用户名: 密码: 验证码:
质外体过氧化氢与水通道蛋白PIP1;4对Hpa1蛋白诱导拟南芥抗病性的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Harpin是由革兰氏阴性植物病原细菌产生的性质和功能相似的一类蛋白质,影响病原菌在寄主植物上的致病性和非寄主植物上的过敏反应(HR)。外施的harpin能诱导植物抗病、抗虫和抗旱,并且也能促进植物的生长。Harpin的这些多效性是由于激活了多种不同的信号通路,包括植物激素的转导、活性氧簇信号、离子通道、细胞程序性死亡、系统获得抗性(SAR)或水杨酸和蛋白质激酶级联等。到目前为止,harpin几乎从所有的革兰氏阴性植物病原细菌中被鉴定出来。Harpin能激活植物生长和防卫反应信号通路,但是,在植物中,一种harpin蛋白在一个信号通路中如何能被识别?一个特定的harpin在植物中的受体是什么?这个信号如何被转导到细胞内?能把细菌效应蛋白,特别是Ⅲ型效应子从植物细胞外转运到细胞内的植物转位子是什么?目前都还不清楚。
     本研究使用HpalXoo,它由水稻白叶枯病原细菌(Xanthomonas oryzae pv. oryzae)产生,分子量15.6kD,比其他病原细菌的harpin(最大44kD)都小,但生物活性强。本研究着重剖析HpalXoo在植物中的亚细胞定位与后续反应之间的关系,质外体的H_2O_2如何参与植物防卫反应,HpalXoo蛋白在信号通路中如何被植物中的蛋白识别以及识别之后对植物产生的影响。
     1.转基因植物产生的HpalXoo蛋白在质外体定位诱导H2O2产生与向细胞质转移及对抗病性的影响
     已有的研究证明,革兰氏阴性植物病原细菌分泌的harpin蛋白能够激活植物防卫反应信号通路,包括产生于质外体的H2O2信号的转导,但是,一种harpin蛋白在一个信号通路中如何被识别以及质外体的H2O2如何参与防卫反应,还不清楚。本章中,我们研究了来源于水稻白叶枯病原细菌(Xanthomonas oryzae pv. oryzae)的harpin蛋白HpalXoo在拟南芥中是否影响了H2O2的产生以及植物的抗病性。把HpalXoo和融合了质外体定位信号基因(S)的HpalXoo (SHpalxoo)转入拟南芥,分别产生了转基因拟南芥植株HETAt和SHETAt。本研究发现,转基因拟南芥抗丁香假单胞番茄致病变种菌株DC3000(Pst DC3000)和大白菜软腐病菌菌株RL4(Pcc RL4)。HpalXoo定位于HETAt的细胞质和SHETAt的质外体和细胞膜,H2O2积累于HETAt的细胞质和SHETA的质外体和细胞质。已经知道,质外体中的H2O2是由质膜上的烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NOX)产生的,这是植物防卫反应的一个普遍特征。H2O2产生于HETAt的细胞质和SHETAt的质外体,并且产生于质外体的H2O2依赖于NOX。当HpalXoo处理WT植物时,HpalXoo定位于质外体并在质外体中诱导H2O2的产生,但是质外体和细胞质中都有H2O2的积累。在SHETAt和HpalXoo处理的野生型(WT)拟南芥中,如果抑制质外体中H2O2的产生,细胞质中就没有H2O2的积累并且植物失去抗病能力。这些结果说明,HpalXoo诱导的产生于质外体的H202在参与植物调节抗病过程中需要从质外体运转到细胞质中。
     2. HpalXoo促进转基因拟南芥生长的作用不依赖于H2O2
     已有的研究证明,harpin能激活植物的生长信号通路。但是,一种harpin蛋白在一个信号通路中如何被识别以及harpin蛋白诱导的H2O2是否参与生长信号通路,还不清楚。在第一章中,我们产生了转基因拟南芥植株HETAt和SHETAt。本研究发现,转基因拟南芥植株HETAt和SHETAt的生长快于对照植株,并且植株体内的与生长相关基因表达增强。在SHETAt中,H2O2的积累依赖于质膜NADPH氧化酶活性,并且H2O2的积累不影响植株的生长。在HETAt中,H2O2含量的上升与NADPH氧化酶无关,H2O2的产生也不影响植株的生长。外施的HpalXoo能促进野生型拟南芥(WT)的生长,HpalXoo诱导的产生于质外体的H2O2以及积累于质外体和细胞内的H202与促生长无关。这些实验结果说明,HpalXoo能够激活植物的生长信号通路,并且这个信号通路与HpalXoo诱导的H2O2无关。
     3. Hpalxoo与PIP1;4蛋白在拟南芥细胞膜上的互作验证
     前两章已经证明,转入拟南芥的HpalXoo定位于植物的细胞外和细胞内,诱导植物的防卫反应,并能促进植物生长。基于HpalXoo的这些有益表型,本章中,为了试图解析HpalXoo的作用机理,以HpalXoo为诱饵对拟南芥cDNA文库进行筛选,初步筛选到6个阳性克隆,其中包括植物水通道蛋白PIP1;4。通过普通的酵母双杂交体系(Yeast two-hybrid system, Y2H)、膜酵母双杂交体系(Membrane yeast two-hybrid system, MYTH)、Pull-down assay、双分子荧光互补技术(Bimolecular Fluorescence Complementation, BiFC)和荧光染料的观察证实了HpalXoo与PIP1;4的互作,并且互作发生在植物的细胞膜上。而N端缺失53个氨基酸的HpalXoo蛋白(ANT)则不能与PIP1;4发生相互作用。
     4. HpalXoo与PIP1;4蛋白互作促进拟南芥的生长与诱导其抗病的初步研究
     证实HpalXoo与PIP1;4互作之后,为了研究这两个蛋白的互作对植物产生的影响,从拟南芥研究中心购买了8种atpipl;4拟南芥(CS803583、CS870828、CS872202、 CS876999、CS879846、CS879691、CS870571和SALK_147568)种子。这些突变体都是T2代杂合体,通过卡那霉素和Basta抗性筛选,从每一种突变体中都筛选到了纯合体。利用原核表达体系表达了HpalXoo和ΔNT并用蛋白纯化试剂盒纯化了这两个蛋白。通过表型观察发现,HpalXoo处理的WT拟南芥长势最好,而HpalXoo处理的atpip1;4拟南芥与ANT或水处理的WT和atpip1;4拟南芥生长表型一致,长势都弱于HpalXoo处理的WT。Pst DC3000接种实验发现,HpalXoo处理的WT拟南芥抗病最强,而HpalXoo处理的atpip1;4拟南芥与ΔNT或水处理的WT和atpip1;4拟南芥易感病。这些试验结果说明,PIP1;4与HpalXoo的互作不仅能够促进拟南芥的生长,也能够诱导拟南芥对病原菌的抗性。
