用户名: 密码: 验证码:
Bacillus amyloliquefaciens B3生防促生相关基因和内生质粒pBSG3的研究及高效生防工程菌的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芽孢杆菌好氧或兼性厌氧,产芽孢,广泛存在于自然界中,由于其生长速度快,次生代谢产物丰富,利用价值高以及对人畜安全等优点,被广泛应用于工业、医药和农业中。本实验室早年筛选并开发了芽孢杆菌生防制剂“麦丰宁”,该菌剂的有效成分为芽孢杆菌B3。本研究应用多相分类方法、消减抑制杂交技术、全基因组测序技术和质谱技术对芽孢杆菌B3进行了系统的研究。主要内容包括,1)确定B3菌株的分类地位;2)揭示B3的生防促生机理;3)B3菌株内生隐蔽质粒的研究;4)Harpin蛋白和生防芽孢杆菌相结合的高效生防工程菌的研发。主要研究结果如下:
     1.多相分类体系,即将形态、生理生化、脂肪酸分析、分子鉴定等方法相结合,对细菌进行较准确的鉴定。本研究着重采用分子生物学手段将早期实验室分离和经表型鉴定的生防芽孢杆菌进行准确分类。11株生防芽孢杆菌首先进行脂肪酸甲酯(fatty acid methyl ester, FAME)鉴定,接着进行16S rDNA和gyrB基因序列扩增和分析鉴定,同时进行基因组BOX-PCR指纹图谱分析鉴定。综合脂肪酸甲脂鉴定和一系列分子鉴定结果,将11株生防芽孢杆菌鉴定为:短小芽孢杆菌(Bacillus pumilus)1株,蜡样芽孢杆菌组群(Bacillus cereus)2株,解淀粉芽孢杆菌(Bacillus amyloliquefaciens)4株,萎缩芽孢杆菌(Bacillus atrophaeus)1株,枯草芽孢杆菌(Bacillus subtilis)3株。“麦丰宁”有效成分芽孢杆菌B3最终被鉴定为解淀粉芽孢杆菌。此外,通过基质协助激光解吸附/电离-飞行时间质谱(matrix-assisted laser desorption/ionization-time of flight mass spectrometry, MALDI-TOF-MS)技术检测,发现这11株生防菌都能够产生一种或多种抑制真菌的脂肽化合物(如Fengycin和Bacillomycin D)或抑制细菌的聚酮类化合物(如Difficidin, Bacillaene等)。
     2.我们应用差减杂交技术、全基因组测序技术和质谱技术以揭示解淀粉芽孢杆菌B3生防和促生的机理。将解淀粉芽孢杆菌B3与不具生防能力的芽孢杆菌模式菌株枯草芽孢杆菌168进行差减杂交,共得到了49个B3特异片段,其中包含了在生防芽孢杆菌中起主要作用的非核糖体肽类抗生素合成酶编码基因片段,同时我们也发现了新的非核糖体合成酶编码基因和一个内生质粒。我们在德国比勒菲尔德大学进行了B3全基因组测序,在此平台上,我们将新发现的非核糖体合成酶基因簇进行了分析和预测,发现其包括7个模块,其中有两个是负责半胱氨酸的缩合,一个是天冬氨酸或酰胺的缩合,另外四个模块没有预测出结果。此外,我们对B3基因组中所有的非核糖体肽类抗生素的合成酶和促生相关基因进行了分析。结果显示,B3中含有8个非核糖体肽合成酶基因簇、1个二肽类抗生素编码基因簇,还有参与生物膜形成和定殖相关基因簇(EPS, PGA operon),以及能够促进植物生长的吲哚乙酸合成关键基因和2,3-丁二醇合成相关基因等。
     3.具有良好拮抗和促生作用的Bacillus amyloliquefaciens B3含有一个可以自我复制的内生隐蔽性质粒pBSG3。对该质粒完全测序,结果显示,其大小为8439bp, GC含量40.3%。序列分析和比对显示,pBSG3中含有7个可预测的开放阅读框(ORF),分别是repB3, mobB3, rapQ, phrQ, pgsR和两个未知ORFs (orf1c和orf2)。通过Southern杂交和复制元件的序列分析,最终确定pBSG3采取滚环式复制方式(Rolling-circle mechanism)进行复制,属于滚环式复制质粒家族。基因mobB3的存在预示质粒pBSG3具有在芽孢杆菌群体中可以转移的特性。我们对质粒中的RapQ-PhrQ系统进行了初步的功能研究,该系统参与了芽孢杆菌的孢子形成的过程,RapQ蛋白能够推迟孢子的形成。此外,我们将pBSG3(?)勺部分或全部复制单元克隆到pMD18-T载体,成功开发了穿梭载体pTRD和pTRDS,并进行了两个质粒的稳定性测定。结果显示,pTRDS的结构和分离稳定性都非常好。随后,我们将本实验室的Harpin蛋白编码基因hpa1克隆到质粒pTRDS,并转入了芽孢杆菌OKB105中,利用RT-PCR的方法在RNA水平检测到了hpa1的转录。综上所述,内生质粒pBSG3不但可能是芽孢杆菌种群中遗传物质的交换工具,而且可以被用来开发和利用成为芽孢杆菌研究的克隆、表达载体。
     4.本着将具有促生防病效果的Harpin蛋白和产非核糖体肽类抗生素的生防芽孢杆菌相结合的原则,将HpaGxoo。编码基因hpa1与可产生多种脂肽类和聚酮类化合物的根围促生拮抗解淀粉芽孢杆菌FZB42相结合,创制更具有价值的生防制剂。在本研究中,我们构建了pGAprEHS、pUNprEKHS两个重组表达载体,并将它们转化到解淀粉芽孢杆菌FZB42中,利用双交换同源重组技术,将hpa1分别整合到FZB42的蛋白水解酶编码基因aprE和nprE位点。这两个重组载体都含有P43强启动子和nprB信号肽组件,这有助于Harpin蛋白的连续表达和向外分泌。经过PCR验证和RT-PCR的分析,结果显示:成功构建了双拷贝Harpin外泌工程菌株FZBHarpin,且hpa1能在RNA水平上正常转录。随后,我们对野生菌FZB42,工程菌FZBHarpin和双突变菌株FZBAN分别进行了温室和大田实验,评估了其促生和防治水稻白叶枯病的效果,实验数据表明FZBHarpin具有比其出发菌株FZB42更好的促生和生防效果;同时,我们观察到aprE,nprE双突变体FZBAN的促生和生防效果比出发菌株FZB42有所提高,但原因尚不清楚。
Bacillus is a genus of gram-positive, rod-shaped bacteria and a member of the division Firmicutes. It has been widely used in industry, medicine and agricultural field because of its powerful secretion system and production of remarkably large amounts of secondary metabolites such as antibiotics, phytase and extracellular proteases. Previously, a biocontrol agent named as "MaiFengning", containing Bacillus amyloliquefaciens B3strain was developed by our lab. Polyphasic taxonomy method, suppression subtractive hybridization, mass spectrometry and whole genome sequencing technology were performed in this study. The main contents include:1) molecular identification of antagonistic strain B3;2) the mechanism of biocontrol and plant growth promotion of strain B3;3) sequenced and characterize endogenous cryptic plasmid pBSG3;4) construction of engineered strain FZBHarpin which combining Harpin elicitor and nonribosomal peptide antibiotics together. The main results were summarized as follows:
     1Previously, screening of antagonistic isolates against different plant pathogens from plant rhizosphere soil was performed by our lab members.11antagonistic strains were obtained and classified as Bacillus genus with morphological tests. In this study, the11Bacillus antagonistic isolates and the reference strains were characterized using BOX-PCR genomic fingerprinting with primers BOXAIR, sequence analysis of16S rRNA and gyrB gene fragment, and FAME (Fatty acid methyl esters) tests. There was a high degree of diversity, both phenotypic and genotypic among the isolates of Bacillus.11strains were identified as members of species:Bacillus pumilus (1), Bacillus cereus group (2), Bacillus amyloliquefaciens (4), Bacillus atrophaeus (1), and Bacillus subtilis (3). Our results demonstrate the usefulness of gyrB sequence and BOX-PCR genomic fingerprinting for characterizing the Bacillus genus. In addition, MALDI-TOF-MS was performed for the detection of nonribosomal peptide antibiotics produced by11isolates. The results showed that11strains are able to produce at least one or more lipopeptide and polyketide compounds (such as Fengycin, Bacillomycin D, Difficidin, and Bacillaene), which play important roles in biocontrol.
