Molecules,2011.16(7):p.5561-73.
    71.杨骅,王仙平,郁林林,等.,撵香烯抗癌作用与诱导肿瘤细胞凋亡.中华肿瘸杂志,1986.18(3):p.169.
    72.李晓光,谢锦玉.方敏,等.,大蒜油诱导细胞凋亡的实验研究.中国中医基础医学杂志,1997.3(2):p.23-25.
    73. Rother, K.I., Diabetes treatment-bridging the divide. N Engl J Med,2007. 356(15):p.1499-501.
    74. Sullivan, F., Current medical diagnosis and treatment 1998. Bmj,1999. 318(7185):p.743A.
    75. Lyssenko, V., et al., Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med,2008.359(21):p.2220-32.
    76. Butler, A.E., et al., Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes,2003.52(1):p.102-10.
    77. Nauck, M.A., et al., Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia,1993.36(8):p.741-4.
    78. Zander, M., et al., Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet,2002.359(9309):p.824-30.
    79. Toyoda, K., et al., GLP-1 receptor signaling protects pancreatic beta cells in intraportal islet transplant by inhibiting apoptosis. Biochem Biophys Res Commun,2008.367(4):p.793-8.
    80. Kang, K.A., et al., Protective effect of puerariae radix on oxidative stress induced by hydrogen peroxide and streptozotocin. Biol Pharm Bull,2005. 28(7):p.1154-60.
    81. Zhang, S.P., et al., [The experimental study of Radix Puerariae inhibiting glycation in rats induced by D-galactose]. Zhong Yao Cai,2006.29(3):p. 266-9.
    82. Hoa, N.K., et al., Insulin secretion is stimulated by ethanol extract of Anemarrhena asphodeloides in isolated islet of healthy Wistar and diabetic Goto-Kakizaki Rats. Exp Clin Endocrinol Diabetes,2004.112(9):p.520-5.
    83. Miura, T., et al., Antidiabetic activity of the rhizoma of Anemarrhena asphodeloides and active components, mangiferin and its glucoside. Biol Pharm Bull,2001.24(9):p.1009-11.
    84. Nakashima, N.,et al., Isolation of pseudoprototimosaponin AIII from rhizomes of Anemarrhena asphodeloides and its hypoglycemic activity in streptozotocin-induced diabetic mice. J Nat Prod,1993.56(3):p.345-50.
    85. Chen, G.R., et al., [The effect of astragalus membranaceus (Fisch) bge. on lipid peroxidation and no level of myocardium from rats with diabetic nephropathy]. Zhongguo Ying Yong Sheng Li Xue Za Zhi,2001.17(2):p. 186-8.
    86. Ma, W., et al., Combined effects of fangchinoline from Stephania tetrandra Radix and formononetin and calycosin from Astragalus membranaceus Radix on hyperglycemia and hypoinsulinemia in streptozotocin-diabetic mice. Biol Pharm Bull,2007.30(11):p.2079-83.
    87. Zhang, J., et al., Systematic review of the renal protective effect of Astragalus membranaceus (root) on diabetic nephropathy in animal models. J Ethnopharmacol,2009.126(2):p.189-96.
    88. Zheng, X., et al., Screening of active compounds as neuromedin U2 receptor agonist from natural products. Bioorg Med Chem Lett,2005.15(20):p. 4531-5.
    89. Fitzgerald, L.R., et al., Measurement of responses from Gi-, Gs-, or Gq-coupled receptors by a multiple response element/cAMP response element-directed reporter assay. Anal Biochem,1999.275(1):p.54-61.
    90. Kim, K.R., et al., KR-62436, 6-{2-[2-(5-cyano-4,5-dihydropyrazol-1-yl)-2-oxoethylamino]ethylamino}nicotino nitr ile, is a novel dipeptidyl peptidase-IV (DPP-IV) inhibitor with anti-hyperglycemic activity. Eur J Pharmacol,2005.518(1):p.63-70.
    91. Service, R.F., Proteomics. High-speed biologists search for gold in proteins. Science,2001.294(5549):p.2074-7.
    92. Smaglik, P., Genomics initiative to decipher 10,000 protein structures. Nature,2000.407(6804):p.549.
    93. Graham, I A., et al., The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science,2011.327(5963):p. 328-31.
    94. Wang, Z., M. Gerstein, and M. Snyder, RNA-Seq:a revolutionary tool for transcriptomics. Nat Rev Genet,2009.10(1):p.57-63.