Harpin proteins produced by gram-negative phytopathogenic bacteria generally affect virulence to host plants and the hypersensitive reaction (HR) of nonhost plants. When applied to plants, any harpins can induce resistance to pathogens and insects, confer drought tolerance, and enhance plant growth. The diverse effects are attributable to the activation of distinct signaling pathways that involve transduction of phytohormones, reactive oxygen species (ROS) signals, ion channels, programmed cell death, systemic acquired resistance (SAR) or salicylic acid (SA) signal pathway and protein kinase cascade, etc. Currently, harpins have been identified from almost all the Gram-negative phytopathogenic bacteria. Harpin have been shown to activate plant growth and defense signaling pathways, but the recognition of a harpin connecting with a pathway in plants, what a plant receptor of a particular harpin protein is, the transduction of the signal to a cellular pathway and what plant translocator (s) for plant-cytoplasmic trafficking of bacterial effector proteins is (are), especially type-Ⅲ effectors have long been in question.
     The Hpalxoo protein produced by the rice bacterial leaf blight pathogen Xanthomonas oryzae pv. oryzae belongs to the harpin group of proteins. This study focuses on analysis of the relationship between cellular location of Hpalxoo and subsequent responses in plants, the apoplastic H2O2participation in defenses, the Hpalxoo recognition by a plant receptor and the impact of perception.
     1. Apoplastic location of harpin protein HpalXoo induces apoplastic generation and cytoplasmic translocation of H2O2required for pathogen resistance in Arabidopsis
     Harpin proteins secreted by Gram-negative phytopathogenic bacteria have been shown to activate plant defense pathways that involve transduction of hydrogen peroxide (H2O2) signal generated in the apoplast, but how a harpin is recognized connecting with a pathway and how the apoplastic H2O2anticipates in defenses are to be elucidated. Here we study if the cellular location of Hpalxoo, a harpin protein produced by rice bacterial leaf blight pathogen Xanthomonas oryzae pv. oryzae, impacts H2O2production and pathogen resistance in Arabidopsis thaliana. Transformation with the Hpalxoo gene and Hpalxoo fused to an apoplastic localization signal (SHpal Xoo) generated HpalXoo-and SHpal Xoo-expressing transgenic A. thaliana (HETAt and SHETAt) plants, respectively. HpalXoo was found to associate with the cytoplasm in HETAt and the apoplast in SHETAt, accompanying H2O2accumulation in cytoplasts and in apoplasts of SHETAt4as well. Apoplastic H2O2production via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) located in the plasma membrane has been shown as a common feature of plant defenses. In SHETAt, H2O2was generated in apoplasts in a NOX-dependent manner but accumulated to a greater extent in apoplasts than in cytoplasts. When applied to the parent plant, Hpalxoo located and induced H2O2generation in apoplasts but caused H2O2accumulation in both apoplasts and cytoplasts. In SHETAt and HpalXoo-treated parent plants, however, inhibition of apoplastic H2O2generation abrogated cytoplasmic H2O2accumulation and plant resistance to bacterial pathogens. These results suggest that the apoplastic H2O2is subject to a cytoplasmic translocation for participation in the regulation of pathogen resistance in the plant.
