用户名: 密码: 验证码:
运动对HPA轴分泌、海马相关蛋白及信号分子作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:适宜运动使机体产生良好适应,根据应激适应理论,可以说应激是机体产生适应的基础。中枢神经系统的海马脑区是应激的敏感部位,应激则可能引致海马的损伤发生。应激过程中以肾上腺皮质激素增多为主要特征,海马中含有丰富的糖皮质激素受体,在神经元兴奋性双向调节、细胞凋亡、突触长时程增强及学习和记忆形成中均有重要作用,应激引起海马糖皮质激素受体变化,通过激素反应元件影响蛋白质合成、海马神经元兴奋性的改变等。海马内有丰富的谷氨酸能神经元,神经元释放兴奋性氨基酸,通过NMDA受体影响细胞膜对离子的通透性,尤其是钙离子的通透性,正常的NMDA受体活性和海马神经内的钙离子水平是海马学习和记忆的基础;在严重应激损伤时兴奋性氨基酸或NMOA受体活性加大,引起细胞内及线粒体内的钙离子超载,钙离子超载则引起氧化磷酸化脱偶联等效应,产生自由基,而自由基又会进一步引起组织的氧化损伤,即氧化应激。钙离子、活性氧则迅速启动神经的保护机制,如核因子kappa B、雌激素等。雌激素自身即具有抗氧化作用,是一种抗氧化剂;同时,雌激素通过非基因组(快速)和基因组机制(慢速)起到神经保护作用,并可能对HPA轴起到调节作用,应对机体的应激状态。
     本研究旨在通过游泳这一运动模式,以水环境为参照,观察环境及运动对海马功能相关指标及应激反应的HPA轴激素的影响,探讨应激对海马功能的影响,以及海马神经保护和对HPA轴的可能调节机制,为运动性中枢疲劳理论的发展提供依据。
     研究方法:研究选用雄性SD大鼠进行实验,分别观察急性(一次)运动、经过耐力训练过的大鼠进行急性运动的效应。实验设计几个不同的时间观测点,即运动15min、运动至力竭后即刻、运动至力竭后1hr、运动至力竭后24hr。相应的参照组大鼠以水环境暴露,也类似设立急性(一次)水环境及长期水环境,取样也设为相同的4个点。实验进行中使用两个独立的水池,耐力训练大鼠进行游泳的同时,参照组大鼠则同时浸于水中(自由),以尽量减少非实验施加因素的影响,如水温、激素的生物节律等,但参照组的水深仅为大鼠直立后达耳下缘左右(约15-20cm)。以本实验室创立的大鼠负重游泳乳酸阈强度模型建立的强度进行耐力训练和力竭性运动强度设定。测试大鼠的血红蛋白、力竭游泳能力及乳酸阈强度的提高为模型建立成功的考察指标。
     实验采用放射免疫法测定了大鼠部分激素含量,包括下丘脑中的促肾上腺皮质激素释放激素(CRH)、皮质酮、雌二醇;血清中的促肾上腺皮质激素、皮质酮、睾酮。观察了海马CA1区神经元的细胞体的电镜超微结构。采用顺磁共振自旋捕获技术测定了海马CA1区羟自由基信号强度。采用western blot法测定了海马糖皮质激素受体(GR)、雌激素受体alpha(ERα)、核因子kappa B(NF-κB)、N-甲基-D-天门冬氨酸受体2A亚型(NMDAR2A)、钙调蛋白激酶Ⅱalpha亚型(CaMKⅡα)。
     研究结果:
     1、动物运动模型。每周6次,每次30min以乳酸阈强度90%负重游泳6周后,大鼠游泳到达力竭的时间显著延长(训练过的大鼠44.42±32.29min,未训练过的大鼠21.32±20.12min,p<0.05);训练大鼠血红蛋白含量显著性高于未训练大鼠(训练过的大鼠146.08±7.35g/L,未训练过的大鼠134.50±8.33g/L,p<0.05)。
     2、海马CA1区锥体细胞形态。
     急性、慢性水环境及急性、慢性运动作用均可能引起其超微结构的变化。其变化程度有所不同,均未见有明显的核固缩、核碎裂及核溶解等细胞凋亡的典型表现。急性水环境因素作用下,大鼠海马CA1区锥体细胞形态发性改变,如细胞外膜不清,细胞内细胞器也发生损伤,如核膜消失、线粒体空泡化现象等。从急性水环境作用时间看,急性水环境作用15min和作用后1hr,细胞的受损状况更为严重,而在急性环境因素后即刻和24hr受损则小于15min和1hr大鼠的情况。慢性水环境与急性影响结果类似。急性运动因素作用下,大鼠海马CA1区锥体细胞形态发性改变,细胞外膜和核膜的变形,内质网和线粒体肿胀等。急性运动作用后即刻和之后的1hr,细胞受损情况最为严重,之后的24hr,细胞形态已经基本正常化。慢性运动因素作用下,大鼠海马CA1区锥体细胞结构变形最大的是运动15min和运动后24hr,在运动后即刻及1hr,其受损状况反而相对来说较小。
     3、海马羟自由基。
     长期水环境影响的大鼠再施加急性水环境因素与未进行水预适应的大鼠施加急性水环境因素,以及耐力训练大鼠和未进行过耐力训练的大鼠进行急性力竭运动时,从各因素作用的总体看海马羟自由基信号强度无显著性差异,水环境和运动对海马羟自由基的影响具有同一性;但耐力训练大鼠力竭运动后即刻海马羟自由基强度显著性高于未训练大鼠运动后即刻大鼠,与之相对应的长期水环境大鼠在水环境作用后即刻与水预适应大鼠水环境后即刻比没有差异。
     4、激素。
     各组大鼠下丘脑CRH无显著性差异,但仍可见耐力训练过的大鼠在力竭后即刻下丘脑CRH均数高于未训练大鼠力竭运动后即刻(无显著性差异)。耐力运动大鼠下丘脑皮质酮整体上显著性高于长期水环境大鼠;训练和未训练过的大鼠在力竭性运动后即刻下丘脑皮质酮均显著性高于各自的运动15min大鼠;未训练过的大鼠运动后1hr下丘脑皮质酮就显著性低于运动后即刻,而耐力训练大鼠则依然保持较高的下丘脑皮质酮水平。各组大鼠血清ACTH无显著性差别。血清皮质酮,各组大鼠在水或运动因素作用后即刻显著低于15分时,因素作用后1hr显著高于即刻值。以所有大鼠下丘脑皮质酮含量与血清皮质酮浓度作相关分析发现,下丘脑皮质酮含量与血清皮质酮呈弱的负相关关系,R=-0.228,p<0.05。下丘脑雌二醇,耐力训练大鼠和长期水环境大鼠均较一次水环境或一次运动大鼠高,但只有长期水环境大鼠与一次水环境大鼠比有显著性差异;一次水环境、长期水环境后急性水环境、一次运动和耐力训练大鼠急性运动后即刻、1hr和24hr均显著性高于各自15min,运动后直至24hr均处于高水平。一次水环境组大鼠血清睾酮显著性高于长期水环境、急性运动和耐力训练大鼠急性运动组。各组大鼠运动后24hr血清睾酮达最高值,差异具有显著性。
     5、海马相关信号蛋白含量。
     海马雌激素受体α水平,一次水环境、长期水环境和一次运动大鼠在相应作用因素后即刻均显著性高于15min时、以及之后的1hr及24hr,而耐力训练大鼠在运动后即刻是下降趋势,运动后24hr升高。耐力训练大鼠海马糖皮质激素受体在相同的采样时间点时均有低于其它各处理因素大鼠的趋势,但无显著性差异。海马NF-κB整体上各处理因素和采样时间点间无显著性差异,但一次水环境后即刻显著性低于一次水环境后1hr和24hr,并且显著性低于同样是即刻状态的长期水环境大鼠、一次运动大鼠和耐力训练大鼠;运动后24hr,耐力训练大鼠海马NF-κB显著性高于未训练大鼠;同时,未训练大鼠运动后即刻最高,而耐力训练大鼠则是运动后24hr最高。海马NMDAR2A含量,耐力训练大鼠整体上显著性高于一次运动大鼠,耐力训练大鼠力竭运动后即刻显著性高于长期水环境大鼠;耐力训练和未训练大鼠运动后即刻均高于各自的后1hr和24hr水平。CaMKⅡα水平,从整体看,一次急性运动与一次水环境大鼠存在显著性差异,长期水环境大鼠与一次水环境大鼠存在显著性差异,因素后24hr与因素作用后即刻和之后1hr有显著性差异;耐力训练大鼠运动后24hr水平显著性高于长期水环境24hr组和未训练大鼠运动力竭后24hr组。
     6、相关性分析。
     大鼠力竭游泳时间与下丘脑CRH和海马ERα相关,偏相关系数分别为0.573,p<0.001:-0.584,p<0.001。其它具有显著性的两变量pearson相关有:NF-κB与CaMKⅡα相关(r=0.253,p<0.05),ERα与GR、下丘脑雌二醇、下丘脑皮质酮(r=0.428,p<0.001;r=-0.250,p<0.05;r=-0.219,p<0.05),海马羟自由基信号强度与血清睾酮、血清皮质酮(r=0.232,p<0.05;r=-0.443,p<0.001),血清皮质酮与下丘脑皮质酮(r=-0.220,p<0.05),下丘脑内皮质酮与CRH(r=0.214.p<0.05)。
     结论:
     1)HPA轴激素相互调节中CRH和下丘脑皮质酮起重要作用,而非血清皮质酮;下丘脑应激增高(皮质酮增高),伴随雌二醇生成增多。下丘脑皮质酮和血清皮质酮含量呈负相关关系,尚需进一步研究。
     2)海马超微结构可因环境和游泳运动刺激发生改变,其变化可在不长的时间内恢复,可能不是损伤性变化,更可能是学习和记忆或适应过程中的一个阶段表现。
     3)海马对HPA轴的负反馈调节与海马的整体机能状况有关,海马ERα和羟自由基与HPA的负反馈调节有关。CaMKⅡα可能与HPA轴下游激素有关,并影响海马在应激时的机能。
     4)海马NF-κB可能起到的神经保护作用,在运动性疲劳发生时(本研究的力竭运动)并不具重要意义,其意义在于修复和恢复过程,这对于运动训练的适应机制的研究十分重要。
     5)海马ERα直接与运动能力有关,ERα含量越高,运动能力越低(可能是提供此直接证据的首次报道)。下丘脑CRH与运动能力正相关,CRH含量越高,运动能力越强。
Objectives:Exercise enables the adaptation of the body,and stress can be said to be the basis of body adaptation,according to the stress reaction stages,i.e.,the alert stage,the resistance stage and the failure stage.On the other hand,the hippocampus of the central nervous system is a sensitive part of stress;stress may lead to hippocampal damage.The process of stress is characterized by increased adrenal hormones.The hippocampus is rich in glucocorticoid receptors,and plays an important role in the two-way adjustment of excitatory neurons,in apoptosis,in long-term synaptic potentiation,and in learning and memory formation.Stress induces changes in hippocampal glucocorticoid receptors,and affects protein synthesis through hormone response elements and excitatory neurons in the hippocampus.The hippocampus,rich in glutamate neurons,releases excitatory amino acids,and,through NMDA receptors,affects the permeability of cell membranes on ions,calcium ions in particular.Normal NMDA receptors activity and the calcium levels of hippoeampal neurons is the basis of hippoeampal learning and memory;in severe stress injury,the activity of excitatory amino acids or NMDA receptors increases,which causes calcium ion overload in cells and mitochondria,which,in turn,witnesses de-coupling effects of oxidative phosphorylation and generates free radicals,which further leads to oxidative damage of tissues(i.e.,oxidative stress). Calcium ions and reactive oxygen species rapidly initiate the mechanism for neural protection,such as both nuclear factor kappa B and estrogen.Estrogen itself is an antioxidant;at the same time,through non-genomic(fast) and genomic(slow) mechanisms,estrogen plays a role in neural protection and may regulate the HPA axis against body stress.
     The objective of the present study,which observes the effects of environment and exercise on indicators of hippocampal functions and HPA axis hormones under stress through the swimming exercise model in terms of water environment, investigates the effects of stress on hippocampal functions,and the mechanism for neural protection and HPA axis regulation to provide the basis for exercise-induced central fatigue theory.