    95. Mardis, E.R., Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet,2008.9:p.387-402.
    96. Knudsen, L.B., et al., Small-molecule agonists for the glucagon-like peptide 1 receptor. Proc Natl Acad Sci U S A,2007.104(3):p.937-42.
    97. Ahren, B., et al., DPP-4 inhibition improves glucose tolerance and increases insulin and GLP-1 responses to gastric glucose in association with normalized islet topography in mice with beta-cell-specific overexpression of human islet amyloid polypeptide. Regul Pept,2007.143(1-3):p.97-103.
    98. Widmann, C., W. Dolci, and B. Thorens, Agonist-induced internalization and recycling of the glucagon-like peptide-1 receptor in transfected fibroblasts and in insulinomas. Biochem J,1995.310:p.203-14.
    99. Deacon, C.F., Incretin-based treatment of type 2 diabetes:glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab,2007.9 Suppl 1:p.23-31.
    100. Crepaldi, G., et al., Dipeptidyl peptidase 4 (DPP-4) inhibitors and their role in Type 2 diabetes management. J Endocrinol Invest,2007.30(7):p. 610-4.
    101. Goke, R., et al., Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem,1993. 268(26):p.19650-5.
    102. Fineman, M.S., et al., Effectiveness of progressive dose-escalation of exenatide (exendin-4) in reducing dose-limiting side effects in subjects with type 2 diabetes. Diabetes Metab Res Rev,2004.20(5):p.411-7.
    103. Kolterman, O.G., et al., Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab,2003.88(7):p.3082-9.
    104. Butler, M.S., The role of natural product chemistry in drug discovery. J Nat Prod,2004.67(12):p.2141-53.
    105. Newman, D.J. and G.M. Cragg, Natural products as sources of new drugs over the last 25 years. J Nat Prod,2007.70(3):p.461-77.
    106. Maoshing, N., The Yellow Emperor's Classic of Medicine:A New Translation of the Neijing Suwen with Commentary.1995, Boston, MA: Shambhala.
    107. Liang, X.C., et al., Effects of Chinese medicinal herbs on hemorheology in diabetics. Proc Chin Acad Med Sci Peking Union Med Coll, 1989.4(3):p.135-8.
    108. Cheng, J.T., et al., Metformin-like effects of Quei Fu Di Huang Wan, a Chinese herbal mixture, on streptozotocin-induced diabetic rat. Horm Metab Res,2001.33(12):p.727-32.
    109. Vray, M. and J.R. Attali, Randomized study of glibenclamide versus traditional Chinese treatment in type 2 diabetic patients. Chinese-French Scientific Committee for the Study of Diabetes. Diabete Metab,1995.21(6):p. 433-9.
    110. Chen, D., et al., A nonpeptidic agonist of glucagon-like peptide 1 receptors with efficacy in diabetic db/db mice. Proc Natl Acad Sci U S A,2007. 104(3):p.943-8.
    111. Crawford, A. D., et al., Zebrafish bioassay-guided natural product discovery:isolation of angiogenesis inhibitors from East African medicinal plants. PLoS One,2011.6(2):p. e14694.
    112. Bugni, T.S., et al., Marine natural product libraries for high-throughput screening and rapid drug discovery. J Nat Prod,2008.71(6):p.1095-8.
    113. Jang, M., et al., Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science,1997.275(5297):p.218-20.
    114. Kenner, G.W. and R.C. Sheppard, alpha-Aminoisobutyric acid, beta-hydroxyleucine, and gamma-methylproline from the hydrolysis of a natural product. Nature,1958.181(4601):p.48.
    115. Kosuge, T. and H. Kamiya, Discovery of a pyrazine in a natural product: tetramethylpyrazine from cultures of a strain of Bacillus subtilis. Nature,1962. 193:p.776.
    116. Crawford, A.D., C.V. Esguerra, and P.A. de Witte, Fishing for drugs from nature:zebrafish as a technology platform for natural product discovery. Planta Med,2008.74(6):p.624-32.