     2. Growth enhancement of Hpalxoo transgenic Arabidopsis is not related to Hpalxoo-induced H2O2
     The Hpalxoo protein produced by the rice bacterial leaf blight pathogen Xanthomonas oryzae pv. oryzae belongs to the harpin group of proteins secreted by Gram-negative phytopathogenic bacteria. In molecule mass, Hpal is smaller than other harpins, only15.6KD. harpin have been shown to activate plant growth signaling pathways, but how a harpin is recognized connecting with the pathway and how the harpin-induced H2O2participates in the pathway have long been in question. In the first chapter, transgenic plants HETAt and SHETAt were generated. In this chapter, HpalXoo and SHpalXoo Expression Transgenic Arabidopsis thaliana (HETAt and SHETAt) displayed growth and growth related genes enhancement. In SHETAt, H2O2accumulated in dependence of the outer membrane-associated NADPH oxidase activity, which didn't impact growth. In HETAt, the H2O2content elevated but was not related to NADPH oxidase, which also didn't contribute to growth. When Hpalxoo was applied to the parent plant, plant growth was enhanced, and H2O2of apoplasts and cytoplasts was not related to growth. These results suggested that growth pathways were activated in HETAt and SHETAt, and the pathway was not related to HpalXoo-induced H2O2.
     3. Analysis of the interaction between Hpalxoo and PIP1;4in Arabidopsis membrane
     The first two chapters have shown that Hpalxoo located in the extracellular and intracellular region, induced plant resistance to pathogenic bacteria Pst DC3000and Pcc RL4, enhanced plant growth and induced expression of defense and growth related genes in the transgenic plants. In this chapter, to resolve the acing mechanism of HpalXoo based on these valuable phenotypes of Hpalxoo, the Arabidopsis cDNA libraries were screened using HpalXoo as a bait and six interacting proteins were found including plant water channel protein PIP1;4. HpalXoo, but not ANT (deletion mutant, removed HpalXoo N-terminal53amino acids), could interact with PIP1;4by yeast two-hybrid assay, membrane yeast two-hybrid system, pull-down assay, bimolecular fluorescence complementation and fluorescence dys observation. And the interaction obviously localized at the cell membrane.
     4. The preliminary study of the interaction between Hpalxoo and PIP1;4wich inducing growth enhancement and pathogen defenses in Arabidopsis
     After confirming the interaction between HpalXoo and PIP1;4, eight kinds of atpip1;4Arabidopsis (CS803583, CS870828, CS872202, CS876999, CS879846, CS879691, CS870571and SALK_147568) seeds were purchased from the Arabidopsis Information Resource to study the impact of the interaction on plants and find the factors of plant affected. These mutants were T2-generation hybrids, and homozygotes were screened out from each mutant under the conditions of kanamycin and basta resistance. The two proteins Hpalxoo and ANT were successfully expressed and purified by prokaryotic expression system and protein purification kit. Hpalxoo-treated WT plants grew best compared with Hpalxoo-treated atpipl;4Arabidopsis,△NT or H2O-treated WT, and ANT or H2O-treated atpipl;4Arabidopsis. Hpalxoo-treated WT plants were resistant to Pst DC3000, but Hpalxoo-treated atpipl;4Arabidopsis, ANT or H2O-treated WT, and ANT or H2O-treated atpipl;4Arabidopsis were susceptible to Pst DC3000. All these tests suggested the interaction between Hpalxoo and PIP1;4could enhance plant growth and induce plant resistance to plant pathogens.
引文
1. Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U and Kjellbom P (2005). Whole gene family expression and drought stress regulation of aquaporins. Plant Mol. Biol.59:469-484.
    2. Alfano JR and Collmer A (2004). Type III secretion system effector proteins:double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol.42:385-414
    3. Ali W, Isayenkov, SV, Zhao F and Maathuis FJ (2009). Arsenite transport in plants. Cell Mol. Life Sci.66:2329-2339.
    4. Almeida-Rodriguez AM, Cooke JE, Yeh F and Zwiazek JJ (2010). Functional characterization of drought-responsive aquaporins in Populus balsamifera and Populus simonii×balsamifera clones with different drought resistance strategies. Physiol. Plant.140:321-333..
    5. Ashtamker C, Kiss V, Sagi M, Davydov O and Fluhr R (2007). Diverse subcellular locations of crytogein-induced reactive oxygen species production in tobacco bright yellow-2 cells. Plant Physiol.143:1817-1826.
    6. Bartsev AV, Deakin WJ, Boukli NM, McAlvin CB, Stacey G, Malnoe P, Broughton WJ and Staehelin C (2004). NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol.134:871-879.
    7. Bedard K and Krause KH (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev.87:245-313.
    8. Bedard K, Lardy B and Krause KH(2007). NOX family NADPH oxidases:not just in mammals. Biochi.89:1107-1112.
    9. Beitz E, Wu B, Holm LM, Schultz JE and Zeuthen T (2006). Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc. Natl. Acad. Sci. USA 103:269-74.
    10. Bienert GP, Schjoerring JK and Jahn TP (2006). Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta.1758:994-1003.
    11. Boccara M, Schwartz W, Guiot E, Vidal G, Paepe RD, Dubois A and Boccara AC (2007). Early chloroplastic alterations analysed by optical coherence tomography during a harpin-induced hypersensitive response. Plant J.50:338-346.
    12. Borstlap AC (2002). Early diversification of plant aquaporins. Trends Plant Sci.7:529-530.
    13. Boursiac Y, Boudet J, Postaire O, Luu DT, Tournaire-Roux C and Maurel C (2008). Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signaling and plasma membrane intrinsic protein internalization. Plant J.56: 207-218.