     Methods:To test the above hypothesis,male SD rats were selected,and the effects of acute exercise were observed for the acute exercise and endurance training conditions.The points of observation in the experimental design were 15min exercise, immediately after exhaustive exercise,lhr after exhaustive exercise,and 24hr after exhaustive exercise.The rats in the control group were exposed to the water environment,and the effects observed for the acute water environment and long-term water environment,with four points of observation designated.Two separate pools were used,and while the endurance training rats were swimming,the control group rats were immersed in water(free) to minimize the interference of non-experimental factors like water temperature and the biological rhythm of hormones.However,the water depth of the control group was only the level that reached the lower ear edges of the control rats(about 15-20cm).The intensity on the weight-bearing swimming lactate threshold intensity model was designated as the intensity of endurance training and exhaustive exercise.Increased hemoglobin levels,exhaustive swimming ability and lactate threshold intensity were designated as indicators of a successful model.
     Radioimmunoassay was used for determination of the levels of some hormones in the rats,including corticotropin-releasing hormone(CRH),corticosterone and estradiol in the hypothalamus,and adrenocorticotropin,corticosterone and testosterone in the serum.The electron microscope ultrastructures of the cells of the hippocampal CAI neurons were observed.Paramagnetic resonance techniques were used for determination of the intensity of hydroxyl radical signals in the hippocampus CA1 area.Western blot was used for determination of hippocampal glucocorticoid receptors(GR),estrogen receptor alpha(ERα),nuclear factor kappa B(NF-κB), N-methyl-D-aspartate receptor subtype 2A(NMDAR2A) and calmodulin kinaseⅡalpha subtypes(CaMKⅡα).To enrich the lactic acid threshold intensity exercise model,high-density lipoprotein cholesterol levels were tested.
     Results:Animal exercise model.6 weeks after weight-bearing swimming at 90%of the lactate threshold intensity for 30min,6 times a week,the time that the rats reached exhaustion was delayed(trained rats 44.42±32.29min,and untrained rats 21.32±20.12 min,p<0.05),hemoglobin levels were significantly higher in the trained rats than in the untrained rats(trained 146.08±7.35g / L,and untrained 134.50±8.33g / L,p<0.05).
     Form of pyramidal cells of the hippocampal CA1 area.Both the acute and chronic water environment conditions,and the acute and chronic exercise conditions led to changes in the ultrastructures.The extent of change differed;no obvious nuclear condensation,nuclear fragmentation or dissolution of nuclear apoptosis occurred.In the acute water environment condition,the form of pyramidal cells in the hippocampal CA1 area changed,such as unclear outer membranes of cell,and damage to intracellular organdies occurred,such as the disappearance of nuclear membranes and mitochondrial vacuolization.In terms of the effects of time,cell damage was more serious 15min and lhr,but less so immediately and 24hr after the acute environment condition.The results in the chronic water environment were similar.
     In the acute exercise condition,the form of pyramidal cells of the hippocampal CA1 area changed,such as deformation of the outer membranes of cells and that of nuclear membranes,and swelling of the endoplasmic reticula and mitochondria. Immediately and 1hr after acute exercise,damage to cells was the most serious,and the form of cells returned to normal 24hr after acute exercise.In the chronic exercise condition,the deformation of the structures of pyramidal cells of the hippocampal CA1 area was the most serious 15min and 24hr after exercise,while the damage proved small immediately and lhr after exercise.
     Hippocampus hydroxyl radicals.No significant differences in the intensity of hippocampus hydroxyl radicals occurred in the long-term water environment re-treated with acute,in the untreated condition re-treated with acute,and in the endurance training condition and the untrained re-treated with acute exhaustive exercise condition.The effects of water environment and exercise were parallel. However,the intensity was significantly higher in the endurance training rats than in the untrained rats immediately after exercise.No difference between the long-term water environment condition and and the untreated condition immediately after the factor.
     Hormones.No significant difference in hypothalamus CRH occurred under the conditions,but hypothalamus CRH averages were higher in the trained rats than in the untrained rats immediately after exhaustive training(with no significant difference). The overall significance of hypothalamus corticosterone levels was higher in the endurance exercise rats than in the long-term water environment rats;hypothalamus corticosterone levels were significantly higher in the rats immediately after than 15min after exercise;corticosterone in the hypothalamus was significantly lower in the untrained rats lhr after than immediately after exercise,and the levels of corticosterone in the hypothalamus were higher in the endurance training rats.Serum ACTH levels were not significantly different in the conditions.Serum corticosterone levels were significantly lower immediately after than 15min after the water environment or exercise condition,and significantly higher immediately after than lhr after the water or exercise condition.Correlation analysis of hypothalamus corticosterone and serum corticosterone showed that the two displayed a mildly negative correlation,R=-0.228,p<0.05.Estrogen in the hypothalamus were higher in the endurance training and water environment rats than in the single water environment or single exercise rats,but only the ratio of the long-term water environment to single was significantly different;significantly higher in the single water environment,long-term acute water environment after long-term water environment,single exercise and endurance training immediately,lhr and 24hr after acute exercise than 15min,and up to 24hr after exercise,serum testosterone was significantly higher in a single water environment significantly higher than that in the long-term,acute exercise and endurance training acute exercise rats.serum testosterone reached its maximum levels 24hr after exercise in the various groups with significant difference.
     Hippocampal signal protein content.Hippocampal estrogen receptor levels in the single water environment,long-term water environment and single exercise conditions were significantly higher immediately after the factors than 15min,1hr and 24hr after the factors,whereas a decreasing trend emerged immediately after exercise and an increase occurred 24hr after exercise.Hippocampal glucocorticoid receptors saw the same trend in the endurance training rats as the other rats,at the same points of sampling but with insignificant difference.As a whole,Hippocampus NF-κB was not significantly different when the factors and points of sampling were considered, but was significantly lower immediately after than lhr and 24hr after the single water environment,and significantly lower than in the long-term water environment,single exercise and endurance training conditions immediately after exercise.24hr after exercise,hippocampal NF-κB was significantly higher in the endurance training rats than in the untrained rats.In addition,NF-κB was the highest in the untrained rats immediately after exercise,and in the endurance training rats 24hr after exercise.In terms of hippocampus NMDAR2A,the overall significance was higher in the endurance training rats than in the single exercise rats,in the endurance training rats than in the long-term water environment rats immediately after exhaustive exercise, and in the endurance training and untrained rats immediately after than 1hr and 24hr after exercise.A significant difference in CaMKⅡαlevels occurred between the single acute exercise rats and the single water environment rats,between the long-term water environment rats and the single water environment rats,between 24hr after the factors and immediately and 1hr after the factors;the levels were significantly higher in the endurance training rats than in the long-term water environment rats and the untrained rats 24hr after exercise.
     Correlation analysis.The time for exhaustive swimming in the rats correlated with hypothalamus CRH and hippoeampus ERα,the partial correlation coefficient being 0.573,p<0.001 and-0.584,p<0.001,respectively.Other significant bivariate Pearson correlations were:NF-κB and CaMKⅡα(r= 0.253,p<0.05),ERα,and GR, estrogen in the hypothalamus,and hypothalamus corticosterone(r= 0.428,p<0.001; r=-0.250,p<0.05;r=-0.219,p<0.05),hydroxyl radical hippocampal signal intensity and serum testosterone and corticosterone(r= 0.232,p<0.05;r=0.443,p<0.001), serum eorticosterone and eorticosterone in the hypothalamus(r=-0.220,p<0.05), corticosterone in the hypothalamus and CRH(r=0.214,p<0.05).
     Conclusion:
     CRH and hypothalamus corticosterone,rather than serum corticosterone,play an important role in the regulation of HPA axis hormones;increased hypothalamic stress (increased corticosterone) levels accompanied with increased estradiol levels.
     The ultrastructures of the hippocampus may change due to environment and swimming excitation,which may return to normal within a short period of time.It may not be damage change,but more likely to be stage adaptation in the process of learning and memory.
     The negative feedback regulation of the hippocampus on the HPA axis is related to the overall hippocampal functions,and hippocampus ERαand hydroxyl free radicals are related to the negative feedback regulation of HPA.
     NF-κB may more important in delayed repair that may affect adaption progress.
     ERαin hippocampal is closely related to exercise ability(probably the first piece of empirical evidence).
     The above conclusion is generalizable to male SD rats.
引文
1 Twardowska,K.,Rybakowski,J.[Limbic-hypothalamic-pituitary-adrenal axis in depression:literature review].Psyehiatr Pol,1996,30(5):741-755.
    2 Ploughman,M.Exercise is brain food:the effects of physical activity on cognitive function.Dev Neurorehabil,2008,11(3):236-240.
    3 Park,E.,Chan,0.,Li,Q.,et aT.Changes in basal hypothalamo-pituitary-adrenal activity during exercise training are centrally mediated.Am J Physiol Regul Integr Comp Physiol,2005,289(5):R1360-1371.
    4 Kitamura,T.,Mishina,M.,Sugiyama,H.Enhancement of neurogenesis by running wheel exercises is suppressed in mice lacking NMDA receptor epsilon 1 subunit.Neurosci Res,2003,47(1):55-63.
    5 Leonardo,C.C.,Eakin,A.K.,Ajmo,J.M.,et al.Delayed administration of a matrix metalloproteinase inhibitor limits progressive brain injury after hypoxia-ischemia in the neonatal rat.J Neuroinflammation,2008,5:34.
    6 Nistico,R.,Piccirilli,S.,Cucchiaroni,M.L.,et al.Neuroprotective effect of hydrogen peroxide on an in vitro model of brain ischaemia.8r J Pharmacol,2008,153(5):1022-1029.
    7 丁树哲,许豪文.有氧运动与氧化物介导的调节.天津体育学院学报,2000,15(1):15-16.
    8 Cyr,M.,Thibault,C.,Morissette,M.,et al.Estrogen-like activity of tamoxifen and raloxifene on NMDA receptor binding and expression of its subunits in rat brain.Neuropsychopharmacology,2001,25(2):242-257.
    9 Fukunaga,K.,Stoppini,L.,Miyamoto,E.,et al.Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase Ⅱ.J Biol Chem,1993,268(11):7863-7867.
    10 Ouyang,Y.,Rosenstein,A.,Kreiman,G.,et al.Tetanic stimulation leads to increased accumulation of Ca(2+)/calmodulin-dependent protein kinase Ⅱ via dendritic protein synthesis in hippocampal neurons.J Neurosci,1999,19(18):7823-7833.
    11 Kennedy,M.B.(2003).Calcium/Calmodulin-Dependent Protein Kinase Ⅱ.In Handbook of Cell Signaling,vol.1(eds R.A.Bradshaw and E.A.Dennis),pp.543-546:Academic Press.
    12 Gartside,S.E.,Leitch,M.M.,McQuade,R.,et al.Flattening the glucocorticoid rhythm causes changes in hippocampal expression of messenger RNAs coding structural and functional proteins:implications for aging and depression.Neuropsychopharmacology,2003,28(5):821-829.
    [1]Dawson,C.Cardiac output in the cold-stressed swimming rat.Am J Physiol,1968,214(2):320-325.
    [2]Ravi Kiran,T.,Subramanyam,M.V.,Prathima,S.,et al.Blood lipid profile and myocardial superoxide dismutase in swim-trained young and middle-aged rats:comparison between left and right ventricular adaptations to oxidative stress.J Comp Physiol[B],2006,176(8):749-762.
    [3]Cordova,A.,Gimenez,M.,Escanero,J.F.Changes of plasma zinc and copper at various times of swimming until exhaustion,in the rat.J Trace Elem Electrolytes Health Dis,1990,4(3):189-192.
    [4]Leme,J.A.,Gomes,R.J.,de Mello,M.A.,et al.Moderate physical training increases brain insulin concentrations in experimental diabetic rats.Indian J Exp Biol,2008,46(6):443-446.
    [5]Peijie,C.,Zicai,D.,Haowen,X.,et al.Effects of chronic and acute training on glucocorticoid receptors concentrations in rats.Life Sci,2004,75(11):1303-1311.
    [6]Rogero,M.M.,Tirapegui,J.,Pedrosa,R.G.,et al.Effect of alanyl-glutamine supplementation on plasma and tissue glutamine concentrations in rats submitted to exhaustive exercise.Nutrition,2006,22(5):564-571.
    [7]Voltarelli,F.A.,Gobatto,C.A.,de Mello,M.A.Determination of anaerobic threshold in rats using the lactate minimum test.Braz J Med Biol Res,2002,35(11):1389-1394.
    [8]McNicol,A.J.,O'Brien,B.J.,Paton,C.D.,et al.The effects of increased absolute training intensity on adaptations to endurance exercise training.J Sci Med Sport,2008:Article in Press.