     2The plant rhizosphere isolate Bacillus amyloliquefaciens B3is distinguished from the related model organism Bacillus subtilis168by its ability to stimulate plant growth and to suppress plant pathogenic organisms. In order to clear the mechanisms of biocontrol and plant growth promotion, suppressive subtractive hybridization (SSH) was performed between strains of B. amyloliquefaciens B3and B. subtilis168. Totally,49unique fragments of B3were obtained. Three NRPS, one PKS and a cryptic plasmid were found in the unique fragments. A new nonribosomal peptide synthetases (NRPS) fragment was unique insertions in the B3genome and is not present in any bacterial strain so far. In addition, we sampled sequenced the genome of FZB42and identified more than3268genes with>90%identity on the amino acid level to the corresponding genes of Bacillus amyloliquefaciens FZB42. Nine large gene clusters encoding nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) occupied about8%of the whole genome. The responsibility of the eight gene clusters for the production of the corresponding secondary metabolites was demonstrated by Matrix-assisted laser desorption ionization-time of flight mass spectrometry. But, the new was unclear now. There are some genes involved in biofilm formation (such as EPS, PGA operon) and promotion of plant growth such as IAA biosynthetic genes,2,3-butanediol synthetic genes.
     3In this work, we have sequenced and characterized a cryptic plasmid called pBSG3from wild-type Bacillus amyloliquefaciens B3, which is an8439bp circular molecule, with G+C content of40.3%. We provide evidence that pBSG3replicates via the rolling-circle mechanism and belongs to group Ⅲ of the rolling-circle replication plasmid family. The plasmid contains7putative open reading frames (ORFs) including genes repB3, mobB3, rapQ, phrQ, pgsR, and2unknown ORFs (orf1c and orf2). Our observations revealed that the RapQ-PhrQ (response regulator aspartate phosphatase-phosphatase regulator) system is involved in sporulation and RapQ can delay the onset of sporulation.2Escherichia coli and Bacillus potential shuttle vectors, pTRD (containing the minimal replicon) and pTRDS (containing the minimal replicon and the single-strand origin) were developed from pBSG3and tested the stability. Moreover, HpaGxooc protein, which can induce disease and insect resistance in plants, was tried to express with the stable vector pTRDS in Bacillus. In summary, the pBSG3plasmid containing various genes is not only a candidate tool for vector development in Bacillus genus research but also a potential vehicle for the exchange of genetic elements among Bacillus populations that contributes into the survival of bacilli in natural environments.
     4HpaGxooc, from rice pathogenic bacterium Xanthomonas oryzae pv. oryzicola, is a member of the harpin group of proteins, eliciting hypersensitive cell death in non-host plants, inducing disease and insect resistance in plants and enhancing the plant growth. Bacillus amyloliquefaciens FZB42has been used as powerful weapons for the suppression of plant pathogenic organisms and plant growth promotion in the world. In this study, two recombinant Harpin protein expression vectors pGAprEHS and pUNprEKHS were constructed and integrated into the aprE, nprE site of FZB42. These two vectors were composed of powerful promoter P43and nprB signal peptide, which leads to the expression of Harpin protein continuously and secrete into the medium. The result of RT-PCR analysis reveals the hpal gene can be transcribed normally. Subsequently, we performed greenhouse and field experiments for evaluation of the biocontrol activity and plant growth promotion of the engineering strain FZBHarpin. The results show that FZBHarpin is the best in biocontrol activity. Both FZBHarpin and FZBAN which is a mutant of aprE and nprE are the same in plant growth promotion, and are better than FZB42.