    14. Brito B, Aldon D, Barberis P, Boucher C and Genin S (2002). A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solancearum hrp genes. Mol. Plant-Microbe Interact.15:109-119.
    15. Brown IR, Mansfield JW, Taira S, Roine E and Romantschuk M (2001). Immunocytochemical localization of HrpA and HrpZ supports a role for the Hrp pilus in the transfer of effector proteins from Pseudomonas syringae pv. tomato across the host plant cell wall. Mol. Plant-Microbe Interact. 14:394-404.
    16. Brown IR, Mansfield JW, Taira S, Roine E and Romantschuk M (2001). Immunocytochemical localization of HrpA and HrpZ supports a role for the Hrp pilus in the transfer of effector proteins from Pseudomonas syringae pv. tomato across the host plant cell wall. Mol. Plant-Microbe Interact. 14:394-404.
    17. Buttner D and Bonas U (2002). Port of entry-the type Ⅲ secretion translocon. Trends Microbiol.10: 186-192.
    18. Buttner D and Bonas U (2006a). Who comes first? How plant pathogenic bacteria orchestrate type III secretion. Curr. Opin. Microbiol.9:1-8.
    19. Buttner D, Lorenz C, Weber E and Bonas U (2006b). Targeting of two effector protein classes to the type III secretion system by a HpaC-and HpaB-dependent protein complex from Xanthomonas campestris pv. vesicatoria. Mol. Microbiol.59:513-527.
    20. Buttner D, Nennstiel D, Klusener B and Bonas U (2002). Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria. J. Bacteriol.184: 2389-2398.
    21. Cabello-Hurtado F and Ramos J (2004). Isolation and functional analysis of the glycerol permease activity of two new nodulin-like intrinsic proteins from salt stressed roots of the halophyte Atriplex nummularia. Plant Sci.166:633-640.
    22. Chang JH, Urbach JM, Law TF, Arnold LW, Hu A, Gombar S, Grant SR, Ausubel FM and Dangl JL (2005). A high-throughput, near-saturating screen for type Ⅲ effector genes from Pseudomonas syringae. Proc. Natl. Acad. Sci. USA 102:2549-2554.
    23. Charkowski AO, Alfano JR, Preston G, Yuan J, He SY and Collmer A (1998). The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J. Bacteriol.180:5211-5217.
    24. Chaumont F, Barrieu F, Herman EM and Chrispeels MJ (1998). Characterization of a maize aquaporin expressed in zones of cell division and elongation. Plant Physiol.117:1143-1152.
    25. Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ and Jung R (2001). Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol.125:1206-1215.
    26. Chaumont F, Moshelion M, Daniels MJ (2005). Regulation of plant aquaporin activity. Biol. Cell 97:749-764.
    27. Chen L, Qian J, Qu SP, Long JY, Yin Q, Zhang CL, Wu XJ, Sun F, Wu TQ, Hayes M, Beer SV and Dong HS (2008a). Identification of specific fragments of HpaGXooC, a harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in plants. Phytopathology 98:781-791.
    28. Chen L, Qian J, Qu SP, Long JY, Yin Q, Zhang CL, Wu XJ, Sun F, Wu TQ, Hayes M, Beer SV and Dong HS (2008). Identification of Specific Fragments of HpaGxooc, a Harpin from Xanthomonas oryzae pv. oryzicola, that Induce Disease Resistance and Enhance Growth in Plants. Bacteriology 98:781-791.
    29. Collmer A, Badel JL, Charkowski AO, Deng WL, Fouts DE, Ramos AR, Rehm AH, Anderson DM and Alfano JR (2000). Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc. Ntal Acad. Sci. USA 97:8770-8777.
    30. Cramer MD, Hawkins HJ and Verboom GA (2009). The importance of nutritional regulation of plant water flux. Oecologia 161:15-24.
    31. Cruz de Carvalho MH (2008). Drought stress and reactive oxygen species:Production, scavenging and signaling. Plant Signal Behav.3:156-165.
    32. D Thomas, P Bron, G Ranchy, L Duchesne, A Cavalier, J Rolland, C Raguenes-Nicol, J Hubert, W Haase and C Delamarche (2002). Aquaglyceroprins, one channel for two molecules. Biochim. Biophys. Acta.1555:181-186.
    33. Daniels MJ, Mirkov TE and Chrispeels MJ (1994). The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol.106:1325-1333.
    34. Danielson JAH and Johanson U (2008). Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol.8:45.
    35. Deng S, Yu M, Wang Y, Jia Q, Lin L and Dong H (2010). The antagonistic effect of hydroxyl radical on the development of a hypersensitive response in tobacco. FEBSJ. 277:5097-5111.
    36. Deng W, Li Y, Hardwidge PR, Frey EA, Pfuetzner RA, Lee S, Gruenheid S, StrynakDa NC, Puente JL and Finlay BB (2005). Regulation of type Ⅲ secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect Immun.73:2135-2146.
    37. Dong H, Delaney TP, Bauer DE and Beer SV (1999). Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J.20:207-215.
    38. Dong HP, Peng J, Bao Z, Meng X, Bonasera JM, Chen G, Beer SV and Dong H (2004). Downstream divergence of ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol.136:3628-3638.
    39. Dong H-P, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen G, Qu S and Dong H (2005). The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221:313-327.