    [9]Cam,S.,Colakoglu,M.,Colakoglu,S.,et al.ACE I/D gene polymorphism and aerobic endurance development in response to training in a non-elite female cohort.J Sports Med Phys Fitness,2007,47(2):234-238.
    [10]丁树哲,许豪文.运动与δ-氨基-γ-酮戊酸合成酶的调节作用.中国运动医学杂志,1998,17(1):1.
    [11]Town,G.P.,Essig,D.A.Cytochrome oxidase in muscle of endurance-trained rats:subunit mRNA contents and heme synthesis.J Appl Physiol,1993,74(1): 192-196.
    [12]Essig,D.A.,Kennedy,J.M.,McNabney,L.A.Regulation of 5'-aminolevulinate synthase activity in overloaded skeletal muscle.Am J Physiol,1990,259(2 Pt 1):C310-314.
    [13]Takahashi,M.,McCurdy,D.T.,Essig,D.A.,et al.delta-Aminolaevulinate synthase expression in muscle after contractions and recovery.Biochem J,1993,291(Pt 1):219-223.
    [14]Leick,L.,Wojtaszewski,J.F.,Johansen,S.T.,et al.PGC-lalpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle.Am J Physiol Endocrinol Metab,2008,294(2):E463-474.
    [15]Booth,F.W.,Holloszy,J.O.Cytochrome c turnover in rat skeletal muscles.J Biol Chem,1977,252(2):416-419.
    [16]Mahoney,D.J.,Parise,G.,Melov,S.,et al.Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise.FASEB J,2005,19(11):1498-1500.
    [17]Duca,L.,Da Ponte,A.,Cozzi,M.,et al.Changes in erythropoiesis,iron metabolism and oxidative stress after half-marathon.Intern Emerg Med,2006,1(1):30-34.
    [18]Roecker,L.,Kowoll,R.,Fraszl,W.,et al.Observation of serum erythropoietin concentrations in female athletes for up to eight days after a marathon run.Clin Lab,2006,52(9-10):511-513.
    [19]Robach,P.,Schmitt,L.,Brugniaux,J.V.,et al.Living high-training low:effect on erythropoiesis and maximal aerobic performance in elite Nordic skiers.Eur J Appl Physiol,2006,97(6):695-705.
    [20]Wehrlin,J.P.,Zuest,P.,Hallen,J.,et al.Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes.J Appl Physiol,2006,100(6):1938-1945.
    [21]陈福刁,陈浩庆,王翔.低氧暴露对运动性血红蛋白低下游泳运动员红细胞参数和epo变化的影响.韩山师范学院学报,2007,28(06):67-71.
    [22]Kirsch,K.A.,Schlemmer,M.,De Santo,N.G.,et al.Erythropoietin as a volume-regulating hormone:an integrated view.Semin Nephrol,2005,25(6):388-391.
    [23]傅兰英,柴家林,张志生.“耐保力”制剂强化饲料对大白鼠血红蛋白与微量元素影响的实验研究.北京体育大学学报,2000,23(01):62-63.
    [24]刘瑾彦.五周递增负荷运动及补充谷氨酰胺对青年大学生血红蛋白含量的影响.福建体育科技,2008,27(01):27-28,35.
    [25]熊正英,唐量.芦荟对运动训练小鼠血清酶活性和血尿素氮、血糖及血红蛋白含量的影响.陕西师范大学学报(自然科学版),2004,32(02):90-92.
    [26]张建华,李涛.补充肌酸对少年跨栏运动员血红蛋白及运动成绩的影响.福建体育科技,2003,22(02):32-33.
    [27]Suzuki,K.,Nakaji,S.,Yamada,M.,et at Systemic inflammatory response to exhaustive exercise.Cytokine kinetics.Exerc Immunol Rev,2002,8:6-48.
    [28]胡柏平,魏杨玲,熊正英等.古典跤运动员亚高原训练血红蛋白变化规律探讨.体育与科学,2001,22(02):60-61.
    [29]庞程.冬训期间服用运动营养补剂对血红蛋白和血尿素的影响.游泳,2004,(06):24-26.
    [30]齐建民,李跃生,郭蓓蓓等.对少年女子游泳运动员血红蛋白、无氧阈、有氧能力随月经周期呈规律性变化的研究.中国体育科技,2000,36(08):29-30,封三.
    [31]陈影红,陈雪琼.广州市青少年田径运动员血红蛋白的调查研究.解放军体育学院学报,1999,18(03):48-52.
    [32]朱苏平.血红蛋白指标在少年男子柔道运动员业余训练中的运用.南京体育学院学报(自然科学版),2005,4(04):56-57,70.
    [33]邓运龙,黄世林,王晓波等.军事五项运动员血红蛋白水平及其对运动能力影响的实验研究.军事体育进修学院学报,2006,25(02):110-113.
    [34]张丽芳,周越,何文革等.血红蛋白和血尿素指标在运动员机能评定中的比较研究.沈阳体育学院学报,2002,(02):12,59.
    [35]Wilkerson,D.P.,Rittweger,J.,Berger,N.J.,et al.Influence of recombinant human erythropoietin treatment on pulmonary 02 uptake kinetics during exercise in humans.J Physiol,2005,568(Pt 2):639-652.
    [36]冯春.中长跑运动员运动性血红蛋白下降和运动性贫血的诊断及其营养恢复的探讨.田径,2004,(11):56-57.
    [37]李丽.运动性低血红蛋白形成过程中递增负荷跑台运动对大鼠红细胞及网织红细胞参数影响的研究.北京体育大学学报,2007,30(03):356-359.
    [38]Walls,J.,Maskrey,M.,Wood-Baker,R.,et al.Exercise-induced oxyhaemoglobin desaturation,ventilatory limitation and lung diffusing capacity in women during and after exercise.Eur J Appl Physiol,2002,87(2):145-152.
    [1]Otawa,M.,Arai,H.,Atomi,Y.Molecular aspects of adrenal regulation for circadian glucocorticoid synthesis by chronic voluntary exercise.Life Sci,2007,80(8):725-731.
    [2]Droste,S.K.,Chandramohan,Y.,Hill,L.E.,et al.Voluntary exercise impacts on the rat hypothalamic-pituitary-adrenocortical axis mainly at the adrenal level.Neuroendocrinology,2007,86(1):26-37.
    [3]颜军,毛文忠,翟一飞,et al.中小负荷运动对心理应激大鼠beta-内啡肽和皮质酮的影响.中国心理卫生杂志,2007,21(4):219-222.
    [4]颜军,尹剑春,翟一飞,et al.中小负荷运动对心理应激大鼠免疫功能若干指标的影响.体育与科学,2005,26(2):55-59.
    [5]陈英杰.中小负荷运动对心理应激大鼠血清皮质酮il-2的影响.连云港职业技术学院学报,2004,17(1):50-52.
    [6]马强,陈学伟,王静,等.运动对大鼠海马长时程增强效应及其相关因子的影响.中国运动医学杂志,2008,27(4):451-453.
    [7]Brown,D.A.,Johnson,M.S.,Armstrong,C.J.,et al.Short-term treadmill running in the rat:what kind of stressor is it? J Appl Physiol,2007,103(6):1979-1985.
    [8]de Graaf-Roelfsema,E.,Keizer,H.A.,van Breda,E.,et al.Hormonal responses to acute exercise,training and overtraining.A review with emphasis on the horse.Vet Q,2007,29(3):82-101.
    [9]Yanagita,S.,Amemiya,S.,Suzuki,S.,et al.Effects of spontaneous and forced running on activation of hypothalamic corticotropin-releasing hormone neurons in rats.Life Sci,2007,80(4):356-363.
    [10]李宁川,王金玉,黄美蓉.运动训练对应激大鼠下丘脑CRH mRNA的影响.中国体育科技,2006,42(5):82-84,107.
    [11]Agarwal,A.,Halvorson,L.M.,Legradi,G.Pituitary adenylate cyclase-activating polypeptide(PACAP) mimics neuroendocdne and behavioral manifestations of stress:Evidence for PKA-mediated expression of the corticotropin-releasing hormone(CRH) gene.Brain Res Mol Brain Res,2005,138(1):45-57.
    [12]Park,E.,Chan,O.,Li,Q.,et al.Changes in basal hypothalamo-pituitary-adrenal activity during exercise training are centrally mediated.Am J Physiol Regul Integr Comp Physiol,2005,289(5):R1360-1371.
    [13]崔玉鹏,张凡,王保成,等.大负荷运动训练与模拟失重对大鼠hpa轴影响的对比研究.中国运动医学杂志,2008,27(1):90-92.
    [14]赵虎,杨德森,等.皮质类固醇受体系统对中枢应激反应的调节.国外医学:精神病学分册,2003,30(1):55-59.
    [15]Mantseh,J.R.,Taves,S.,Khan,T.,et al.Restraint-induced corticosterone secretion and hypothalamic CRH mRNA expression are augmented during acute withdrawal from chronic cocaine administration.Neurosci Lett,2007,415(3):269-273.
    [16]Makino,S.,Tanaka,Y.,Nazarloo,H.P.,et al.Expression of type 1cortieotropin-releasing hormone(CRH) receptor mRNA in the hypothalarnic paraventricular nucleus following restraint stress in CRH-defieient mice.Brain Res,2005,1048(1-2):131-137.
    [17]马丽莉,万顺伦.应激启动下丘脑.垂体.肾上腺轴信号转导机制的实验研究.实用医药杂志(山东),2006,23(12):1474-1476.
    [18]黄永畅,庄偃红.论科学中的“趋同效应”和“同源辐散”.大自然探索,1999,18(2):94-97.
    [19]Droste,S.K.,Gesing,A.,Ulbricht,S.,et al.Effects of long-term voluntary exercise on the mouse hypothalamic-pituitary-adrenoeortieal axis.Endocrinology,2003,144(7):3012-3023.
    [20]Fediuc,S.,Campbell,J.E.,Riddell,M.C.Effect of voluntary wheel running on circadian corticosterone release and on HPA axis responsiveness to restraint stress in Sprague-Dawley rats.J Appl Physiol,2006,100(6):1867-1875.
    [21]Raastad,T.,Bjoro,T.,Hallen,J.Hormonal responses to high- and moderate-intensity strength exercise.Eur J Appl Physiol,2000,82(1-2):121-128.
    [22]Roea,C.A.,Schmidt,P.J.,Deuster,P.A.,et al.Sex-related differences in stimulated hypothalamic-pituitary-adrenal axis during induced gonadal suppression.J Clin Endocrinol Metab,2005,90(7):4224-4231.
    [23]Luger,A.,Deuster,P.A.,Kyle,S.B.,et al.Acute hypothalamic-pituitary-adrenal responses to the stress of treadmill exercise.Physiologic adaptations to physical training.N Engl J Med,1987,316(21):1309-1315.
    [24]Contarteze,R.V.,Manehado Fde,B.,Gobatto,C.A.,et al.Stress biomarkers in rats submitted to swimming and treadmill running exercises.Comp Biochem Physiol A Mol Integr Physiol,2008,151(3):415-422.
    [25]Adamec,R.,Kent,P.,Anisman,H.,et al.Neural plasticity,neuropeptides and anxiety in animals-implications for understanding and treating affective disorder following traumatic stress in humans.Neurosci Biobehav Rev,1998,23(2):301-318.
    [26]崔冬雪.游泳锻炼对实验性抑郁症大鼠神经内分泌及行为学的影响[D].华 东师范大学,2005.
    [27]Kawashima,H.,Saito,T.,Yoshizato,H.,et al.Endurance treadmill training in rats alters CRH activity in the hypothalamic paraventricular nucleus at rest and during acute running according to its period.Life Sci,2004,76(7):763-774.
    [28]Hayes,K.,Sprague,S.,Guo,M.,et al.Forced,not voluntary,exercise effectively induces neuroprotection in stroke.Aeta Neuropathol,2008,115(3):289-296.
    [29]Ploughman,M.Exercise is brain food:the effects of physical activity on cognitive function.Dev Neurorehabil,2008,11(3):236-240.
    [30]Christie,B.R.,Eadie,B.D.,Kannangara,T.S.,et al.Exercising our brains:how physical activity impacts synaptic plasticity in the dentate gyrus.Neuromolecular Med,2008,10(2):47-58.
    [31]Maliseh,J.L.,Saltzman,W.,Gomes,F.R.,et al.Baseline and stress-induced plasma corticosterone concentrations of mice selectively bred for high voluntary wheel running.Physiol Biochem Zool,2007,80(1):146-156.