    117. Suh, N., et al., Discovery of natural product chemopreventive agents utilizing HL-60 cell differentiation as a model. Anticancer Res,1995.15(2):p. 233-9.
    118. Fry, B.G., et al., Early evolution of the venom system in lizards and snakes. Nature,2006.439(7076):p.584-8.
    119. Riggins, C.W., et al., Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes. Pest Manag Sci,2011. 66(10):p.1042-52.
    120. Chen, D.H. and X. T. Liang, [Studies on the constituents of lateral root of Aconitum carmichaeli Debx. (Fu-Zi). I. Isolation and structural determination of salsolinol]. Yao Xue Xue Bao,1982.17(10):p.792-4.
    121. Chen, Y, YL. Chu, and J.H. Chu, [Alkaloids Of The Chinese Drugs, Aconitum Spp. Ix. Alkaloids From Chuan-Wu And Fu-Tzu, Aconitum Carmichaeli Debx]. Yao Xue Xue Bao,1965.12:p.435-9.
    122. Saksonov, P.P., [Page from the history of the discovery of quinine]. Feldsher Akush,1950.11:p.41-3.
    123. Soban, D., et al., [The history of scopolamine-with special reference to its use in anesthesia]. Anaesthesiol Reanim,1989.14(1):p.43-54.
    124. Bardelli, S. and R. Monfardini, [Hypertensive action of ephetonin in man:study conducted in 37 normal and pathological subjects]. Sperimentale, 1950.100(1-2):p.175-8.
    125. Taquini, A.C. and T.A. Capris, [Pressor responses to cold and ephetonin before and after sympathectomy]. Medicina (B Aires),1951.11(6):p. 366-73.
    126. Dorfman, L., et al., On the constitution of reserpine from Rauwolfia serpentina Benth. Experientia,1953.9(10):p.368-9.
    127. Furlenmeier, A., et al., On the constitution of reserpine. Experientia, 1953.9(9):p.331-3.
    128. Arcifa, S. and M. Jamra, [Vincristine in the treatment of acute leukemias and leucosarcomas]. Rev Hosp Clin Fac Med Sao Paulo,1966. 21(2):p.65-72.
    129. Windmiller, J., et al., Vincristine sulfate in the treatment of neuroblastoma in children. Am J Dis Child,1966.111(1):p.75-8.
    130.马跷华.沃兴蒋,梁海曼.,姜黄索抗肿瘤作用与诱导肿瘤细胞凋亡的研究概况.国外医学肿瘤学分册,1999.26(1):p.21—23.
    131. Wani, M.C., et al., Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc,1971.93(9):p.2325-7.
    132. Seow, W.Y., J.M. Xue, and Y.Y. Yang, Targeted and intracellular delivery of paclitaxel using multi-functional polymeric micelles. Biomaterials, 2007.28(9):p.1730-40.
    133. Liang, H.F., et al., Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system against cultured HepG2 cells. Bioconjug Chem,2006.17(2):p.291-9.
    134. Cooney, M.M., et al., A phase IB clinical and pharmacokinetic study of the angiogenesis inhibitor SU5416 and paclitaxel in recurrent or metastatic carcinoma of the head and neck. Cancer Chemother Pharmacol,2005.55(3): p.295-300.
    135. Archer, J.R., History, evolution, and trends in compound management for high throughput screening. Assay Drug Dev Technol,2004.2(6):p.675-81.
    136. Cain, M.J., R.K. Garlick, and P.M. Sweetman, Endothelin-1 receptor binding assay for high throughput chemical screening. J Cardiovasc Pharmacol,1991.17 Suppl 7:p. S150-1.
    137. Gorse, D. and R. Lahana, Functional diversity of compound libraries. Curr Opin Chem Biol,2000.4(3):p.287-94.
    138. Perkins, A.S., The pathology of murine myelogenous leukemias. Curr Top Microbiol Immunol,1989.149:p.3-21.
    139. Arber, N., et al., A K-ras oncogene increases resistance to sulindac-induced apoptosis in rat enterocytes. Gastroenterology,1997.113(6): p.1892-900.
    140. Kubo, K., et al., The Fas system is not significantly involved in apoptosis in human hepatocellular carcinoma. Liver,1998.18(2):p.117-23.