    40. Duchesne L, Deschamps S, Pellerin I, Lagree V, Froger A, Thomas D, Bron P, Delamarche C and Hubert J F(2001a). Oligomerization of water and solute channels of the major intrinsic protein (MIP) family. Kidney Int.60:422-426.
    41. Echevarria M, Munoz-Cabello AM, Sanchez-Silva, Toledo-Aral JJ and L6pez-Barneo J (2007). Development of cytosolic hypoxia and HIF stabilization are facilitated by aquaporin 1 expression. J. Biol. Chem.282:30207-30215.
    42. Fetter K, Van Wilder V, Moshelion M and Chaumont F (2004). Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell.16:215-228.
    43. Forrest K and Bhave M (2008). The PIP and TIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features. Funct. Integr. Genomics 8:115-133.
    44. Forrest KL and Bhave M (2007) Major intrinsic proteins (MIPs) in plants:a complex gene family with major impacts on plant phenotype. Funct. Integr. Genomics 7:263-289.
    45. Fotiadis D, Jeno P, Mini T, Wirtz S and Muller SA (2001). Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes. J. Biol. Chem.276:1707-1714.
    46. Fouquet R, Leon C, Ollat N and Barrieu F (2008). Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep.27:1541-1550.
    47. Geiszt M (2006). NADPH oxidases:new kids on the block. Cardiovasc. Res.71:289-299.
    48. Ghosh P (2004). Process of protein transport by the type Ⅲ secretion system. Microbiol. Mol. Biol. Rev.68:771-795.
    49. Gijsegem V, Vasse FJ, Camus JC, Marenda M and Boucher C (2000). Ralstonia solanacearum produces hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Mol. Microbiol.36:249-260.
    50. Gomes D, Agasse A, Thiebaud P, Delrot S, Geros H and Chaumont F (2009). Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim. Biophys. Acta.1788:1213-1228.
    51. Gupta AB and Sankararamakrishnan R (2009). Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa:characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol.9:134.
    52. Hachez C and Chaumont F (2010). Aquaporins:a family of highly regulated multifunctional channels. Adv. Exp. Med. Biol.679:1-17.
    53. Hachez C, Zelazny E and Chaumont F (2006). Modulating the expression of aquaporin genes in planta:a key to understand their physiological functions? Biochim. Biophys. Acta.1758:1142-1156.
    54. Hanba YT and Shibasaka M (2004). Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimillation in the leaves of transgenic rice plants. "Plant Cell Physiol.45:521-529.
    55. He SY, Nomura K and Whittam TS (2004). Type Ⅲ protein secretion mechanism in mammalian and plant pathogens. Biochim. Biophys. Acta.1694:181-206.
    56. Hedfalk K, Tornroth-Horsefield S, Nyblom M, Johanson U, Kjellbou P and Neutze R (2006). Aquaporin gating. Curr. Opin. Struct. Biol.16:447-456.
    57. Hooijmaijers C, Rhee JY, Kwak KJ, Chung GC, Horie T, Katsuhara M and Kang H (2011). Hydrogen peroxide permeability of plasma membrane aquaporins of Arabidopsis thaliana. J. Plant Res. doi 10.1007/s 10265-011-0413-2.
    58. Hu CG, Hao HJ, Honda C, Kita M and Moriguchi T (2003). Putative PIP1 genes isolated from apple:expression analyses during fruit development and under osmotic stress. J. Exp. Bot.54: 2193-2194.
    59. Hu W, Yuan J, Jin QL, Hart P and He SY (2001). Immunogold labeling of Hrp pili of Pseudomonas syringae pv. tomato assembled in minimal medium and in planta. Mol. Plant-Microbe Interact.14: 234-241.
    60. Hung S-H, Yu C-W and Lin CH (2005). Hydrogen peroxide function as a stress signal in plants. Bot. Bull. Acad. Sin.46:1-10.
    61. Jin Q and He SY (2001). Role of the Hrp Pilus in type Ⅲ protein secretion in Pseudomonas syringae. Science 294:2556-2558.
    62. Johanson U and Karlsson M (2001). The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol.126:1358-1369.
    63. Kim JG., Park BK, Yoo CH, Jeon E, Oh J and Hwang Ⅰ (2003). Characterization of the Xanthomonas axonopodis pv. glycines HpaG pathogenicity island. J. Bacteriol.185:3155-3166.
    64. Kubori T and Galan JE (2002). Salmonella type Ⅲ secretion-associated protein InvE controls translocation of effector proteins into host cells. J. Bacteriol.184:4699-4708.
    65. Lee J, Klessig DF, and Nurnberger T (2001a). A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesisrelated gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13:1079-1093.
    66. Lee YH, Kolade OO, Nomura K, Arvidson, DN and He SY (2005). Use of dominant-negative HrpA mutants to dissect Hrp pilus assembly and type Ⅲ secretion in Pseudomonas syringae pv. tomato. J. Biol. Chem.280:21409-21417.
    67. Li CM, Brown I, Mansfield J, Stevens C, Boureau T, Romantschuk M and Taira S (2002). The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation of the effector protein HrpZ. EMBO J.21:1909-1915.
    68. Li P and Wang J (2004). Genetic diversity of harpin from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance. Sci. China (C) 4:461-469.