    [32]Paredes,S.D.,Sanchez,S.,Parvez,H.,et al.Altered circadian rhythms of corticosterone,melatonin,and phagocytic activity in response to stress in rats.Neuro Endocrinol Lett,2007,28(4):489-495.
    [33]廖鹏,张勇,郑念军,等.耐力训练对青少年运动员最大摄氧量和动脉血酮体比的影响.中国运动医学杂志,2006,25(1).
    [34]陈佩杰,许豪文,段子才,等.运动过程中糖皮质激素受体的变化.上海体育学院学报,2002,26(1):33-36,42.
    [35]李福平,高凌云,肖颖彬.大鼠慢性多重应激模型的建立.现代生物医学进展.2008,8(1):27-29.
    [36]Li,J.,Wang,J.,Zhao,D.,et al.[Experimental navigation and deuteroexhaustive exercise suppress the function of the hypothalamic-pituitary-testicle axis in rats].Zhonghua Nan Ke Xue,2008,14(1):58-61.
    [37]Okinaka,S.,Ibayashi,H.,Motohashi,K.,et al.Effect of electrical stimulation of the limbic system on pituitary-adrenocortical function:posterior orbital surface.Endocrinology,1960,67:319-324.
    [38]Kawakami,M.,Koshino,T.,Hattori,Y.Changes in the EEG of the hypothalamus and limbic system after administration of ACTH,SU-4885 and ACH in rabbits with special reference to neurohumoral feedback regulation of pituitary-adrenal system.Jpn J Physiol,1966,16(5):551-569.
    [39]Frankel,R.J.,Jenkins,J.S.,Wright,J.J.Pituitary-adrenal response to stimulation of the limbic system and lateral hypothalamus in the rhesus monkey(Macacca mulatta).Acta Endocrinol(Copenh),1978,88(2):209-216.
    [40]Dunn,J.D.,Orr,S.E.Differential plasma corticosterone responses to hippocampal stimulation.Exp Brain Res,1984,54(1):1-6.
    [4I]Chen,M.,He,M.,Jiang,X.[Effects of glutamate,glutamate receptor in limbic system and hypothalamus on hypothalamus-pituitary-adrenal axis after rats MCAO].Zhonghua Yi Xue Za Zhi,1998,78(7):547-550.
    [42]He,M.,Chen,M.,Wang,J.,et al.Relationship between glutamate in the limbic system and hypothalamus-pituitary-adrenal axis after middle cerebral artery occlusion in rats.Chin Med J(Engl),2003,116(10):1492-1496.
    [1]Chaudhury,D.,Wang,L.M.,Colwell,C.S.Circadian regulation of hippocampal long-term potentiation.J Biol Rhythms,2005,20(3):225-236.
    [2]van de Stolpe,A.,Slycke,A.J.,Reinders,M.O.,et al.Estrogen receptor (ER)-mediated transcriptional regulation of the human corticotropin-releasing hormone-binding protein promoter:differential effects of ERalpha and ERbeta.Mol Endocrinol,2004,18(12):2908-2923.
    [3]汪家政,范明.蛋白质技术手册.北京:科学出版社,2000.
    [4]Aizawa,K.,Iemitsu,M.,Otsuki,T.,et al.Sex differences in steroidogenesis in skeletal muscle following a single bout of exercise in rats.J Appl Physiol,2008,104(1):67-74.
    [5]Valimaki,V.V.,Alfthan,H.,Lehmuskallio,E.,et al.Risk factors for clinical stress fractures in male military recruits:a prospective cohort study.Bone,2005,37(2):267-273.
    [6]Hawkins,V.N.,Foster-Schubert,K.,Chubak,J.,et al.Effect of exercise on serum sex hormones in men:a 12-month randomized clinical trial.Med Sci Sports Exerc,2008,40(2):223-233.
    [7]Valimaki,V.V.,Alfthan,H.,Ivaska,K.K.,et al.Serum estradiol,testosterone,and sex hormone-binding globulin as regulators of peak bone mass and bone turnover rate in young Finnish men.J Clin Endocrinol Metab,2004,89(8):3785-3789.
    [8]Remes,T.,Vaisanen,S.B.,Mahonen,A.,et al.Aerobic exercise and bone mineral density in middle-aged finnish men:a controlled randomized trial with reference to androgen receptor,aromatase,and estrogen receptor alpha gene polymorphisms small star,filled.Bone,2003,32(4):412-420.
    [9]Garcia-Segura,L.M.,Wozniak,A.,Azcoitia,I.,et al.Aromatase expression by astrocytes after brain injury:implications for local estrogen formation in brain repair.Neuroscience,1999,89(2):567-578.
    [10]Jonsson,D.,Nilsson,J.,Odenlund,M.,et al.Demonstration of mitochondrial oestrogen receptor beta and oestrogen-induced attenuation of cytochrome c oxidase subunit I expression in human periodontal ligament cells.Arch Oral Biol,2007,52(7):669-676.
    [11]Aquila,S.,Sisci,D.,Gentile,M.,et al.Estrogen receptor(ER)alpha and ER beta are both expressed in human ejaculated spermatozoa:evidence of their direct interaction with phosphatidylinositol-3-OH kinase/Akt pathway.J Clin Endocrinol Metab,2004,89(3):1443-1451.
    [12]Perez,S.E.,Chen,E.Y.,Mufson,E.J.Distribution of estrogen receptor alpha and beta immunoreactive profiles in the postnatal rat brain.Brain Res Dev Brain Res,2003,145(1):117-139.
    [13]Li,D.,Han,X.[The effect of estrogens on male reproduction].Zhonghua Nan Ke Xue,2004,10(3):211-214.
    [14]卢宏,宋志宇,姜晓蕊,et al.17-β雌二醇对血管性痴呆大鼠认知功能和神经营养因子表达的影响.中风与神经疾病杂志,2006,23(5):600-603.
    [15]Sarkar,S.N.,Huang,R.Q.,Logan,S.M.,et al.Estrogens directly potentiate neuronal L-type Ca2+ channels.Proc Natl Acad Sci U S A,2008,105(39):15148-15153.
    [16]Gu,Q.,Korach,K.S.,Moss,R.L.Rapid action of 17beta-estradiol on kainate-induced currents in hippocampal neurons lacking intracellular estrogen receptors.Endocrinology,1999,140(2):660-666.
    [17]Tiidus,P.M.,Bombardier,E.Oestrogen attenuates post-exercise myeloperoxidase activity in skeletal muscle of male rats.Acta Physiol Scand,1999,166(2):85-90.
    [18]Liu,B.,Dluzen,D.E.Effect of estrogen upon methamphetamine-induced neurotoxicity within the impaired nigrosh-iatal dopaminergic system.Synapse,2006,60(5):354-361.
    [19]Liu,B.,Dluzen,D.E.Effects of estrogen and related agents upon methamphetamine-induced neurotoxicity within an impaired nigrostriatal dopaminergic system of ovariectomized mice.Neuroendocrinology,2006,83(5-6):295-302.
    [20]Ferraz,A.C.,Matheussi,F.,Szawka,R.E.,et al.Evaluation of estrogen neuroprotective effect on nigrostriatal dopaminergic neurons following 6-hydroxydopamine injection into the substantia nigra pars compacta or the medial forebrain bundle.Neurochem Res,2008,33(7):1238-1246.
    [21]Dai,X.,Chen,L.,Sokabe,M.Neurosteroid estradiol rescues ischemia-induced deficit in the long-term potentiation of rat hippocampal CA1 neurons.Neuropharmacology,2007,52(4):1124-1138.
    [22]Sarkaki,A.,Badavi,M.,Hoseiny,N.,et al.Postmenopausal effects of intrastriatal estrogen on catalepsy and pallidal electroencephalogram in an animal model of Parkinson's disease.Neuroscience,2008,154(3):940-945.
    [23]Tripaniehkul,W.,Jaroensuppaperch,E.O.,Finkelstein,D.I.Estrogen enhances the number of nigral dopaminergie neurons of adult male mice without affecting nigral neuroglial number and morphology.Neurosci Lett,2008,435(3):210-214.
    [24]Rodriguez-Navarro,J.A.,Solano,R.M.,Casarejos,M.J.,et al.Gender differences and estrogen effects in parkin null mice.J Neurochem,2008,106(5):2143-2157.
    [25]Ookubo,M.,Yokoyama,H.,Takagi,S.,et al.Effects of estrogens on striatal damage after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)neurotoxicity in male and female mice.Mol Cell Endocrinol,2008.
    [26]Alyea,R.A.,Laurence,S.E.,Kim,S.H.,et al.The roles of membrane estrogen receptor subtypes in modulating dopamine transporters in PC-12 cells.J Neurochem,2008,106(4):1525-1533.
    [27]Zhang,D.,Yang,S.,Yang,C.,et al.Estrogen regulates responses of dopamine neurons in the ventral tegrnental area to cocaine.Psychopharmacology(Berl),2008,199(4):625-635.
    [28]Dhir,A.,Kulkarni,S.K.Antidepressant-like effect of 17beta-estradiol:involvement of dopaminergic,serotonergic,and(or) sigma-1 receptor systems.Can J Physiol Pharmacol,2008,86(10):726-735.
    [29]Cushing,B.S.,Perry,A.,Musatov,S.,et al.Estrogen receptors in the medial amygdala inhibit the expression of male prosocial behavior.J Neurosci,2008,28(41):10399-10403.
    [30]吴乐,陈文军.雌激素的神经保护作用及其机理.神经解剖学杂志,2005,21(1):95-97.
    [31] Suzuki, S., Brown, C.M., Wise, P.M. Mechanisms of neuroprotection by estrogen. Endocrine, 2006,29(2): 209-215.
    [32] Mong, J.A., McCarthy, M.M. Steroid-induced developmental plasticity in hypothalamic astrocytes: implications for synaptic patterning. J Neurobiol, 1999,40(4): 602-619.
    [33] Patrone, C, Pollio, G., Vegeto, E., et al. Estradiol induces differential neuronal phenotypes by activating estrogen receptor alpha or beta. Endocrinology, 2000, 141(5): 1839-1845.
    [34] Woolley, C.S., Weiland, N.G., McEwen, B.S., et al. Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells to NMD A receptor-mediated synaptic input: correlation with dendritic spine density. J Neurosci, 1997, 17(5): 1848-1859.
    [35] White-Welkley, J.E., Warren, G.L., Bunnell, B.N., et al. Treadmill exercise training and estradiol increase plasma ACTH and prolactin after novel footshock. J Appl Physiol, 1996, 80(3): 931-939.
    [36] Kuo, J., Hariri, O.R., Bondar, G., et al. Membrane Estrogen Receptor-Alpha Interacts with Metabotropic Glutamate Receptor la to Mobilize Intracellular Calcium in Hypothalamic Astrocytes. Endocrinology, 2008.
    [37] Hu, L., Gustofson, R.L., Feng, H., et al. Converse regulatory functions of estrogen receptor-alpha and -beta subtypes expressed in hypothalamic gonadotropin-releasing hormone neurons. Mol Endocrinol, 2008, 22(10): 2250-2259.
    [38] Rudd, C.D., Short, R.V., McFarlane, J.R., et al. Sexual differentiation of oestradiol-LH positive feedback in a marsupial. J Reprod Fertil, 1999, 115(2): 269-274.
    [39] Goh, V.H., Lee, K.O. Does a positive oestrogen feedback on the hypothalamic-pituitary axis exist concurrently with a defective testosterone feedback in Klinefelter's syndrome? Horm Res, 1998, 50(3): 160-165.
    [40] Rooney, T.P., Kendrick, Z.V., Carlson, J., et al. Effect of estradiol on the temporal pattern of exercise-induced tissue glycogen depletion in male rats. J Appl Physiol, 1993, 75(4): 1502-1506.
    [41] Smith, CL. Cross-talk between peptide growth factor and estrogen receptor signaling pathways. Biol Reprod, 1998, 58(3): 627-632.
    [42] Filipovic, D., Gavrilovic, L., Dronjak, S., et al. The effect of repeated physical exercise on hippocampus and brain cortex in stressed rats.Ann N Y Acad Sci,2007,1096:207-219.
    [43]杜喆,韩芳,石玉秀.Ptsd样大鼠海马mr和gr变化的研究.中国组织化学与细胞化学杂志,2007,16(6):695-700.
    [44]陈佩杰,许豪文,段子才,等.运动过程中糖皮质激素受体的变化.上海体育学院学报,2002,26(1):33-36,42.
    [45]陈佩杰,许豪文,段子才,等.运动过程中糖皮质激素受体减少的机制探讨-GR mRNA的变化.中国运动医学杂志,2002,21(2):156.160,130.