引文
1. Adhikari T B, Joseph C M, Yang G P, et al. Evaluation of bacteria isolated from ricefor plant growth promotion and biological control of seeding disease of rice. Microbiology,2001,47: 916-924
    2. Aldrichj B R. Biological control of Fusarium roseum f. sp. Dianthi by Bacillus subtilis. Plant Disease Reporter,1970,54
    3. Arima K, Kakinuma A, and Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus stubilis:Isolation, characterization and its inhibition of fibrin clot formation. Biochemical and Biophysical Research Communication,1968,31:488-494
    4. Asaka O, Shoda M. Biocontrol of Rhizoctonia solani Damping-Off of Tomato with Bacillus subtilis RB14. Appl Environ Microbiol,1996,62:4081-4085
    5. Bacon C W, Yates I E, Hinton D M, Meredith F. Biological control of Fusarium moniliforme in maize. Environ Health Perspect,2001,109 Suppl 2:325-332
    6. Bais H P, Fall R, and Vivanco J M. Biocontrol of Bacillus subtilis against infection of arabidopsis roots by pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology,2004,134:307-319
    7. Baker C J. Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Disease,1985, 69:770-775
    8. Benizri E, Baudoin E, and Guckert A. Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol,2001,11:557-574
    9. Bloemberg G V, Lugtenberg B J. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol,2001,4:343-350
    10. Chen X H, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter A W, Gottschalk G, Sussmuth R D, Borriss R. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol,2006, 188:4024-4036
    11. Cook R J. Making greater use of introduced microorganisms for biological control of plant pathogens. Annual Review Phytopathology,1993,31:53-80
    12. Cook R J, Bruckart W L, Coulson J R, et al. Safety of microorganisms intended for pest and plant disease control:a framework for scientific evaluation. Biological Control,1996,7:333-351
    13. Fujiu M, Sawairi S, Shimada H, et al. Azoxybacillin, a novel antifungal agent produced by Bacillus cereus NR2991. productioin, isolation and structure elucidation. J Antibiot,1994,47:833-835
    14. Hwang S F, Chakravarty P. Potential for the integrated control of Rhi-zoctonia root-rot of Pisum sativum using Bacillus subtilis and a fungicide. Z PflKrankh PflSchutz,1992,99:626-636
    15. Johnson F H, Campbell D H. The retardation of protein denaturation by hydrostatic pressure. Journal of Cellular and Comparative Physiology,1945,26:43-46
    16. Kleinkauf H, Dohren H. Noribosomal biosynthesis of peptide antibiotics. Eur J Biochem,1990,192: 1-15
    17. Konz D, Doekel S, Marahiel M A. Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol,1999,181:133-140
    18. Liu Y F, Chen Z Y, Ng T B, et al. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B2916. Peptides,2007,28:553-559
    19. Maget-Dana R, Peypoux F. Iturins, a special class of pore-forming lipopeptides:biological and physicochemical properties. Toxicology,1994,87:151-174
    20. Makarewicz O, Dubrac S, Msadek T, Borriss R. Dual role of the PhoP-P response regulator: Bacillus amyloliquefaciens FZB45 phytase gene transcription is directed by positive and negative interactions with the phyC promoter. J Bacteriol,2006,188:6953-6965
    21. Nakano M M, Zuber P. Molecular biology of antibiotic production in Bacillus. Grit Rev Biotechnol, 1990,10:223-240
    22. Pieterse C M, van Wees S C, van Pelt J A, Knoester M, Laan R, Gerrits H, Weisbeek P J, van Loon L C. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 1998,10:1571-1580
    23. Raupach G S, Kloepper J W. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathoogy,1998,88:1158-1164
    24. Ryu C M, Farag M A, Hu C H, Reddy M S, Kloepper J W, Pare P W. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol,2004,134:1017-1026
    25. Ryu C M, Farag M A.Hu C H, Reddy M S, Wei H X, Pare P W, Kloepper J W. Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A,2003,100:4927-4932
    26. Serrano M, Zilhao R, Ricca E, Ozin A J, Moran C P, Jr. Henriques A O. A Bacillus subtilis secreted protein with a role in endospore coat assembly and function. J Bacteriol,1999,181: 3632-3643
    27. Sheppard J D, Jumarie C, Cooper D G, Laprade R. Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim Biophys Acta,1991,1064:13-23
    28. Shoda M. Bacterial control of plant diseases. J Biosci Bioeng,2000,89:515-521
    29. Silo-Suh L A, Lethbridge B J, Raffel S J, He H, Clardy J, Handelsman J. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol,1994,60: 2023-2030
    30. Stein T, Heinmann S, Dusterhus S. Expression and functional analysis of subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO 1099. The Journal of Bacteriology, 2005,187:822-828
    31. Stover A G, Driks A. Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA. J Bacteriol,1999,181:5476-5481
    32. Tschenj S M. Control of Rizoctonia soanli by Bacillus subtilis. Transactions of the Mycological Society Japan,1987,28:483-493
    33. Ukness S, Winter A M, Delaney T. Biological induction of systemic acquired resistance in Arabidopsis. Mol Plant-Microbe Interact,1993,6:692-698
    34. Utkhede R S. Antagonism of isolates of Bacillus subtilis to Phytophthora cactorum. Canadian journal of Botany,1984,62:1032-1035
    35. Van Loon L C, Bakker P, Pieterse C M. Systemic resistance induced by rhizospere bacteria. Annu Rev Phytopathol,1998,36:453-483
    36. van Rij E, Wesselink M, Chin-A-Woeng T, Bloemberg G, and Lugtenberg B. Influence of environmental conditions on the production od phenazine-1-carboxamide by pseudomonas chlororaphis PCL1391. Mol Plant-Microbe Interact,2004,17:557-566
    37. Vanittanakom N, Loeffier W, Koch U. Fengycin-a novel anti-fungal lipopeptide antibiotic produced by Bacillus subtilis F2923. The Journal Antibiotics,1986,39:888-901
    38. Zhang Y Y, Wang L L, Liu Y L, Zhang Q, Wei Q P, and Zhang W H. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+antiport in the tonoplast. Planta,2006,224:545-555
    39. Zheng G, Slavik M F. Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Lett. Appl. Bacteriol,1999,28:363-367
    40.王雅平,刘伊平,潘乃穟,陈章良等.枯草芽孢杆菌TG26防病增产效应的研究.生物防治通报,1993,9:63-68
    41.王进强,吴刚,许文耀.植物病害生防制剂的研究进展.福建农林大学学报自然科学版,2004,33:448-452
    42.杜立新,冯书亮,曹克强等.枯草芽孢杆菌BS-208和BS-209菌株在番茄叶而及土壤中定殖能力的研究.河北农业大学学报,2004,27:78-82
    43.辛下成,泰淑莲,刘析光.枯草芽孢杆菌BL03对苹果霉心病和棉苗病害田间防治效果.中国 生物防治,2000,16:47
    44.洪永聪,范晓静,来玉宾,胡方平.枯草芽抱菌株TL2在茶树体内的内生定殖.茶叶科学,2006,26:270-274.