    69. Liu F, Liu H, Jia Q, Wu X, Guo X, Zhang S, Song F and Dong H (2006). The internal glycine-rich motif and cysteine suppress several effects of the HpaGXooc protein in plants. Phytopathology 96: 1052-1059.
    70. Liu R, Chen L, Jia Z, Lu B, Shi H, Shao W and Dong H (2011). Transcription Factor AtMYB44 regulates induced expression of the ETHYLENE INSENSITIVE2 gene in Arabidopsis responding to a harpin protein. Mol. Plant-Microbe Interact.24:377-389.
    71. Liu R, Lu B, Wang X, Zhang C, Zhang S, Qian J, Chen L, Shi H, and Dong H (2010). Thirty-seven transcription factor genes differentially respond to a harpin protein and affect resistance to the green peach aphid in Arabidopsis. J. Biosci.35:435-450.
    72. Losada LC and Hutcheson SW (2005). Type Ⅲ secretion chaperones of Pseudomonas syringae protect effectors from Lonassociated degradation. Mol. Microbiol.55:941-953.
    73. Lu B, Sun W, Zhang S, Zhang C, Qian J, Wang X, Gao R, and Dong H (2011). HrpNEa-induced deterrent effect on phloem feeding of the green peach aphid Myzus persicae requires AtGSL5 and AtMYB44 genes in Arabidopsis thaliana. J. Biosci.36:123-137.
    74. Ludewig U and Dynowski M (2009). Plant aquaporin selectivity:where transport assays, computer simulations and physiology meet. Cell Mol. Life Sci.66:3161-3175.
    75. Ma JF and Yamaji N (2008). Functions and transport of silicon in plants. Cell. Mol. Life Sci.65: 3049-3057.
    76. Magdalena J, Hachani A, Chamekh M, Jouihri N, Gounon P, Blocker A and Allaoui A (2002). Spa32 regulates a switch in substrate specificity of the type Ⅲ secreton of Shigella flexneri from needle components to Ipa proteins. J. Bacteriol.184:3433-3441.
    77. Marie C, Broughton WJ and Deakin WJ (2001). Rhizobium type Ⅲ secretion systems:legume charmers or alarmers? Curr. Opin. Plant Biol.4:336-342.
    78. Martinez-Ballesta MC, Aparicio F, Pallas V, Martinez V and Carvajal M (2003). Influence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis. J. Plant Physiol.160: 689-697.
    79. Martre P, Morillon R, Barrieu F, North GB and Nobel PS, MJ Chrispeels (2002). Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol. 130: 2101-2110.
    80. Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM and Aroca R (2010). Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533-543.
    81. Maurel C, Verdoucq L and Luu DT (2008). Plant aquaporins:membrane channels with multiple integrated functions. Annu. Rev. Plant Biol.59:595-624.
    82. Miao W, Wang X, Li M, Song C, Wang Y, Hu D and Wang J (2010). Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biol.10:67.
    83. Min Shao, Jinsheng Wang, Ralph A. Dean, Yongjun Lin,Xuewen Gao and Shuijin Hu (2008). Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. Plant Bio. J.6:73-81
    84. Moller IM (2001). Plant mitochondria and oxidative stress:Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol.52:561-591.
    85. Mor H, Manulis A, Zuck M, Nizan R, Coplin D L and Barash I (2001).Genetic organization of the hrp gene cluster and dspAE/BF operon in Erwinia herbicola pv. gypsophilae. Mol. Plant-Microbe Interact.14:431-436.
    86. Mudgett MB (2005). New insights to the function of phytopathogenic bacterial type Ⅲ effectors in plants. Annu. Rev. Plant Biol.56:509-531.
    87. Mut P, Bustamante C, Marti'nez G, Alleva K, Sutka M, Civello M and Amodeo G (2008). A fruit-specific plasma membrane aquaporin subtype PIP1;1 is regulated during strawberry (Fragaria x ananassa) fruit ripening. Physiol. Plant 132:538-551.
    88. Nanda AK, Andrio E, Marino D, Pauly N and Dunand C (2010). Reactive oxygen species during plant-microorganism early interactions. J. Integr. Plant Biol.52:195-204.
    89. Navarro L, Alto NM and Dixon JE (2005). Functions of the Yersinia effector proteins in inhibiting host immune responses. Curr. Opin. Microbiol.8:21-27.
    90. Noel L, Thieme F, Nennstiel D and Bonas U (2002). Two novel type Ⅲ-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the HpaG pathogenicity island. J. Bacteriol.184:1340-1348.
    91. Oh CS and Beer SV (2007). AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effector of HrpN in Arabidopsis. Plant Phyiol.145:426-436.
    92. Parent B and Hachez C (2009). Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate:a trans-scale approach. Plant Physiol. 149:2000-2012.
    93. Parsot C, Hamiaux C and Page AL (2003). The various and varying roles of specific chaperones in type Ⅲ secretion systems. Curr. Opin. Microbiol.6:7-14.
    94. Pavli OI, Kelaidi GI, Tampakaki AP, and Skaracis GN (2011). The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to rhizomania disease in transgenic Nicotiana benthamiana and sugar beet. PLoS one 6:1-9.
    95. Peng J, Bao Z, Ren H, Wang J and Dong H (2004b). Expression of HarpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathol.94:1048-1055.