    [46]Lupien,S.J.,McEwen,B.S.The acute effects of corticosteroids on cognition:integration of animal and human model studies.Brain Res Brain Res Rev,1997,24(1):1-27.
    [47]叶建宁,陆建华,熊加祥.海马nmda受体调节严重烫伤应激后hpa轴兴奋性的相关机制研究.中华神经医学杂志,2006,5(10):982-985.
    [48]Gomez,F.,Lahmame,A.,de Kloet,E.R.,et al.Hypothalamic-pituitary-adrenal response to chronic stress in five inbred rat strains:differential responses are mainly located at the adrenocortical level.Neuroendocrinology,1996,63(4):327-337.
    [49]Ploughman,M.Exercise is brain food:the effects of physical activity on cognitive function.Dev Neurorehabil,2008,11(3):236-240.
    [50]马强,陈学伟,王静,等.运动对大鼠海马长时程增强效应及其相关因子的影响.中国运动医学杂志,2008,27(4):451-453.
    [51]Hayes,K.,Sprague,S.,Guo,M.,et al.Forced,not voluntary,exercise effectively induces neuroprotection in stroke.Acta Neuropathol,2008,115(3):289-296.
    [52]Jian-Zheng,Z.,Yong-Xiang,Z.,Jin-Huang,Z.Increased corticosterone levels in plasma and hippocampus and their relationship with hippocampal ATP depletion in senescence accelerated mice.Chinese Journal of Pharmacology.and Toxicology,1988,12(1):12-15.
    [53]Haaek,D.,Luu,H.,Cho,J.,et al.Exercise reverses chronic stress-induced Bax oligomer formation in the cerebral cortex.Neurosci Lett,2008,438(3):290-294.
    [54]Ekstrand,J.,Hellsten,J.,Tingstrom,A.Environmental enrichment,exercise and corticosterone affect endothelial cell proliferation in adult rat hippocampus and prefrontal cortex.Neurosci Lett,2008,442(3):203-207.
    [55]Christie,B.R.,Eadie,B.D.,Kannangara,T.S.,et al.Exercising our brains:how physical activity impacts synaptic plasticity in the dentate gyrus.Neuromolecular Med,2008,10(2):47-58.
    [56]Fediuc,S.,Campbell,J.E.,Riddell,M.C.Effect of voluntary wheel running on circadian corticosterone release and on HPA axis responsiveness to restraint stress in Sprague-Dawley rats.J Appl Physiol,2006,100(6):1867-1875.
    [57]Farmer,J.,Zhao,X.,van Praag,H.,et al.Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyms of adult male Sprague-Dawley rats in vivo.Neuroscience,2004,124(1):71-79.
    [58]Christie,B.R.,Swann,S.E.,Fox,C.J.,et al.Voluntary exercise rescues deficits in spatial memory and long-term potentiation in prenatal ethanol-exposed male rats.Eur J Neurosci,2005,21(6):1719-1726.
    [59]Radecki,D.T.,Brown,L.M.,Martinez,J.,et al.BDNF protects against stress-induced impairments in spatial learning and memory and LTP.Hippocampus,2005,15(2):246-253.
    [60]陆建华,粟永萍,王明海.烧伤后小鼠海马糖皮质激素受体的变化.中国临床康复,2004,8(23):4765-4767.
    [61]郭碧花.活性氧诱导细胞凋亡作用机理的研究进展.川北医学院学报,2002,17(4):166-169.
    [62]O'eill,L.A.,Kaltschmidt,C.NF-kappa B:a crucial transcription factor for glial and neuronal cell function.Trends Neurosci,1997,20(6):252-258.
    [63]杨志华.脑内nf-κb及其病理生理学意义.国外医学:生理病理科学与临床分册,2000,20(6):504-506.
    [64]Auphan,N.,DiDonato,J.A.,Rosette,C.,et al.Immunosuppression by glucocorticoids:inhibition of NF-kappa B activity through induction of I kappa B synthesis.Science,1995,270(5234):286-290.
    [65]Lu,Y.S.,Yeh,P.Y.,Chuang,S.E.,et al.Glucocorticoids enhance cytotoxicity of cisplatin via suppression of NF-{kappa}B activation in the glucocorticoid receptor-rich human cervical carcinoma cell line SiHa.J Endocrinol,2006,188(2):311-319.
    [66]Doucas,V.,Shi,Y.,Miyamoto,S.,et al.Cytoplasmic catalytic subunit of protein kinase A mediates cross-repression by NF-kappa B and the glucocorticoid receptor.Proc Natl Acad Sci U S A,2000,97(22):11893-11898.
    [67]Brostjan,C.,Anrather,J.,Csizmadia,V.,et al.Glucocorticoid-mediated repression of NFkappaB activity in endothelial cells does not involve induction of IkappaBalpha synthesis.J Biol Chem,1996,271(32):19612-19616.
    [68]Ray,A.,Prefontaine,K.E.Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor.Proc Natl Acad Sci U S A,1994,91(2):752-756.
    [69]Ji,L.,Arcinas,M.,Boxer,L.M.NF-kappa B sites function as positive regulators of expression of the translocated c-myc allele in Burkitt's lymphoma.Mol Cell Biol,1994,14(12):7967-7974.
    [70]La Rosa,F.A.,Pierce,J.W.,Sonenshein,G.E.Differential regulation of the c-myc oncogene promoter by the NF-kappa B rel family of transcription factors.Mol Cell Biol,1994,14(2):1039-1044.
    [71]Kessler,D.J.,Duyao,M.P.,Spicer,D.B.,et aL NF-kappa B-like factors mediate interleukin 1 induction of c-myc gene transcription in fibroblasts.J Exp Med,1992,176(3):787-792.
    [72]Bylund,J.,MacDonald,K.L.,Brown,K.L.,et al.Enhanced inflammatory responses of chronic granulomatous disease leukocytes involve ROS-independent activation of NF-kappa B.Eur J Immunol,2007,37(4):1087-1096.
    [73]Peng,Y.,Kwok,K.H.,Yang,P.H.,et al.Ascorbic acid inhibits ROS production,NF-kappa B activation and prevents ethanol-induced growth retardation and microencephaly.Neuropharmacology,2005,48(3):426-434.
    [74]Kanda,K.,Hu,H.M.,Zhang,L.,et aL NF-kappa B activity is required for the deregulation of c-myc expression by the immunoglobulin heavy chain enhancer.J Biol Chem,2000,275(41):32338-32346.
    [75]Clemens,J.A.,Stephenson,D.T.,Dixon,E.P.,et al.Global cerebral ischemia activates nuclear factor-kappa B prior to evidence of DNA fragmentation.Brain Res Mol Brain Res,1997,48(2):187-196.
    [76]程大丽,乔宠,张淑兰,et al.γ干扰素对肿瘤坏死因子α诱导子宫颈癌Hela 细胞凋亡及核因子κB活化的影响.中华妇产科杂志,2005,40(5):353-354.
    [77]Ueno,T.,Sawa,Y.,Kitagawa-Sakakida,S.,et al.Nuclear factor-kappa B decoy attenuates neuronal damage after global brain ischemia:a furore strategy for brain protection during circulatory arrest.J Thorac Cardiovasc Surg,2001,122(4):720-727.
    [78]Banan,A.,Farhadi,A.,Fields,J.Z.,et al.Evidence that nuclear factor-kappa B activation is critical in oxidant-induced disruption of the microtubule cytoskeleton and barrier integrity and that its inactivation is essential in epidermal growth factor-mediated protection of the monolayers of intestinal epithelia. J Pharmacol Exp Ther, 2003, 306(1): 13-28.
    
    [79] Liuwantara, D., Elliot, M., Smith, M.W., et al. Nuclear factor-kappaB regulates beta-cell death: a critical role for A20 in beta-cell protection. Diabetes, 2006, 55(9): 2491-2501.
    
    [80] Tahera, Y., Meltser, I., Johansson, P., et al. Glucocorticoid receptor and nuclear factor-kappa B interactions in restraint stress-mediated protection against acoustic trauma. Endocrinology, 2006,147(9): 4430-4437.
    
    [81] Chen, C.H., Chuang, J.H., Liu, K., et al. NITRIC OXIDE TRIGGERS DELAYED ANESTHETIC PRECONDITIONING-INDUCED CARDIAC PROTECTION VIA ACTIVATION OF NUCLEAR FACTOR-kappaB AND UPREGULATION OF INDUCIBLE NITRIC OXIDE SYNTHASE. Shock,2008.
    
    [82] Delgado, M., Ganea, D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit expression of Fas ligand in activated T lymphocytes by regulating c-Myc, NF-kappa B, NF-AT, and early growth factors 2/3. J Immunol, 2001,166(2): 1028-1040.
    
    [83] Pham, C.G., Bubici, C., Zazzeroni, F., et al. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell, 2004,119(4): 529-542.
    
    [84] Griendling, K.K., Sorescu, D., Lassegue, B., et al. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol, 2000, 20(10): 2175-2183.
    [1]Nair,S.M.,Werkman,T.R.,Craig,J.,et al.Corticosteroid regulation of ion channel conductances and mRNA levels in individual hippocampal CA1neurons.J Neurosci,1998,18(7):2685-2696.
    [2]Levenson,C.W.Regulation of the NMDA receptor:implications for neuropsychological development.Nutr Rev,2006,64(9):428-432.
    [3]韩太真,李延海.Nmda受体的结构与药理学特性.心理科学进展,2008,16(3):464-474.
    [4]白宝丰,张蕴琨.力竭运动后大鼠脑皮质运动区谷氨酸受体nr2a蛋白含量及 酪氨酸磷酸化水平的变化.中国运动医学杂志,2005,24(4):400-403。433.
    [5]张建军.耐力训练及力竭运动后大鼠海马CAl区神经元形态学、N-甲基-D-天冬氨酸受体及突触体素的变化.郑州大学学报(医学版),2008,43(5):881-884.
    [6]Biondi,O.,Grondard,C.,Lecolle,S.,et al.Exercise-induced activation of NMDA receptor promotes motor unit development and survival in a type 2 spinal muscular atrophy model mouse.J Neurosci,2008,28(4):953-962.
    [7]Kitamura,T.,Mishina,M.,Sugiyama,H.Enhancement of neurogenesis by running wheel exercises is suppressed in mice lacking NMDA receptor epsilon 1 subunit.Neurosci Res,2003,47(1):55-63.
    [8]Lou,S.J.,Liu,J.Y.,Chang,H.,et al.Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats.Brain Res,2008,1210:48-55.
    [9]Cyr,M.,Ghribi,O.,Di Paolo,T.Regional and selective effects of oestradiol and progesterone on NMDA and AMPA receptors in the rat brain.J Neuroendocrinol,2000,12(5):445-452.
    [10]Cyr,M.,Thibault,C.,Morissette,M.,et al.Estrogen-like activity of tamoxifen and raloxifene on NMDA receptor binding and expression of its subunits in rat brain.Neuropsychopharmacology,2001,25(2):242-257.
    [11]van Praag,H.,Christie,B.R.,Sejnowski,T.J.,et al.Running enhances neurogenesis,learning,and long-term potentiation in mice.Proc Natl Acad Sci U S A,1999,96(23):13427-13431.
    [12]Eadie,B.D.,Redila,V.A.,Christie,B.R.Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation,dendritic complexity,and spine density.J Comp Neurol,2005,486(1):39-47.
    [13]Stranahan,A.M.,Khalil,D.,Gould,E.Running induces widespread structural alterations in the hippocampus and entorhinal cortex.Hippocampus,2007,17(11):1017-1022.
    [14]Fox,C.J.,Russell,K.,Tittemess;A.K.,et al.Tyrosine phosphorylation of the GluR2 subunit is required for long-term depression of synaptic efficacy in young animals in vivo.Hippocampus,2007,17(8):600-605.
    [15]Vasuta,C.,Caunt,C.,James,R.,et al.Effects of exercise on NMDA receptor subunit contributions to bidirectional synaptie plasticity in the mouse dentate gyrus.Hippocampus,2007,17(12):1201-1208.
    [16]Christie,B.R.,Eadie,B.D.,Kannangara,T.S.,et al.Exercising our brains:how physical activity impacts synaptic plasticity in the dentate gyrus.Neuromolecular Med,2008,10(2):47-58.
    [17]Akhavan,M.M.,Emami-Abarghoie,M.,Safari,M.,et al.Serotonergic and noradrenergic lesions suppress the enhancing effect of maternal exercise during pregnancy on learning and memory in rat pups.Neuroscience,2008,151(4):1173-1183.