    141. Nakajima, T., et al., Identification of apoptotic hepatocytes in situ in rat liver after lead nitrate administration. J Gastroenterol,1995.30(6):p.725-30.
    142. Sugamura, K., et al., Enhanced induction of apoptosis of human gastric carcinoma cells after preoperative treatment with 5-fluorouracil. Cancer, 1997.79(1):p.12-7.
    143. Wajant, H., The Fas signaling pathway:more than a paradigm. Science,2002.296(5573):p.1635-6.
    144. Spierings, D., et al., Connected to death:the (unexpurgated) mitochondrial pathway of apoptosis. Science,2005.310(5745):p.66-7.
    145. Murphy, K.M., et al., Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell Death Differ,2000.7(1):p.102-11.
    146. Takaoka, A., et al., Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature,2003. 424(6948):p.516-23.
    147. Kauffmann-Zeh, A., et al., Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature,1997.385(6616):p.544-8.
    148. Los, M., et al., Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature,1995.375(6526):p.81-3.
    149. Marsden, V.S., et al., Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature,2002.419(6907):p.634-7.
    150. Soengas, M.S., et al., Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature,2001.409(6817):p.207-11.
    151. Lea, R.G., et al., Cytokines and the regulation of apoptosis in reproductive tissues:a review. Am J Reprod Immunol,1999.42(2):p.100-9.
    152. Gomez-Manzano, C., et al., Gene therapy forgliomas:p53 and E2F-1 proteins and the target of apoptosis. Int J Mol Med,1999.3(1):p.81-5.
    153. Nakamura, S., et al., G3139 induces cell death by caspase-dependent and-independent apoptosis on human melanoma cell lines. Oncol Rep,2006. 15(6):p.1563-8.
    154. Becattini, B., et al., Rational design and real time, in-cell detection of the proapoptotic activity of a novel compound targeting Bcl-X(L). Chem Biol, 2004.11(3):p.389-95.
    155. 陈丽荣,郑.M.W.等.,紫杉醇诱发人乳腺癌细胞凋亡的机制研究.中华肿瘤杂志,1997.19(2:p.103.
    156. 肖东。朱寿彭.顾振纶.,槲皮素诱导人白血病HL~60细胞凋亡.中国药理学报,1997.18(3>:p.280.
    157. 许青,王辉.郭静,等,羟基喜树碱诱导人肺癌细胞SPC A—1的凋亡肿瘤,2000.20(1):p.11—12.
    158. Deep, G. and R. Agarwal, New combination therapies with cell-cycle agents. Curr Opin Investig Drugs,2008.9(6):p.591-604.
    159. De Falco, M., G. Cobellis, and A. De Luca, Proliferation of cardiomyocytes:a question unresolved. Front Biosci (Elite Ed),2009.1:p. 528-36.
    160. Senderowicz, A.M., Flavopiridol:the first cyclin-dependent kinase inhibitor in human clinical trials. Invest New Drugs,1999.17(3):p.313-20.
    161. Mekhail, T.M. and M. Markman, Paclitaxel in cancer therapy. Expert Opin Pharmacother,2002.3(6):p.755-66.
    162. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet,1998.352(9131):p.837-53.
    163. Vaidya, H.B. and R.K. Goyal, Glucagon like peptides-1 modulators as newer target for diabetes. Curr Drug Targets,2008.9(10):p.911-20.
    164. Baggio, L.L., et al., A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes,2004.53(9):p.2492-500.
    165. Shenker, A., Activating mutations of the lutropin choriogonadotropin receptor in precocious puberty. Receptors Channels,2002.8(1):p.3-18.
    166. Drucker, D.J., et al., Glucagon-like peptide Ⅰ stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A,1987.84(10):p.3434-8.
    167. Bonner-Weir, S., Life and death of the pancreatic beta cells. Trends Endocrinol Metab,2000.11(9):p.375-8.
    168. Wild, S., et al., Global prevalence of diabetes:estimates for the year 2000 and projections for 2030. Diabetes Care,2004.27(5):p.1047-53.