    45.胡剑,赵永歧,王岳五等.枯草杆菌Bs-98分泌的抗真菌蛋白的分离纯化及其部分性质的研究.微生物学通报,1997,24:3-6
    46.高学文,姚仕义,Huong P, Vater J,王金生.基因工程枯草芽孢杆菌GEB3产生的脂肽类抗生素及生物活性的研究.中国农业科学,2003,36:1496-1501
    47.程亮,游春平,肖爱萍.拮抗细菌的研究进展.江西农业大学学报,2003,25:732-737
    48.张学君,凌宏通,李洪连,王金生.生物农药麦丰宁B3对小麦纹枯病的抑制作用.植物病理学报,1994,24:361-366
    49.陈志谊,高太东,严大富等.枯草芽孢杆菌B-916防治水稻纹枯病的田间试验.中国生物防治,1997,13:75-78
    50.顾真荣,马承铸,韩长安.产几丁质酶芽孢杆菌的筛选鉴定和酶活力测定.上海农业学报,2001,17:92-96
    51.顾真荣,吴畏,高新华,马承铸.枯草芽孢杆菌G3防治植病盆栽试验.上海农业学报,2002,18:77-80
    1. Baltz R H, Brian P, Miao V, Wrigley S K. Combinatorial biosynthesis of lipopeptide antibiotics in Streptomyces roseosporus. J Ind Microbiol Biotechnol,2006,33:66-74
    2. Caboche S, Pupin M., Leclere V, Fontaine A, Jacques P, Kucherov G. NORINE:a database of nonribosomal peptides. Nucleic Acids Res,2008,36:D326-331
    3. Chen X H, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter A W, Gottschalk G, Sussmuth R D, Borriss R. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol,2006, 188:4024-4036
    4. Crosa J H, Walsh C T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev,2002,66:223-249
    5. E.Blee, Impact of phyto-oxylipins in plant defence, Trends Plant Sci.2002.7, pp.315-321
    6. Grunewald J, Marahiel M A. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Rev,2006,70:121-146
    7. Hiradate S, Yoshida S, Sugie H, Yada H, Fujii Y. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry,2002,61:693-698
    8. H.P. Bais et al., Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production, Plant Physiol. 2004.134, pp.307-319
    9. Kasahara T, Kato T. Nutritional biochemistry:A new redox-cofactor vitamin for mammals. Nature, 2003,422:832
    10. Kohli R M, Walsh C T. Enzymology of acyl chain macrocyclization in natural product biosynthesis. Chem Commun (Camb),2003:297-307
    11. Li M H, Ung P M, Zajkowski J, Garneau-Tsodikova S, Sherman D H. Automated genome mining for natural products. BMC Bioinformatics,2009,10:185
    12. Miao V, Coeffet-Legal M F, Brian P, Brost R, Penn J, Whiting A, Martin S, Ford R, Parr Ⅰ, Bouchard M, Silva C J, Wrigley S K, Baltz R H. Daptomycin biosynthesis in Streptomyces roseosporus:cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology,2005,151:1507-1523
    13. Micklefield J. Daptomycin structure and mechanism of action revealed. Chem Biol,2004,11: 887-888.
    14. Mootz H D, Kessler N, Linne U, Eppelmann K, Schwarzer D, Marahiel M A. Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. J Am Chem Soc,2002,124:10980-10981
    15. Moyne A L, Shelby R, Cleveland T E, Tuzun S. Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol,2001,90:622-629
    16. O. Asaka and M. Shoda, Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14, Appl. Environ. Microbiol.1996 62, pp.4081-4085
    17. Peypoux F, Bonmatin J M, Wallach J. Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol,1999,51:553-563.
    18. Richardt A, Kemme T, Wagner S, Schwarzer D, Marahiel M A, Hovemann B T. Ebony, a novel nonribosomal peptide synthetase for beta-alanine conjugation with biogenic amines in Drosophila. J Biol Chem,2003,278:41160-41166
    19. Schwecke T, Gottling K, Durek P, Duenas I, Kaufer N F, Zock-Emmenthal S, Staub E, Neuhof T, Dieckmann R, von Dohren H. Nonribosomal peptide synthesis in Schizosaccharomyces pombe and the architectures of ferrichrome-type siderophore synthetases in fungi. Chembiochem,2006,7: 612-622
    20. S. de Weert et al., Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens, Mol. Plant Microbe Interact.2002.15, pp. 1173-1180
    21. Sharma A, Johri B N. Growth promoting influence of siderophore producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res,2003,158: 243-248
    22. Sieber S A, Marahiel M A. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev,2005,105:715-738
    23. Starcevic A, Zucko J, Simunkovic J, Long P F, Cullum J, Hranueli D. ClustScan:an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res,2008,36:6882-6892
    24. Tae H, Kong E B, Park K. ASMPKS:an analysis system for modular polyketide synthases. BMC Bioinformatics,2007,8:327
    25. Vanittanakom N, Loeffler W, Koch U, Jung G. Fengycin--a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot (Tokyo),1986,39:888-901
    26. V. Leclere et al., Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities, Appl. Environ. Microbiol.2005 71, pp. 4577-4584
    27. Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Nature,2000,406: 775-781
    28. Walsh C T. Polyketide and nonribosomal peptide antibiotics:modularity and versatility. Science, 2004,303:1805-1810