    [18]Lee,S.D.,Nakano,H.,Farkas,G.A.NMDA receptor-mediated modulation of ventilation in obese Zucker rats.Int J Obes Relat Metab Disord,2001,25(7):997-1004.
    [19]周晖,孙小妹,罗小丽,等.钙及钙调蛋白依赖性激酶在神经元缺氧损伤中的作用.中国当代儿科杂志,2007,9(4):324-326.
    [20]叶建宁,陆建华,熊加祥.海马nmda受体调节严重烫伤应激后hpa轴兴奋性的相关机制研究.中华神经医学杂志,2006,5(10):982-985.
    [21]陆建华,粟永萍,王明海.烧伤后小鼠海马糖皮质激素受体的变化.中国临床康复,2004,8(23):4765-4767.
    [22]Ang,E.S.,Zhang,P.,Steer,J.H.,et al.Calcium/calmodulin-dependent kinase activity is required for efficient induction of osteoclast differentiation and bone resorption by receptor activator of nuclear factor kappa B ligand(RANK.L).J Cell Physiol,2007,212(3):787-795.
    [23]Scales,E.C.,Micoli,K.J.,McDonald,J.M.Calmodulin is a crfical regulator of osteoclastic differentiation,function,and survival.J Cell Biochem,2006,97(1):45-55.
    [24]Yang,E.,Schulman,H.Structural examination of autoregulation of multifunctional calcium/calmodulin-dependent protein kinase Ⅱ.J Biol Chem,1999,274(37):26199-26208.
    [25]Torok,K.Calmodulin conformational changes in the activation of protein kinases.Biochem Soc Trans,2002,30(2):55-61.
    [26]von Hertzen,L.S.,Giese,K.P.Alpha-isoform of Ca2+/calmodulin-dependent kinase Ⅱ autophosphorylation is required for memory consolidation-specific transcription.Neuroreport,2005,16(12):1411-1414.
    [27]Lamsa,K.,Irvine,E.E.,Giese,K.P.,et al.NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases.J Physiol,2007,584(Pt 3):885-894.
    [28]Houston,C.M.,Lee,H.H.,Hosie,A.M.,et aL Identification of the sites for CaMK-Ⅱ-dependent phosphorylation of GABA(A) receptors.J Biol Chem,2007,282(24):17855-17865.
    [29]楼江燕.发育期大鼠惊厥对学习、记忆和海马CaMKⅡ表达的远期影响及运动训练的干预研究.苏州大学硕士论文.[D],2007.
    [30]白俊伟.运动对大鼠空间学习记忆能力及脑内CaMKⅡ、SynapsinⅠ、PSD-95影响.华东师范大学硕士学位论文.[D],2007.
    [31]Kamphuis,P.J.,Gardoni,F.,Kamal,A.,et al.Long-lasting effects of neonatal dexamethasone treatment on spatial learning and hippocampal synaptic plasticity:involvement of the NMDA receptor complex.FASEB J,2003,17(8):911-913.
    [32]Gartside,S.E.,Leitch,M.M.,MeQuade,R.,et al.Flattening the glucocorticoid rhythm causes changes in hippocampal expression of messenger RNAs coding structural and functional proteins:implications for aging and depression.Neuropsychopharmacology,2003,28(5):821-829.
    [33]Shetty,P.K.,Huang,F.L.,Huang,K.P.Ischemia-elicited oxidative modulation of Ca2+/calmodulin-dependent protein kinase Ⅱ.J Biol Chem,2008,283(9):5389-5401.
    [34]Sarkar,S.N.,Huang,R.Q.,Logan,S.M.,et al.Estrogens directly potentiate neuronal L-type Ca2+ channels.Proc Natl Acad Sci U S A,2008,105(39):15148-15153.
    [35]Meffert,M.K.,Chang,J.M.,Wiltgen,B.J.,et al.NF-kappa B functions in synaptic signaling and behavior.Nat Neurosci,2003,6(10):1072-1078.
    [36]Tsakiri,N.,Kimber,I.,Rothwell,N.J.,et al.Interleukin-l-induced interleukin-6synthesis is mediated by the neutral sphingomyelinase/Src kinase pathway in neurones.Br J Pharmacol,2008,153(4):775-783.
    [37]孙雪华.痛觉过敏与学习记忆的关系.滨州医学院学报,2007,30(6):449-451.
    [1]Rammal,H.,Bouayed,J.,Younos,C.,et al.Evidence that oxidative stress is linked to anxiety-related behaviour in mice.Brain Behav Immun,2008.
    [2]Power,J.H.,Asad,S.,Chataway,T.K.,et al.Peroxiredoxin 6 in human brain:molecular forms,cellular distribution and association with Alzheimer's disease pathology.Acta Neuropathol,2008,115(6):611-622.
    [3]de la Torre,J.C.Pathophysiology of neuronal energy crisis in Alzheimer's disease.Neurodegener Dis,2008,5(3-4):126-132.
    [4]王蕴红,张冰,赵明华,et al.大鼠急性递增负荷运动后神经内分泌相关指标的变化.武汉体育学院学报,2007,41(9):62-64,72.
    [5]Ashton,T.,Rowlands,C.C.,Jones,E.,et al.Electron spin resonance spectroscopic detection of oxygen-centred radicals in human serum following exhaustive exercise.Eur J Appl Physiol Occup Physiol,1998,77(6):498-502.
    [6]Ramel,A.,Wagner,K.H.,Elmadfa,I.Plasma antioxidants and lipid oxidation after submaximal resistance exercise in men.Eur J Nutr,2004,43(1):2-6.
    [7]陆小香,张蕴琨,江年.力竭运动后大鼠海马ca1区自由基、下丘脑gaba及hpa轴的动态变化.中国运动医学杂志,2007,26(5):563-567.
    [8]辛东,李晖.力竭性运动时大鼠脑组织自由基产生及氧化,抗氧化能力的动态观察.中国运动医学杂志,1999,18(4):321-323.
    [9]Molteni,R.,Wu,A.,Vaynman,S.,et al.Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor.Neuroscience,2004,123(2):429-440.
    [10]Acikgoz,O.,Aksu,I.,Topcu,A.,et al.Acute exhaustive exercise does not alter lipid peroxidation levels and antioxidant enzyme activities in rat hippocampus,prefrontal cortex and striatum.Neurosci Let-t,2006,406(1-2):148-151.
    [11]罗义,施华宏,王晓蓉,et al.2,4-二氯苯酚诱导鲫鱼肝脏自由基的产生和脂质过氧化.环境科学,2005,26(3):29-32.
    [12]郭呈芳,陈佐明,等.儿童情绪障碍过氧化脂质及谷胱甘肽过氧化物酶的研究.中国临床康复,2002,6(7):961-961.
    [13]Pettenuzzo,UF.,Schuck,P.F.,Fontella,F.,et al.Ascorbic acid prevents cognitive deficits caused by chronic administration of propionic acid to rats in the water maze.Pharmacol Biochem Behav,2002,73(3):623-629.
    [14]Carmen Ramirez-Tortosa,M.,Garcia-Alonso,J.,Luisa Vidal-Guevara,M.,et al.Oxidative stress status in an institutionalised elderly group after the intake of a phenolic-rich dessert.Br J Nutr,2004,91(6):943-950.
    [15]Mattson,M.P.,Liu,D.Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders.Neuromolecular Med,2002,2(2):215-231.
    [16]Batandier,C.,Fontaine,E.,Keriel,C.,et aL Determination of mitochondrial reactive oxygen species:methodological aspects.J Cell Mol Med,2002,6(2):175-187.
    [17]Kim,J.D.,McCarter,R.J.,Yu,B.P.Influence of age,exercise,and dietary restriction on oxidative stress in rats.Aging(Milano),1996,8(2):123-129.
    [18]代毅,袁琼嘉.力竭游泳后大鼠端脑自由基代谢动态变化研究.成都体育学院学报,2000,26(4):84-86.
    [19]朱红军,江钟立.运动与氧化应激的预适应.中国康复医学杂志,2003,18(2):122-124.
    [20]Jolitha,A.B.,Subramanyam,M.V.,Asha Devi,S.Modification by vitamin E and exercise of oxidative stress in regions of aging rat brain:studies on superoxide dismutase isoenzymes and protein oxidation status.Exp Gerontol,2006,41(8):753-763.
    [21]Li,J.,Liu,W.,Ding,S.,et al.Hyperbaric oxygen preconditioning induces tolerance against brain ischemia-reperfusion injury by upregulation of antioxidant enzymes in rats.Brain Res,2008,1210:223-229.
    [22]Haces,M.L.,Hemandez-Fonseca,K.,Medina-Campos,O.N.,et al.Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions.Exp Neurol,2008,211(1):85-96.
    [23]郭碧花.活性氧诱导细胞凋亡作用机理的研究进展.川北医学院学报,2002,17(4):166-169.
    [24]陈万欣,高俊玲.氧自由基及其激活的丝裂原活化蛋白激酶通路与颅脑创伤后细胞凋亡的研究进展.华北煤炭医学院学报,2006,8(3):329-331.
    [25]Kumar,V.,Bal,A.,Gill,K.D.Impairment of mitochondrial energy metabolism in different regions of rat brain following chronic exposure to alurninium.Brain Res,2008.
    [26]Jarrett,S.G.,Liang,L.P.,Hellier,J.L.,et al.Mitochondrial DNA damage and impaired base excision repair during epileptogenesis.Neurobiol Dis,2008,30(1):130-138.
    [27]Teepker,M.,Anthes,N.,Fischer,S.,et al.Effects of oxidative challenge and calcium on ATP-levels in neuronal cells.Neurotoxicology,2007,28(1):19-26.
    [28]He,P.,He,W.,Wang,A.,et al.PBDE-47-induced oxidative stress,DNA damage and apoptosis in primary cultured rat hippocampal neurons.Neurotoxicology,2008,29(1):124-129.
    [29]张天锡,赵卫国,卞留贯.抗自由基与脑损害的防治.临床神经外科杂志,2005,2(4):188-190.
    [30]Leonardo,C.C.,Eakin,A.K.,Ajmo,J.M.,et al.Delayed administration of a matrix metalloproteinase inhibitor limits progressive brain injury after hypoxia-ischemia in the neonatal rat.J Neuroinflammation,2008,5:34.
    [31]Nistico,R.,Piccirilli,S.,Cucchiaroni,M.L.,et al.Neuroprotective effect of hydrogen peroxide on an in vitro model of brain ischaemia.Br J Pharmacol,2008,153(5):1022-1029.
    [32]Zundorf,G.,Kahlert,S.,Reiser,G.Gap-junction blocker carbenoxolone differentially enhances NMDA-induced cell death in hippocampal neurons and astrocytes in co-culture.J Neurochem,2007,102(2):508-521.
    [33]梁华为,夏强.Ros介导线粒体atp敏感性钾通道开放剂对缺氧脑的保护作用.中国病理生理杂志,2005,21(10):2018-2021.
    [34]Park,K.W.,Jin,B.K.Thrombin-induced oxidative stress contributes to the death of hippocampal neurons:role of neuronal NADPH oxidase.J Neurosci Res,2008,86(5):1053-1063.
    [35]Liang,H.W.,Qiu,S.F.,Shen,J.,et al.Genistein attenuates oxidative stress and neuronal damage following transient global cerebral ischemia in rat hippocampus.Neurosci Lett,2008,438(1):116-120.
    [36]Masilamoni,J.G.,Jesudason,E.P.,Dhandayuthapani,S.,et al.The neuroprotective role of melatonin against amyloid beta peptide injected mice.Free Radic Res,2008,42(7):661-673.
    [37]Kim,E.J.,Won,R.,Sohn,J.H.,et al.Anti-oxidant effect of ascorbic and dehydroascorbic acids in hippocampal slice culture.Biochem Biophys Res Commun,2008,366(1):8-14.
    [38]Hepp,S.,Muller,M.Sulfhydryl oxidation:a potential strategy to achieve neuroprotection during severe hypoxia? Neuroscience,2008,152(4):903-912.
    [39]de Aguiar,R.B.,Dickel,O.E.,Cunha,R.W.,et al.Estradiol valerate and tibolone:effects upon brain oxidative stress and blood biochemistry during aging in female rats.Biogerontology,2008,9(5):285-298.
    [40]邱嵘,郑荣梁.活性氧信号传导作用的研究进展.生物化学与生物物理进展,2001,28(3):287-289.