    169. Eng, J., et al., Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem, 1992.267(11):p.7402-5.
    170. Egan, J.M., A.R. Clocquet, and D. Elahi, The insulinotropic effect of acute exendin-4 administered to humans:comparison of nondiabetic state to type 2 diabetes. J Clin Endocrinol Metab,2002.87(3):p.1282-90.
    171. Kolligs, F., et al., Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9-39) amide. Diabetes, 1995.44(1):p.16-9.
    172. Raufman, J.P., et al., Truncated glucagon-like peptide-1 interacts with exendin receptors on dispersed acini from guinea pig pancreas. Identification of a mammalian analogue of the reptilian peptide exendin-4. J Biol Chem, 1992.267(30):p.21432-7.
    173. Taylor, J.R. and K.M. Campbell, Diabetes drug update:how 4 new options stack up. J Fam Pract,2007.56(3):p.207-15.
    174. Buse, J.B., et al., Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care,2004.27(11):p.2628-35.
    175. Harder, H., et al., The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes. Diabetes Care,2004.27(8):p. 1915-21.
    176. Degn, K.B., et al., One week's treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha-and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes,2004.53(5):p. 1187-94.
    177. Horowitz, M., et al., Patient-reported rating of gastrointestinal adverse effects during treatment of type 2 diabetes with the once-daily human GLP-1 analogue, liraglutide. Diabetes Obes Metab,2008.10(7):p.593-6.
    178. Vilsboll, T., et al., Liraglutide, a once-daily human GLP-1 analogue, improves pancreatic B-cell function and arginine-stimulated insulin secretion during hyperglycaemia in patients with Type 2 diabetes mellitus. Diabet Med, 2008.25(2):p.152-6.
    179. Lockhart, D.J. and E.A. Winzeler, Genomics, gene expression and DNA arrays. Nature,2000.405(6788):p.827-36.
    180. Costa, V., et al., Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol.2010:p.853916.
    181. Zhang, G., et al., Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res,2010.20(5):p. 646-54.
    182. Palanisamy, N., et al., Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med,2010.16(7):p. 793-8.
    183. Graham, I.A., et al., The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science,2010. 327(5963):p.328-31.
    184. Nagalakshmi, U., et al., The transcriptional landscape of the yeast genome defined by RNA sequencing. Science,2008.320(5881):p.1344-9.
    185. Morin, R., et al., Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques, 2008.45(1):p.81-94.
    186. Cloonan, N., et al., Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods,2008.5(7):p.613-9.
    187. Filichkin, S.A., et al., Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res.20(1):p.45-58.
    188. Meyer, E., et al., Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFIx. BMC Genomics,2009.10:p.219.
    189. Kristiansson, E., et al., Characterization of the Zoarces viviparus liver transcriptome using massively parallel pyrosequencing. BMC Genomics,2009. 10:p.345.
    190. Vera, J.C., et al., Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol,2008.17(7):p.1636-47.
    191. Novaes, E., et al., High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics,2008.9:p. 312.
    192. Cheung, F., et al., Analysis of the Pythium ultimum transcriptome using Sanger and Pyrosequencing approaches. BMC Genomics,2008.9:p.542.
    193. Gonzalo, M.J., et al., Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet,2005. 110(5):p.802-11.
    194. Nishiyama, T., et al., Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana:implication for land plant evolution. Proc Natl Acad Sci U S A,2003.100(13):p.8007-12.
    195. Seki, M.,et al., Functional annotation of a full-length Arabidopsis cDNA collection. Science,2002.296(5565):p.141-5.
    196. Bourdon, V., et al., Genomic and expression analysis of the 12p11-p12 amplicon using EST arrays identifies two novel amplified and overexpressed genes. Cancer Res,2002.62(21):p.6218-23.
    197. Rismani-Yazdi, H., et al., Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta:pathway description and gene discovery for production of next-generation biofuels. BMC Genomics,2011.12:p.148.
    198. Parchman, T.L., et al., Transcriptome sequencing in an ecologically important tree species:assembly, annotation, and marker discovery. BMC Genomics,2010.11:p.180.
    199. Dames, S., et al., Comparison of the Illumina Genome Analyzer and Roche 454 GS FLX for resequencing of hypertrophic cardiomyopathy-associated genes. J Biomol Tech,2010.21(2):p.73-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700