    29. Weber T, Rausch C, Lopez P, Hoof I, Gaykova V, Huson D H, Wohlleben W. CLUSEAN:a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. J Biotechnol,2009,140:13-17
    30. Welker M, von Dohren H. Cyanobacterial peptides-nature's own combinatorial biosynthesis. FEMS Microbiol Rev,2006,30:530-563
    31. Wyckoff E E, Stoebner J A, Reed K E, Payne S M. Cloning of a Vibrio cholerae vibriobactin gene cluster:identification of genes required for early steps in siderophore biosynthesis. J Bacteriol, 1997,179:7055-7062
    32. Yadav G, Gokhale R S, Mohanty D. SEARCHPKS:A program for detection and analysis of polyketide synthase domains. Nucleic Acids Res,2003,31:3654-3658
    33.乔建军,黄惠娟.聚酮类抗生素组合生物合成.细胞生物学杂志,2007,29:692-696
    1. Anand S P, Mitra P, Naqvi A, Khan S A. Bacillus anthracis and Bacillus cereus PcrA helicases can support DNA unwinding and in vitro rolling-circle replication of plasmid pT181 of Staphylococcus aureus. J Bacteriol,2004,186:2195-2199
    2. Andrup L, Jensen G B, Wilcks A, Smidt L, Hoflack L, Mahillon J. The patchwork nature of rolling-circle plasmids:comparison of six plasmids from two distinct Bacillus thuringiensis serotypes. Plasmid,2003,49:205-232
    3. Baas P D. DNA replication of single-stranded Escherichia coli DNA phages. Biochim Biophys Acta,1985,825:111-139
    4. Backert S, Meissner K, Borner T. Unique features of the mitochondrial rolling circle-plasmid mpl from the higher plant Chenopodium album (L.). Nucleic Acids Res,1997,25:582-589
    5. Berns K I. Parvovirus replication. Microbiol Rev,1990,54:316-329
    6. Boe L, Gros M F, te Riele H, Ehrlich S D, Gruss A. Replication origins of single-stranded-DNA plasmid pUB110. J Bacteriol,1989,171:3366-3372
    7. Bron S, Luxen E. Segregational instability of pUB110-derived recombinant plasmids in Bacillus subtilis. Plasmid,1985,14:235-244
    8. Brown D R, Roth M J, Reinberg D, and Hurwitz J. Analysis of bacteriophage ΦX174 gene A protein-mediated termination and reinitiation of ΦX174 DNA synthesis. I. Characterization of the termination and reinitiation reactions. J Biol Chem,1984,259:10545-10555
    9. Bruand C, Ehrlich S D. UvrD-dependent replication of rolling-circle plasmids in Escherichia coli. Mol Microbiol,2000,35:204-210
    10. Cossons N, Zannis-Hadjopoulos M, Tam P, Astell C R, Faust E A. The effect of regulatory sequence elements upon the initiation of DNA replication of the minute virus of mice. Virology, 1996,224:320-325
    11. de la Cruz F, Davies J. Horizontal gene transfer and the origin of species:lessons from bacteria. Trends Microbio,2000,18:128-133
    12. del Solar G, Giraldo R, Ruiz-Echevarria M J, Espinosa M, Diaz-Orejas R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev,1998,62:434-464
    13. del Solar G, Kramer G, Ballester S, Espinosa M. Replication of the promiscuous plasmid pLS1:a region encompassing the minus origin of replication is associated with stable plasmid inheritance. Mol Gen Genet,1993,241:97-105
    14. Gruss A, Ehrlich S D. The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol Rev,1989,53:231-241
    15. Iordanescu S. Identification and characterization of Staphylococcus aureus chromosomal gene pcrA, identified by mutations affecting plasmid pT 181 replication. Mol Gen Genet,1993,241:185-192
    16. Jin R, Zhou X, Novick R P. The inactive pT181 initiator heterodimer, RepC/C, binds but fails to induce melting of the plasmid replication origin. J Biol Chem,1996,271:31086-31091
    17. Khan S A. Mechanism of replication and copy number control of plasmid in gram-postive bacteria. Genetic Engineering,1996,18:183-201
    18. Khan S A. Rolling-circle replication of bacterial plasmids. Microbiol Mol Biol Rev,1997,61: 442-455
    19. Khan S A. Plasmid rolling-circle replication:recent developments. Mol Microbiol,2000,37: 477-484
    20. Koepsel R R, Murray R W, and Khan S A. Sequence-specific interaction between the replication initiator protein of plasmid pT181 and its origin of replication. Proc Natl Acad Sci USA,1986,83: 5484-5488.
    21. Koetje E J, Hajdo-Milasinovic A, Kiewiet R, Bron S, Tjalsma H. A plasmid-borne Rap-Phr system of Bacillus subtilis can mediate cell-density controlled production of extracellular proteases. Microbiology,2003,149:19-28
    22. Kramer M G, Espinosa M, Misra T K, Khan S A. Lagging strand replication of rolling-circle plasmids:specific recognition of the ssoA-type origins in different gram-positive bacteria. Proc Natl Acad Sci USA,1998,95:10505-10510
    23. Kramer M G, Espinosa M, Misra T K, Khan S A. Characterization of a single-strand origin, ssoU, required for broad host range replication of rolling-circle plasmids. Mol Microbiol,1999,33: 466-475.