    96. Peng J, Dong H, Dong H-P, Delaney TP, Bonasera BM and Beer SV (2003). Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol. Mol. Plant Pathol.62:317-326.
    97. Peng J-L, Bao Z-L, Dong H-S, Ren H-Y and Wang J-S (2004a). Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathol.94:1048-1055.
    98. Quigley F, Rosenberg JM, Shachar-Hill Y and Bohnert HJ (2001). From genome to function:the Arabidopsis aquaporins. Genome Biol.3:1-17.
    99. Reboutier D, Frankart C, Briand J, Biligui B, Laroche S, Rona JP, Barny MA and Bouteau F (2007a). The HrpNEa harpin from Erwinia amylovora triggers differential responses on the nonhost Arabidopsis thaliana cells and on the host apple cells. Mol. Plant-Microbe Interact.20:94-100.
    100. Reboutier D, Frankart C, Briand J, Biligui B, Rona JP, Haapalainen M, Barny MA and Bouteau F (2007b). Antagonistic action of harpin proteins:HrpWEa from Erwinia amylovora suppresses HrpNEa-induced cell death in Arabidopsis thaliana. J. Cell Sci.120:3271-3278.
    101. Ren H, Gu G, Long J, Wu T, Song T, Zhang S, Chen Z, and Dong H (2006a). Combinative effects of a bacterial type-Ⅲ effector and a biocontrol bacterium on rice growth and disease resistance. J. Biosci.31:617-627.
    102. Ren H, Song T, Wu T, Sun L, Liu Y, Yang F, Chen Z, and Dong H (2006b). Effects of a biocontrol bacterium on growth and defence of transgenic rice plants expressing a bacterial type-Ⅲ effector. Annals Microbiol.56:281-287.
    103. Ren X, Liu F, Bao Z, Zhang C, Wu X, Chen L, Liu R, and Don, H (2008). Root growth of Arabidopsis thaliana is regulated by ethylene and abscisic acid signaling interaction in response to HrpNEa, a bacterial protein of harpin group. Plant Mol. Biol. Rep.26:225-240.
    104. Rhee SG, Chang TS, Jeong W and Kang D (2010). Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol. Cells 29:539-549.
    105. Rietsch A, Vallet-Gely I, Dove SL and Mekalanos JJ (2005). ExsE, a secreted regulator of type Ⅲ secretion genes in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 102:8006-8011.
    106. Sade N and Vinocur BJ (2009). Improving plant stress tolerance and yield production:is the tonoplast aquaporin S1TIP2;2 a key to isohydric to anisohydric conversion? New Phytol. 181:651-661.
    107. Sagi M and Fluhr R (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol.141:336-340.
    108. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M and Maeshima M (2005). Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol.46:1568-1577.
    109. Santoni V (2006). Plant plasma membrane protein extraction and solubilization for proteomic analysis. Methods Mol. Biol.355:93-109.
    110. Schaffner AR (1998). Aquaporin function, structure, and expression:are there more surprises to surface in water relations? Planta.204:131-139.
    111. Schechter LM, Roberts KA, Jamir Y, Alfano JR and Collmer A (2004). Pseudomonas syringae type Ⅲ secretion system targeting signals and novel effectors studied with a Cya translocation reporter. J.Bacteriol.186:543-555.
    112. Schuurmans JA, van Dongen JT, Rutjens BP, Boonman A, Pieterse CM and Borstlap AC (2003). Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant Mol. Biol.53:633-645.
    113. Shelden MC and Howitt SM (2009). Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. Funct. Plant Biol.36:1-14.
    114. Siefritz F, Biela A, Eckert M, Otto B, Uehlein N and Kaldenhoff R (2001). The tobacco plasma membrane aquaporin NtAQPl. J. Exp. Bot.52:1953-1957.
    115. Steudle E and Henzler T (2000). Transport and metabolic degradation of hydrogen peroxide in Chara corallina:model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J. Exp. Bot.353:2053-2066.
    116. Strobel RN, Gopalan JS, Kuc JA and He SY (1996). Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss protein. Plant J.9:431-439.
    117. Sugio A, Yang B and White FF (2005). Characterization of the hrpF pathogenicity peninsula of Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact.18:546-554.
    118. Sui H, Han BG, Lee JK, Walian P and Jap BK (2001). Structural basis of water specific transport through the AQP1 water channel. Nature 414:872-878.
    119. Sun L, Ren H, Liu R, Li B, Wu T, Sun F, Liu H, Wang X and Dong H (2010). An h-type thioredoxin functions in tobacco defense responses to two species of viruses and an abiotic oxidative stress. Mol. Plant-Microbe Interact.23:1470-1485.
    120. Temmei Y, Uchida S, Hoshino D, Kanzawa N, Kuwahara M, Sasaki S and Tsuchiya T (2005). Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation. FEBS Lett.579:4417-4422.
    121. Thomas NA, Deng W, Puente JL, Frey EA, Yip CK, Strynadka NC and Finlay BB (2005). CesT is a multi-effector chaperone and recruitment factor required for the efficient type Ⅲ secretion of both LEE-and non-LEE-encoded effectors of enteropathogenic Escherichia coli. Mol. Microbiol.57: 1762-1779.