    [41]Schoonbroodt,S.,Ferreira,V.,Best-Belpomme,M.,et al.Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of I kappa B alpha in NF-kappa B activation by an oxidative stress.J Immunol,2000,164(8):4292-4300.
    [42]Griendling,K.K.,Sorescu,D.,Lassegue,B.,et al.Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology.Arterioscler Thromb Vasc Biol,2000,20(10):2175-2183.
    [43]El-Osta,A.,Brasacchio,D.,Yao,D.,et al.Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia.J Exp Med,2008,205(10):2409-2417.
    [44]Pham,C.G.,Bubici,C.,Zazzeroni,F.,et al.Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species.Cell,2004,119(4):529-542.
    [45]李芊芊,彭双清.活性氧对nf-K b活性及jnk信号通路的调节.生物技术通讯,2008,19(4):611-614.
    [46]Papa,L.,Rockwell,P.Persistent mitochondrial dysfunction and oxidative stress hinder neuronal cell recovery from reversible proteasome inhibition.Apoptosis,2008,13(4):588-599.
    [47]Parihar,M.S.,Brewer,G.J.Simultaneous age-related depolarization of mitochondrial membrane potential and increased mitochondrial reactive oxygen species production correlate with age-related glutamate excitotoxicity in rat hippocampal neurons.J Neurosci Res,2007,85(5):1018-1032.
    [48]张桂忠,姜宁,薄海,et al.急性运动中线粒体能量转换调节的生物力能学分析:Ros和ucp3的作用.中国运动医学杂志,2006,25(2):161-167.
    [49]丁树哲,许豪文.有氧运动与氧化物介导的调节.天津体育学院学报,2000,15(1):15-16.
    [50]Hwang,J.J.,Lee,S.J.,Kim,T.Y.,et al.Zinc and 4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H202 in cultured hippocampal neurons.J Neurosci,2008,28(12):3114-3122.
    [51]Rajapakse,N.,Shimizu,K.,Kis,B.,et al.Activation of mitochondrial ATP-sensitive potassium channels prevents neuronal cell death after ischemia in neonatal rats.Neurosci Lett,2002,327(3):208-212.
    [52]Sridevi,N.,Venkataraman,P.,Senthilkumar,K.,et al.Oxidative stress modulates membrane bound ATPases in brain regions of PCB(Aroclor 1254)exposed rats:protective role of alpha-tocopherol.Biomed Pharmacother,2007,61(7):435-440.
    [53]Salazar,M.,Pariente,J.A.,Salido,G.M.,et al.Ethanol induces glutamate secretion by Ca2+ mobilization and ROS generation in rat hippocampal astrocytes.Neurochem Int,2008,52(6):1061-1067.
    [54]Ye,H.,Jalini,S.,Mylvaganam,S.,et al.Activation of large-conductance Ca(2+)-activated K(+) channels depresses basal synaptic transmission in the hippocampal CA1 area in APP(swe/ind) TgCRND8 mice.Neurobiol Aging,2008.
    [55]Galecki,P.,Florkowski,A.,Mrowicka,M.,et al.[Calcium ions,glutaminate acid,hypothalamic-pituitary-adrenal axis,calcium dependent ATP-ase as causes of oxidative damage in depression patients--Part Ⅰ].Pol Merkur Lekarski,2007,23(138):466-468.
    [56]Galecki,P.,Florkowski,A.,Mrowicka,M.,et al.[Calcium ions,glutaminate acid,hypothalamic-pituitary-adrenal axis,calcium dependent ATP-ase as causes of oxidative damage in depression patients(part Ⅱ)].Pol Merkur Lekarski,2008,24(139):72-75.
    [57]Liu,D.,Chan,S.L.,de Souza-Pinto,N.C.,et al.Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress.Neuromolecular Med,2006,8(3):389-414.
    [58]王丽荣,刘瑞珍.原代培养神经元类缺血再灌后ucp4的表达与ros的相关性.山西医科大学学报,2008,39(5):399-401.
    [59]Saransaari,P.,Oja,S.S.Characteristics of GABA release induced by free radicals in mouse hippocampal slices.Neurochem Res,2008,33(3):384-393.
    [60]Huddleston,A.T.,Tang,W.,Takeshima,H.,et al.Superoxide-induced potentiation in the hippocampus requires activation of ryanodine receptor type 3 and ERK.J Neurophysiol,2008,99(3):1565-1571.
    [61]Murray,C.A.,Lynch,M.A.Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation.J Neurosci,1998,18(8):2974-2981.
    [62]Feeney,C.J.,Frantseva,M.V.,Carlen,P.L.,et al.Vulnerability of glial cells to hydrogen peroxide in cultured hippocampal slices.Brain Res,2008,1198:1-15.
    [63]Fekete,A.,Vizi,E.S.,Kovacs,K.J.,et al.Layer-specific differences in reactive oxygen species levels after oxygen-glucose deprivation in acute hippocampal slices.Free Radic Biol Med,2008,44(6):1010-1022.
    [64]Cano-Europa,E.,Perez-Severiano,F.,Vergara,P.,et al.Hypothyroidism induces selective oxidative stress in amygdala and hippoeampus of rat.Metab Brain Dis,2008,23(3):275-287.
    [65]Xue,B.,Zhao,Y.,Johnson,A.K.,et al.Central estrogen inhibition of angiotensin Ⅱ-induced hypertension in male mice and the role of reactive oxygen species.Am J Physiol Heart Circ Physiol,2008,295(3):H1025-H1032.
    [66]Oyamada,N.,Sone,M.,Miyashita,K.,et al.The role of mineralocorticoid receptor expression in brain remodeling after cerebral ischemia.Endocrinology,2008,149(8):3764-3777.
    [67]Windelborn,J.A.,Lipton,P.Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA-mediated calcium influx,arachidonic acid metabolism,and free radical production.J Neurochem,2008,106(1):56-69.
    [68]Berry,A.,Greco,A.,Giorgio,M.,et al.Deletion of the lifespan determinant p66(Shc) improves performance in a spatial memory task,decreases levels of oxidative stress markers in the hippocampus and increases levels of the neurotrophin BDNF in adult mice.Exp Gerontol,2008,43(3):200-208.
    [1]Kaur,C.,You,Y.Ultrastructure and function of the amoeboid microglial cells in the periventricular white matter in postnatal rat brain following a hypoxic exposure.Neurosci Lett,2000,290(1):17-20.
    [2]Scheuerle,A.,Pavenstaedt,I.,Schlenk,R.,et al.In situ autolysis of mouse brain:ultrastructure of mitochondria and the function of oxidative phosphorylation and mitochondrial DNA.Virchows Arch B Cell Pathol Incl Mol Pathol,1993,63(6):331-334.
    [3]Petrali,J.P.,Maxwell,D.M.,Lenz,D.E.,et al.Effect of an anticholinesterase compound on the ultrastructure and function of the rat blood-brain barrier:a review and experiment.J Submicrosc Cytol Pathol,1991,23(2):331-338.
    [4]Heath,R.G.,Fitzjarrell,A.T.,Fontana,C.J.,et al.Cannabis sativa:effects on brain function and ultrastructure in rhesus monkeys.Biol Psychiatry,1980,15(5):657-690.
    [5]Johansen,F.F.,Jorgensen,M.B.,Ekstrom von Lubitz,D.K.,et al.Selective dendrite damage in hippocampal CA1 stratum radiatum with unchanged axon ultrastructure and glutamate uptake after transient cerebral ischaemia in the rat.Brain Res,1984,291(2):373-377.
    [6]Fercakova,A.,Vorobjeva,T.,Badonic,T.,et al.Changes in neuronal ultrastructure following ischaemia and hypoxia.Folia Morphol(Praha),1982,30(4):335-339.
    [7]蒲昭霞,赵聪敏,鲁利群.不同发育阶段丰富环境刺激对缺氧缺血性脑损伤大鼠学习记忆的影响 四川医学,2006,27(12):1218-1221.
    [8]Mossakowski,M.J.,Gajkowska,B.,Tsitsishvili,A.Ultrastructure of neurons from the CA1 sector of Ammon's horn in short-term cerebral ischemia in Mongolian gerbils.Neuropatol Pol,1989,27(1):39-53.
    [9]Esipova,Z.[Ultrastructure of the cerebral cortex and hippocampus of rats in the early postresuscitation period following total ischemia].Biull Eksp Biol Med, 1988,105(4):497-501.
    [10]邓奕辉,李定祥,陈大舜.滋阴益气活血法对糖尿病合并缺血性脑损伤沙鼠海马ca_1区超微结构及神经细胞凋亡的影响.中华中医药学刊,2007,25(8):1747-1749.
    [11]Bevensee,M.O.,Boron,W.F.Effects of acute hypoxia on intracellular-pH regulation in astrocytes cultured from rat hippocampus.Brain Res,2008,1193:143-152.
    [12]Raman,L.,Hamilton,K.L.,Gewirtz,J.C.,et al.Effects of chronic hypoxia in developing rats on dendritic morphology of the CA1 subarea of the hippocampus and on fear-potentiated startle.Brain Res,2008,1190:167-174.
    [13]Shao,G.,Gao,C.Y.,Lu,G.W.Alterations of hypoxia-inducible factor-1 alpha in the hippocampus of mice acutely and repeatedly exposed to hypoxia.Neurosignals,2005,14(5):255-261.
    [14]Raman,L.,Tkac,I.,Ennis,K.,et al.In vivo effect of chronic hypoxia on the neurochemical profile of the developing rat hippocampus.Brain Res Dev Brain Res,2005,156(2):202-209.
    [15]Hota,S.K.,Barhwal,K.,Singh,S.B.,et al.Chronic hypobaric hypoxia induced apoptosis in CA1 region of hippocampus:a possible role of NMDAR mediated p75NTR upregulation.Exp Neurol,2008,212(1):5-13.
    [16]Alekseeva,T.G.,Loseva,E.V.,Meting,T.A.The effects of Mexidol on the acquisition of food-related conditioned reflexes and synaptic ultrastructure in field CA1 of the rat hippocampus after single acoustic stimuli with ultrasonic components.Neurosci Behav Physiol,2005,35(4):363-369.
    [17]Xie,Y.,Jiang,H.H.,Gong,Q.F.,et al.[Effect of microwave irradiation on neurocyte mitochondrial ultrastructure and mtTFA mRNA expression in rats cerebral cortex and hippocampus].Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi,2004,22(2):104-107.
    [18]金玉祥,姚敏,程琰,et al.2-OH-saclofen对慢性应激大鼠海与神经元超微结构的保护作用.神经解剖学杂志,2005,21(6):645-648.
    [19]Armario,A.,Escorihuela,R.M.,Nadal,R.Long-term neuroendocrine and behavioural effects of a single exposure to stress in adult animals.Neurosci Biobehav Rev,2008,32(6):1121-1135.
    [20]Castrogiovanni,D.,Gaillard,R.C.,Giovambattista,A.,et al.Neuroendocrine,metabolic,and immune functions during the acute phase response of inflammatory stress in monosodium L-glutamate-damaged,hyperadipose male rat.Neuroendocrinology,2008,88(3):227-234.
    [21]Wommack,J.C.,Delville,Y.Stress,aggression,and puberty:neuroendocrine correlates of the development of agonistic behavior in golden hamsters.Brain Behav Evol,2007,70(4):267-273.
    [22]Bhat,M.S.,Rao,G.,Murthy,K.D.,et al.Housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats.Evid Based Complement Alternat Med,2007,4(1):35-42.
    [23]Tilbrook,A.J.,Clarke,I.J.Neuroendocrine mechanisms of innate states of attenuated responsiveness of the hypothalamo-pituitary adrenal axis to stress.Front Neuroendocrinol,2006,27(3):285-307.
    [24]Aloisi,A.M.,Bianchi,M.,Lupo,C.,et al.Neuroendocrine and behavioral effects of CRH blockade and stress in male rats.Physiol Behav,1999,66(3):523-528.
    [25]Chrousos,G.P.Stressors,stress,and neuroendocrine integration of the adaptive response.The 1997 Hans Selye Memorial Lecture.Ann N Y Acad Sci,1998,851:311-335.
    [26]Lombardi,G.,Savastano,S.,Valentino,R.,et al.Neuroendocrine axis and behavioral stress.Ann N Y Acad Sci,1994,741:216-222.
    [27]Goldstein,L.E.,Rasmusson,A.M.,Bunney,B.S.,et al.The NMDA glycine site antagonist(+)-HA-966 selectively regulates conditioned stress-induced metabolic activation of the mesoprefrontal cortical dopamine but not serotonin systems:a behavioral,neuroendocrine,and neurochemical study in the rat.J Neurosci,1994,14(8):4937-4950.