    24. Kramer M G, Khan S A, Espinosa M. Plasmid rolling circle replication:identification of the RNA polymerase-directed primer RNA and requirement for DNA polymerase I for lagging strand synthesis. EMBO J,1997,16:5784-5795
    25. Leibig M, Krismer B, Kolb M, Friede A, Gotz F, Bertram R. Marker removal in staphylococci via Cre recombinase and different lox sites. Appl Environ Microbiol,2008,74:1316-1323
    26. Meijer W J, de Jong A, Bea G, Wisman A, Tjalsma H, Venema G,Bron S, and van Dijl J M. Complete nucleotide sequence of Bacillus subtilis (natto) plasmid responsible for gamma-polyglutamate synthesis. J Fac Agr Kyushu Univ,1992,36:209-218
    27. Novick R P. Staphylococcal plasmids and their replication. Annu Rev Microbiol,1989,43:537-565
    28. Ochman H, Lawrence J Q Groisman E A. Lateral gene transfer and the nature of bacterial innovation. Nature,2000,405:299-304
    29. Petit M A, Dervyn E, Rose M, Entian K D, McGovern S, Ehrlich S D, et al. PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Mol Microbiol,1998,29:261-273
    30. Soultanas P, Dillingham M S, Papadopoulos F, Phillips S E. Thomas C D, Wigley D B. Plasmid replication initiator protein RepD increases the processivity of PcrA DNA helicase. Nucleic Acids Res,1999,27:1421-1428
    31. Taketo A, Kodaira K. Growth of single-stranded DNA phages in replication mutants of Escherichia coli. Mol Gen Genet,1978,162:151-155
    32. Thomas C D, Nikiforov T T, Connolly B A, and Shaw W V. Determination of sequence specificity between a plasmid replication initiator protein and the origin of replication. J Mol Biol,1995,254: 381-391
    33. Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms:proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA,1990,87:4576-4579
    34. Yan X, Yu H J, Hong Q, Li S P. Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Appl Environ Microbiol,2008,74:5556-5562
    1. Bobbie R J, White D C. Characterization of benthic microbial community structure by high-resolution gas chromatography of Fatty Acid methyl esters. Appl Environ Microbiol,1980,39: 1212-1222
    2. Chelo I M, Ze-Ze L, Tenreiro R. Congruence of evolutionary relationships inside the Leuconostoc-Oenococcus-Weissella clade assessed by phylogenetic analysis of the 16S rRNA gene, dnaA, gyrB, rpoC and dnaK. Int J Syst Evol Microbiol,2007,57:276-286
    3. Chen X H, Scholz R, Borriss M, Junge H, Mogel G, Kunz S, Borriss R. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotechnol,2009,140:38-44
    4. Chen X H, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter A W, Gottschalk G, Sussmuth R D, Borriss R. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol,2006, 188:4024-4036
    5. Coorevits A, De Jonghe V, Vandroemme J, Reekmans R, Heyrman J, Messens W, De Vos P, Heyndrickx M. Comparative analysis of the diversity of aerobic spore-forming bacteria in raw milk from organic and conventional dairy farms. Syst Appl Microbiol,2008,31:126-140
    6. Fritze D. Bacillus identification-traditional approaches. Applications and Systematics of Bacillus and Relatives,2002,8-22
    7. Houf K, De Zutter L, Van Hoof J, et al. Assessment of the Genetic Diversity among Arcobactera Isolated from Poultry Products by Using Two PCR Based Typing Methods. Appl Environ Microbiol, 2002,68:2172-2178
    8. Yang J H, Liu H X, Zhu G M, Pan Y L, Xu L P, and Guo J H. Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. Journal of Applied Microbiology,2008,104:91-104
    9. Koumoutsi A, Chen X H, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol,2004,186: 1084-1096
    10. Kumar S, Tamura K, Nei M. MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform,2004,5:150-163
    11. Lopez A C, Alippi A M. Diversity of Bacillus megaterium isolates cultured from honeys. LWT-Food Science and Technology,2009,42:212-219
    12. Lopez A C, Alippi A M. Phenotypic and genotypic diversity of Bacillus cereus isolates recovered from honey. Int J Food Microbiol,2007,117:175-184
    13. Ongena M, Jacques P. Bacillus lipopeptides:versatile weapons for plant disease biocontrol. Trends Microbiol,2008,16:115-125
    14. Vaerewijck M J, De Vos P, Lebbe L, Scheldeman P, Hoste B, Heyndrickx M. Occurrence of Bacillus sporothermodurans and other aerobic spore-forming species in feed concentrate for dairy cattle. J Appl Microbiol,2001,91:1074-1084
    15. Wilkens L, Burkhardt D, et al. Significant hybridization differences in comparative genomic hybridization due to nucleotides used for DNA labelling and to DNA chosen for cohybridization. Pathobiology,2003,4:204-208
    16. Yamamoto S, Harayama S. Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol,1998,48: 813-819.
    17. Yamamoto S, Harayama S. PCR. amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol,1995,61:1104-1109
    18.王镭,郑茂波.遗传标记的研究进展.生物技术,2002,12:41-42
    19.高学文,姚仕义,Huong P, Vater J,王金生.基因工程枯草芽孢杆菌GEB3产生的脂肽类抗生素及生物活性的研究.中国农业科学,2003,36:1496-1501
    20.谢关林.水稻病原细菌鉴定方法的比较研究.浙江大学学报(农业与生命科学版),2000,26:353-358
    1. Branda S S, Chu F, Kearns D B, Losick R, Kolter R. A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol,2006,59:1229-1238
    2. Branda S S, Gonzalez-Pastor J E, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA,2001,98:11621-11626
    3. Branda S S, Gonzalez-Pastor J E, Dervyn E, Ehrlich S D, Losick R, Kolter R. Genes involved in formation of structured multicellular communities by Bacillus subtilis. J Bacteriol,2004,186: 3970-3979
    4. Branda S S, Vik S, Friedman L, Kolter R. Biofilms:the matrix revisited. Trends Microbiol,2005, 13:20-26
    5. Chen X H, Scholz R, Borriss M, Junge H, Mogel G, Kunz S, Borriss R. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotechnol,2009,140:38-44
    6. Chen X H, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter A W, Gottschalk G,Sussmuth R D, Borriss R. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol,2006, 188:4024-4036
    7. Chen X H, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess W R, Reva O, Junge H, Voigt B, Jungblut P R, Vater J, Sussmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss, R. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol,2007, 25:1007-1014
    8. Heerklotz H, Wieprecht T, and Seelig J. Membrane perturbation by the lipopeptide surfactin and detergents as studied by deuterium NMR. J Phys Chem B,2004,108:4909-4915
    9. Hiradate S, Yoshida S, Sugie H, Yada H, Fujii Y. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry,2002,61:693-698
    10. Hofemeister J, Conrad B, Adler B, Hofemeister B, Feesche J, Kucheryava N, Steinborn G, Franke P, Grammel N, Zwintscher A, Leenders F, Hitzeroth G, Vater J. Genetic analysis of the biosynthesis of non-ribosomal peptide-and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Genet Genomics,2004,272:363-378
    11. Idriss E E, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology,2002,148:2097-2109
    12. Koumoutsi A, Chen X H, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol,2004,186: 1084-1096
    13. Kunst F, Ogasawara N, Moszer I, Albertini A M, Alloni G, Azevedo V, Bertero M G, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell S C, Bron S, Brouillet S, Bruschi C V, Caldwell B, Capuano V, Carter N M, Choi S K, Codani J J, Connerton I F, Danchin A, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature,1997, 390:249-256.