    122. Tornroth-Horsefield S and Wang Y (2006). Structural mechanism of plant aquaporin gating. Nature 439:688-694.
    123. Torres MA, Jones JD, and Dangl JL (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiol.141:373-378.
    124. Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R and Maurel C (2003). Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393-397.
    125. Urbanowski ML, Lykken GL and Yahr TL (2005). A secreted regulatory protein couples transcription to the secretory activity of the Pseudomonas aeruginosa type Ⅲ secretion system. Proc. Natl. Acad. Sci. USA 102:9930-9935.
    126. van Breusegem F, Balley-Serres J and Mittler R(2008). Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol.147:978-984.
    127. Vandeleur RK, Mayo G, Shelden MC, Gilliham M, Kaiser BN and Tyerman SD (2009). The role of plasma membrane intrinsic protein aquaporins in water transport through roots:Diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol.149:445-460.
    128. Verdoucq L and Grondin A (2008). Structure-function analysis of plant aquaporin AtPIP2;l gating by divalent cations and protons. Biochem. J.415:409-416.
    129. Wang Y, Liu R, Chen L, Wang Y, Liang Y, Wu X, Li B, Wu J, Wang X, Zhang C, Wang Q, Hong X and Dong H (2009). Nicotiana tabacum TTG1 contributes to ParAl-induced signalling and cell death in leaf trichomes. J. Cell Sci.122:2673-2685.
    130. Weber E, Ojanen-Reuhs T, Huguet E, Hause G, Romantschuk M, Korhonen TK, Bonas U and Koebnik R (2005). The type Ⅲ-dependent Hrp pilus is required for productive interaction of Xanthomonas campestris pv. vesicatoria with pepper host plants. J. Bacteriol.187:2458-2468.
    131. Wei CF, Deng WL and Huang HC (2005). A chaperone-like HrpG protein acts as a suppressor of HrpV in regulation of the Pseudomonas syringae pv. syringae type Ⅲ secretion system. Mol. Microbiol.57:520-536.
    132. Wei W, Plovanich-Jones A, Deng WL, Jin QL, Collmer A, Huang HC and He SY (2000). The gene coding for the Hrp pilus structural protein is required for type Ⅲ secretion of Hrp and Avr proteins in Pseudomonas syringae pv. tomato. Proc. Natl. Acad. Sci. USA 97:2247-2252.
    133. Wei ZM and Beer S (1996). Harpin from Erwinia amylovora induces plant resistance. Acta. Hortic. 411:223-225.
    134. Wei ZM, Qiu D, Kropp MJ and Schading RL (1998). Harpin, an HR elicitor, activates both defense and growth systems in many commercially important crops. Phytopathol.88:S96.
    135. Weig A, Deswarte C and Chrispeels MJ (1997). The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol.114:1347-1357.
    136. Wen W and Wang J (2001). Cloning and expressing a harpin gene from Xanthomonas oryzae pv. oryzae. Acta Phytopathol. Sin.31:296-300.
    137. Whiteman SA and Nuhse TS (2008). A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. Plant J.56:146-156.
    138. Wu T, Guo A, Zhao Y, Wang X, Wang Y, Zhao D, Li X, Ren R, and Dong H (2010). Ectopic expression of the rice lumazine synthase gene contributes to defense responses in transgenic tobacco. Phytopathology 100:573-581.
    139. Wulff-Strobel CR, Williams AW and Straley SC (2002). LcrQ and SycH function together at the Ysc type Ⅲ secretion system in Yersinia pestis to impose a hierarchy of secretion. Mol. Microbiol. 43:411-423.
    140. Xie Z and Chen Z (2000). Harpin induced hypersensitive cell death is associated with altered mitocondrial functions in tobacco cells. Mol. Plant-Microbe Interact.13:183-190.
    141. Ye Q, Muhr J and Steudle E (2005). A cohesion/tension model for the gating of aquaporins allows estimation of water channel pore volumes in Chara. Plant Cell Environ.28:525-535.
    142. Yoo S, Cho YH and Sheen J (2007). Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nat. Protoc.2:1565-1572.
    143. Yu J and Yool AJ (2006). Mechanism of gating and ion conductivity of a possible tetrameric pore in Aquaporin-1. Structure 14:1411-1423.
    144. Zelazny E, Borst JW, Muylaert M, Batoko H, Hemminga MA, Chaumont F (2007). FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc. Natl. Acad. Sci. USA 104:12359-12364.
    145. Zhang C, Bao Z, Liang Y, Yang X, Wu X, Hong X and Dong H (2007). Abscisic acid mediates Arabidopsis drought tolerance induced by HrpNEa in the absence of ethylene signaling. Plant Mol. Bio. Rep. DOI 10.1007/s11100-007-0012-5.
    146. Zhang C, Shi H, Chen L, Wang X, Lu B, Zhang S, Liang Y, Liu R, Qian J, Sun W, You Z and Dong H (2011). Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-Al in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae. BMC Plant Biol.11:11.
    147. Zhang S, Yang X, Sun M, Sun F, Deng S and Dong H (2009). Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J. Integr. Plant Biol.51:167-174.
    148. Zhu WG, Magbanua MM and White FF (2000). Identification of two novel hpaG-associated genes in the hpaG gene cluster of Xanthomonas oryzae pv. oryzae. J. Bacteriol.182:1844-1853.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700