    14. Li M H, Ung P M, Zajkowski J, Garneau-Tsodikova S, Sherman D H. Automated genome mining for natural products. BMC Bioinformatics,2009,10:185
    15. Liu J, Ma X, Wang Y, Liu F, Qiao J Q, Li X Z, Gao X W, Zhou T. Depressed Biofilm Production in Bacillus amyloliquefaciens C06 Causes gamma-Polyglutamic Acid (gamma-PGA) Overproduction. Curr Microbiol,2010
    16. Meijer W J, de Jong A, Bea G, Wisman A, Tjalsma H, Venema G, Bron S, and van Dijl J M. Complete nucleotide sequence of Bacillus subtilis (natto) plasmid responsible for gamma-polyglutamate synthesis. J Fac Agr Kyushu Univ,1992,36:209-218
    17. Moyne A L, Shelby R, Cleveland T E, Tuzun S. Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol,2001,90:622-629
    18. Ongena M, Jacques P. Bacillus lipopeptides:versatile weapons for plant disease biocontrol. Trends Microbiol,2008,16:115-125
    19. Phae C G, Shoda M, and Kubota H. Suppressive effect of Bacillus subtilis and it's products on phytopathogenic microorganisms. J Ferment Bioeng,1990,69:1-7
    20. Ryu, C M, Farag M A, Hu C H, Reddy M S, Wei H X, Pare P W, Kloepper J W. Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA,2003,100:4927-4932
    21. Stein T. Bacillus subtilis antibiotics:structures, syntheses and specific functions. Mol Microbiol, 2005,56:845-857
    22. Vanittanakom N, Loeffler W, Koch U, Jung G. Fengycin--a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot (Tokyo),1986,39:888-901
    23. Yu G Y, Sinclair J B, Hartman G L, and Bertagnolli B L. Production of iturin A by bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem,2002,34:955-963
    24.王金生,田端华,方中达,张宏生,张安全,刘荆.枯草芽孢杆菌B1菌株对大白菜软腐病 的生防作用.南京农业大学学报,1989,12:59-62
    25.张学君,凌宏通,李洪连,王金生.生物农药麦丰宁B3对小麦纹枯病的抑制作用.植物病理学报,1994,24:361-366
    1. Andrup L, Jensen G B, Wilcks A, Smidt L, Hoflack L, Mahillon J. The patchwork nature of rolling-circle plasmids:comparison of six plasmids from two distinct Bacillus thuringiensis serotypes. Plasmid,2003,49:205-232
    2. Bron S, Luxen E. Segregational instability of pUB110-derived recombinant plasmids in Bacillus subtilis. Plasmid,1985,14:235-244
    3. Bron S, Meijer W, Holsappel S, Haima P. Plasmid instability and molecular cloning in Bacillus subtilis. Res Microbiol,1991,142:875-883
    4. Cutting S M, van der Horn P B. Molecular Biological Methods for Bacillus.1990.
    5. de la Cruz F, Davies J. Horizontal gene transfer and the origin of species:lessons from bacteria. Trends Microbiol,2000,8:128-133
    6. del Solar G, Giraldo R, Ruiz-Echevarria M J, Espinosa M, Diaz-Orejas R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev,1998,62:434-464
    7. del Solar G, Kramer G, Ballester S, Espinosa M. Replication of the promiscuous plasmid pLS1:a region encompassing the minus origin of replication is associated with stable plasmid inheritance. Mol Gen Genet,1993,241:97-105
    8. Devine K M, Hogan S T, Higgins D G, McConnell D J. Replication and segregational stability of Bacillus plasmid pBAAl. J Bacteriol,1989,171:1166-1172
    9. Dunn A K, Handelsman J. A vector for promoter trapping in Bacillus cereus. Gene,1999,226: 297-305
    10. Hoflack L, Seurinck J, Mahillon J. Nucleotide sequence and characterization of the cryptic Bacillus thuringiensis plasmid pGI3 reveal a new family of rolling circle replicons. J Bacteriol,1997,179: 5000-5008
    11. Ilyina T V, Koonin E V. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res,1992,20:3279-3285
    12. Jiang M, Grau R, Perego M. Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis. J Bacteriol,2000,182:303-310
    13. Khan S A. Plasmid rolling-circle replication:recent developments. Mol Microbiol,2000,37: 477-484.
    14. Khan S A. Plasmid rolling-circle replication:highlights of two decades of research. Plasmid,2005, 53:126-137
    15. Kim L, Mogk A, Schumann W. A xylose-inducible Bacillus subtilis integration vector and its application. Gene,1996,181:71-76
    16. Koetje E J, Hajdo-Milasinovic A, Kiewiet R, Bron S, Tjalsma H. A plasmid-borne Rap-Phr system of Bacillus subtilis can mediate cell-density controlled production of extracellular proteases. Microbiology,2003,149:19-28
    17. Koonin E V, Ilyina T V. Computer-assisted dissection of rolling circle DNA replication. Biosystems, 1993,30:241-268
    18. Leibig M, Krismer B, Kolb M, Friede A, Gotz F, Bertram R. Marker removal in staphylococci via Cre recombinase and different lox sites. Appl Environ Microbiol,2008,74:1316-1323
    19. Lovett P S, Bramucci M G. Plasmid deoxyribonucleic acid in Bacillus subtilis and Bacillus pumilus. JBacteriol,1975,124:484-490
    20. Meijer W J, de Jong A, Bea G, Wisman A, Tjalsma H, Venema G, Bron S, and van Dijl J M. Complete nucleotide sequence of Bacillus subtilis (natto) plasmid responsible for gamma-polyglutamate synthesis. J Fac Agr Kyushu Univ,1992,36:209-218
    21. Meijer W J, Wisman G B, Terpstra P, Thorsted P B, Thomas C M, Holsappel S, Venema G,Bron S. Rolling-circle plasmids from Bacillus subtilis:complete nucleotide sequences and analyses of genes of pTA1015, pTA1040, pTA1050 and pTA1060, and comparisons with related plasmids from gram-positive bacteria. FEMS Microbiol Rev,1998,21:337-368
    22. Murray K D, Aronstein K A, de Leon J H. Analysis of pMA67, a predicted rolling-circle replicating, mobilizable, tetracycline-resistance plasmid from the honey bee pathogen, Paenibacillus larvae. Plasmid,2007,58:89-100
    23. Nakano M M, Marahiel M, Zuber P. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol,1988,170:5662-5668
    24. Novick R P. Staphylococcal plasmids and their replication. Annu Rev Microbiol,1989,43:537-565
    25. Ochman H, Lawrence J G,Groisman E A. Lateral gene transfer and the nature of bacterial innovation. Nature,2000,405:299-304
    26. Sambrook J, Russell D W. Molecular Cloning:A Laboratory Manual.2001.
    27. Schaeffer P, Millet J, Aubert J P. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci USA,1965,54:704-711
    28. te Riele H, Michel B, Ehrlich S D. Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus. Proc Natl Acad Sci USA,1986,83:2541-2545
    29. Tjalsma H, Koetje E J, Kiewiet R, Kuipers O P, Kolkman M, van der Laan J, Daskin R, Ferrari E, Bron S. Engineering of quorum-sensing systems for improved production of alkaline protease by Bacillus subtilis. J Appl Microbiol,2004,96:569-578
    30. Wu H J, Wang S, Qiao J Q, Liu J, Zhan J, Gao X W. Expression of HpaGXooc protein in Bacillus subtilis and its biological functions. J Microbiol Biotechnol,2009,19:194-203
    1. Alfano J R, Collmer A. Type Ⅲ secretion system effector proteins:double agents in bacterial disease and plant defense. Annu Rev Phytopathol,2004,42:385-414
    2. Asaka O, Shoda M. Biocontrol of Rhizoctonia solani Damping-Off of Tomato with Bacillus subtilis RB14. Appl Environ Microbiol,1996,62:4081-4085
    3. Chang S. Engineering for protein secretion in gram-positive bacteria. Methods Enzymol,1987,153, 507-516
    4. Chen X H, Koumoutsi A, Scholz R, Borriss R. More than anticipated-production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J Mol Microbiol Biotechnol, 2009a,16:14-24
    5. Chen X H, Koumoutsi A, Scholz R, Schneider K, Vater J, Sussmuth R, Piel J, Borriss R. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol,2009b,140:27-37
    6. Dixon R A. Natural products and plant disease resistance. Nature,2001,411:843-847
    7. Doi R H, Wong S L, and Kawamura F. Potential use of Bacillus subtilis for secretion and production of foreign proteins. Trends Biotechnol,1986,4:232-235
    8. Ji G H, Wei L F, He Y Q, Wu Y P, Bai X H. Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1. Biological Control,2008,45:288-296
    9. Hopkins C M, White F F, Choi S H, Guo A, Leach J E. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact,1992,5:451-459
    10. Landy M, Warren G H, et al. Bacillomycin; an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med,1948,67:539-541
    11. Leibig M, Krismer B, Kolb M, Friede A, Gotz F, Bertram R. Marker removal in staphylococci via Cre recombinase and different lox sites. Appl Environ Microbiol,2008,74:1316-1323
    12. Liu F Q, Liu H X, Jia Q, Wu X J, Guo X J, Zhang S J, Song F, and Dong H S. The internal glycine-rich motif and cysteine suppress several effects of the HpaG(Xooc) protein in plants. Phytopathol,2006,96:1052-1059
    13. Meijer W J, Wisman G B, Terpstra P, Thorsted P B, Thomas C M, Holsappel S, Venema G, Bron S. Rolling-circle plasmids from Bacillus subtilis:complete nucleotide sequences and analyses of genes of pTA1015, pTA1040, pTA1050 and pTA1060, and comparisons with related plasmids from gram-positive bacteria. FEMS Microbiol Rev,1998,21:337-368
    14. Paulitz T C, Belanger R R. Biological control in greenhouse systems. Annu Rev Phytopathol,2001, 39:103-133
    15. Schisler D A, Slininger P J, Behle R W, Jackson M A. Formulation of Bacillus spp. for Biological Control of Plant Diseases. Phytopathology,2004,94:1267-1271
    16. Steinmetz M, Richter R. Easy cloning of mini-Tn 10 insertions from the Bacillus subtilis chromosome. J Bacteriol,1994,176:1761-1763
    17. Wang S, Wu H J, Qiao J Q, Ma L L, Liu J, Xia Y F, and Gao X W. Molecular Mechanism of Plant Growth Promotion and Induced Systemic Resistance to Tobacco Mosaic Virus by Bacillus spp. J Microbiol Biotechnol,2009,19:1250-1258
    18. Wei Z M, Laby R J, Zumoff C H, Bauer D W, He S Y, Collmer A, Beer S V. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science,1992,257: 85-88
    19. Wong S L. Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins. Curr Opin Biotechnol,1995,6:517-522
    20. Wu H J, Wang S, Qiao J Q, Liu J, Zhan J, Gao X W. Expression of HpaGXooc protein in Bacillus subtilis and its biological functions. J Microbiol Biotechnol,2009,19:194-203
    21. Wu S C, Wong S L. Engineering of a Bacillus subtilis strain with adjustable levels of intracellular biotin for secretory production of functional streptavidin. Appl Environ Microbiol,2002,68: 1102-1108.
    22. Yan X, Yu H J, Hong Q, Li S P. Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Appl Environ Microbiol,2008,74:5556-5562
    23. Zhang X Z, Cui Z L, Hong Q, Li S P. High-level expression and secretion of methyl parathion hydrolase in Bacillus subtilis WB800. Appl Environ Microbiol,2005,71:4101-4103
    24.王帅,高圣风,高学文等.枯草芽孢杆菌脂肽类抗生素发酵和提取条件研究.中国生物防治,2007.23:342-347
    25.张学君,凌宏通,李洪连,王金生.生物农药麦丰宁B3对小麦纹枯病的抑制作用.植物病理学报,1994,24:361-366

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700