    [28]陈菁菁,方垂,李芳序,et al.丙二醛对大鼠空间学习、记忆能力及海马ca1区超微结构的影响.动物学报,2007,53(6):1041-1047.
    [29]Manthos,A.,Tsolaki,M.,Kaidoglou,K.,et al.Ultrastructure of the rat hippocampus after isobaric respirative hyperoxia.Histol Histopathol,1991,6(1):73-78.
    [30]杨传红,张伟,等.nNOS在缺血性老年大鼠海马及皮层神经元中的表达及超微结构变化.广东医学,200l,22(5):379-380.
    [31]Kaur,C.,Sivakumar,V.,Lu,J.,et al.Melatonin attenuates hypoxia-induced ultrastructural changes and increased vascular permeability in the developing hippocampus.Brain Pathol,2008,18(4):533-547.
    [32]Siow,N.L.,Xie,H.Q.,Choi,R.C.,et at.ATP induces the post-synaptie gene expression in neuron-neuron synapses:Transcriptional regulation of AChE catalytic subunit.Chem Biol Interact,2005,157-158:423-426.
    [33]Iijima,T.,Mishima,T.,Tohyama,M.,et al.Mitochondrial membrane potential and intracellular ATP content after transient experimental ischemia in the cultured hippocampal neuron.Neurochem Int,2003,43(3):263-269.
    [34]Li,C.,Peoples,R.W.,Weight,F.F.Acid pH augments excitatory action of ATP on a dissociated mammalian sensory neuron.Neuroreport,1996,7(13):2151-2154.
    [35]曹建淳,徐丹令,等.谷氨酸对大鼠海马损伤的不同时段超微结构的研究.上海医学,2001,24(8):499.501.
    [36]Wei,L.,Peng,R.Y.,Wang,L.F.,et al.[Effect of high power microwave radiation on ultrastructure of neuron synapse and content of amino acid neurotransmitters in hippocampus of rats].Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi,2006,24(4):245-247.
    [37]Miller,L.D.,Petrozzino,J.J.,Mahanty,N.K.,et al.Optical imaging of eytosolic calcium,electrophysiology,and ultrastructure in pyramidal neurons of organotypic slice cultures from rat hippocampus.Neuroimage,1993,1(2):109-120.
    [38]高维娟,黄启福,等.益肾降浊汤对脑缺血再灌注大鼠海马组织超微结构的影响.河北医学,200l,7(8):682-684.
    [39]Phelps,S.,Mitchell,J.,Wheal,H.V.Changes to synaptic ultrastructure in field CA1 of the rat hippocampus following intracerebroventricular injection of kainic acid.Neuroscience,1991,40(3):687-699.
    [40]Johansen,F.F.,Sorensen,T.,Tonder,N.,et al.Ultrastructure of neurons containing somatostatin in the dentate hilus of the rat hippocampus after cerebral ischaemia,and a note on their commissural connections.Neuropathol Appl Neurobiol,1992,18(2):145-157.
    [41]Tsitsishvili,A.,Gajkowska,B.,Mossakowski,M.J.Ultrastructure of capillaries and neuroglial cells in the hippocamus(sector CA1) during short-lasting ischemia and following blood recirculation.Neuropatol Pol,1989,27(1):55-69.
    [42]袁凤来,陈飞虎.酸敏感离子通道在缺血性脑损伤中的作用.药学进展,2006,30(8):337-341.
    [43]谢集建.缺氧缺血性脑损伤对学习记忆的影响及其机制研究进展.国外医学:妇幼保健分册,2001,12(2):83-85.
    [44]胡冬梅,李义召,王海涛,et al.亚硒酸钠对沙土鼠海马cal区神经元缺血/ 再灌注损伤的影响.中国药理学通报,2007,23(2):268-271.
    [45]Strosznajder,R.P.,Walski,M.Effects 3-aminobenzamide on ultrastructure of hippocampal CA1 layer after global ischemia in gerbils.J Physiol Pharmacol,2004,55 Suppl 3:127-133.
    [46]Miyaguchi,K.Ultrastructure of intermediate filaments of nestin- and vimentin-immunoreactive astrocytes in organotypic slice cultures of hippocampus.J Struct Biol,1997,120(1):61-68.
    [47]逯爱梅,于天贵.香菇多糖对谷氨酸损伤原代培养大鼠神经细胞保护作用的研究.中国老年学杂志,2008,28(4):337-339.
    [48]Simpkins,J.W.,Rajakumar,G.,Zhang,Y.Q.,et al.Estrogens may reduce mortality and ischemic damage caused by middle cerebral artery occlusion in the female rat.J Neurosurg,1997,87(5):724-730.
    [49]Simpkins,J.W.,Green,P.S.,Gridley,K.E.,et al.Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer's disease.Am J Med,1997,103(3A):19S-25S.
    [50]Woolley,C.S.,McEwen,B.S.Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat.J Comp Neurol,1993,336(2):293-306.
    [51]Kinsley,C.H.,Trainer,R.,Stafisso-Sandoz,G.,et al.Motherhood and the hormones of pregnancy modify concentrations of hippocampal neuronal dendritic spines.Horm Behav,2006,49(2):131 - 142.
    [52]葛振英,石纯,许晓伍,et al,.雌激素撤退大鼠海马和基底前脑神经元线粒体超微结构的观察.解剖学研究,2006,28(2):131-133,146.
    [53]Best,N.,Mitchell,J.,Wheal,H.V.Ultrastructure of parvalbumin-immunoreactive neurons in the CA1 area of the rat hippocampus following a kainic acid injection.Acta Neuropathol,1994,87(2):187-195.
    [54]柳刚,杨骏,许冠荪,et al,.电针“井穴”对血管性痴呆大鼠海马ca1区超微结构的影响.针灸临床杂志,2003,19(12):38-39.
    [55]Frumkina,L.E.,Khaspekov,L.G.,Lyzhin,A.A.,et al.Plastic rearrangements of the ultrastructure of the hippocampus in organotypic tissue cultures.Neurosci Behav Physiol,2002,32(4):335-339.
    [56]Li,Y.J.,Fang,Q.,Zhang,C.X.,et al.[Effects of prenatal methylmercury exposure on learning and memory ability of mice and ultrastructure of hippocampus neurons in mice].Wei Sheng Yah Jiu,2005,34(3):284-286.
    [57]马强,王静,等.体力运动减缓慢性应激对海马的损伤作用.生理学报,2002,54(5):427-430.
    [58]张金波,宋立新.急性重复缺氧海马cal区时相变化的超微结构观察.神经解剖学杂志,2000,16(4):371-375,T013,T014.
    [1]Ang,E.S.,Zhang,P.,Steer,J.H.,et al.Calcium/calmodulin-dependent kinase activity is required for efficient induction of osteoclast differentiation and bone resorption by receptor activator of nuclear factor kappa B ligand (RANKL).J Cell Physiol,2007,212(3):787-795.
    [2]Liu,A.M.,Wong,Y.H.Activation of nuclear factor {kappa}B by somatostatin type 2 receptor in pancreatic acinar AR42J cells involves G{alpha} 14 and multiple signaling components:a mechanism requiring protein kinase C,calmodulin-dependent kinase II,ERK,and c-Src.J Biol Chem,2005,280(41):34617-34625.
    [3]Meffert,M.K.,Chang,J.M.,Wiltgen,B.J.,et al.NF-kappa B functions in synaptic signaling and behavior.Nat Neurosci,2003,6(10):1072-1078.
    [4]Torricelli,C.,Fortino,V.,Capurro,E.,et al.Rottlerin inhibits the nuclear factor kappaB/cyclin-D1 cascade in MCF-7 breast cancer cells.Life Sci,2008,82(11-12):638-643.
    [5]Fridmacher,V.,Kaltschmidt,B.,Goudeau,B.,et al.Forebrain-specific neuronal inhibition of nuclear factor-kappaB activity leads to loss of neuroprotection.J Neurosci,2003,23(28):9403-9408.
    [6]Kiefer,T.L.,Lai,L.,Yuan,L.,et al.Differential regulation of estrogen receptor alpha,glucocorticoid receptor and retinoic acid receptor alpha transcriptional activity by melatonin is mediated via different G proteins.J Pineal Res,2005, 38(4):231-239.
    [7]Solakidi,S.,Psarra,A.M.,Sekeris,C.E.Differential distribution of glucocorticoid and estrogen receptor isoforms:localization of GRbeta and ERalpha in nucleoli and GRalpha and ERbeta in the mitochondria of human osteosarcoma SaOS-2 and hepatocarcinoma HepG2 cell lines.J Musculoskelet Neuronal Interact,2007,7(3):240-245.
    [8]Frigo,D.E.,Basu,A.,Nierth-Simpson,E.N.,et al.p38 mitogen-activated protein kinase stimulates estrogen-mediated transcription and proliferation through the phosphorylation and potentiation of the pl60 coactivator glucocorticoid receptor-interacting protein 1.Mol Endocrinol,2006,20(5):971-983.
    [9]Schumacher,M.,Hutchison,J.B.Testosterone induces hypothalamic aromatase during early development in quail.Brain Res,1986,377(1):63-72.
    [10]肖岚,蔡文琴.芳香化酶mRNA在小鼠脑内的表达及其分布.解剖学报,2001,32(1):5-8,T002.
    [11]Hayes,EJ.,Seminara,S.B.,Decruz,S.,et al.Aromatase inhibition in the human male reveals a hypothalamic site of estrogen feedback.J Clin Endocrinol Metab,2000,85(9):3027-3035.
    [12]肖岚,蔡文琴.芳香化酶与脑的发育和再生的相关性.解剖科学进展,2002,8(1):48-51.
    [13]Horvath,T.L.,Roa-Pena,L.,Jakab,R.L.,et al.Aromatase in axonal processes of early postnatal hypothalamic and limbic areas including the cingulate cortex.J Steroid Biochem Mol Biol,1997,61(3-6):349-357.
    [14]Lephart,E.D.,Ojeda,S.R.Hypothalamic aromatase activity in male and female rats during juvenile peripubertal development.Neuroendocrinology,1990,51(4):385-393.
    [15]Kudwa,A.E.,Michopoulos,V.,Gatewood,J.D.,et al.Roles of estrogen receptors alpha and beta in differentiation of mouse sexual behavior.Neuroscience,2006,138(3):921-928.
    [16]Negri-Cesi,P.,Colciago,A.,Pravettoni,A.,et al.Sexual differentiation of the rodent hypothalamus:hormonal and environmental influences.J Steroid Biochem Mol Biol,2008,109(3-5):294-299.
    [17]Kajta,M.,Beyer,C.Cellular strategies of estrogen-mediated neuroprotection during brain development.Endocrine,2003,21(1):3-9.
    [1]Twardowska,K.,Rybakowski,J.[Limbic-hypothalamic-pituitary-adrenal axis in depression:literature review].Psychiatr Pol,1996,30(5):741-755.
    [2]冯炜权.运动后恢复过程规律的生化研究进展(续完).沈阳体育学院学报,2004,23(2):113-116.
    [3]冯炜权.运动后恢复过程规律的生化研究进展(未完待续).沈阳体育学院学报,2004,23(1):4-7.
    [4]Chrousos,G.P.,Gold,P.W.The concepts of stress and stress system disorders.Overview of physical and behavioral homeostasis.JAMA,1992,267(9):1244-1252.
    [5]Chrousos,G.P.Stressors,stress,and neuroendocrine integration of the adaptive response.The 1997 Hans Selye Memorial Lecture.Ann N Y Acad Sci,1998,851:311-335.
    [6]严进.应激反应的特异性与非特异性.心理科学进展,2008,16(3):363-370.
    [7]Yanagita,S.,Amemiya,S.,Suzuki,S.,et al.Effects of spontaneous and forced running on activation of hypothalamic corticotropin-releasing hormone neurons in rats.Life Sci,2007,80(4):356-363.
    [8]李宁川,王金玉,黄美蓉.运动训练对应激大鼠下丘脑CRH mRNA的影响.中国体育科技,2006,42(5):82-84,107.
    [9]Agarwal,A.,Halvorson,L.M.,Legradi,G.Pituitary adenylate cyclase-activating polypeptide(PACAP) mimics neuroendocrine and behavioral manifestations of stress:Evidence for PKA-mediated expression of the cortieotropin-releasing hormone(CRH) gene.Brain Res Mol Brain Res,2005, 138(1):45-57.
    [10]Park,E.,Chan,O.,Li,Q.,et al.Changes in basal hypothalamo-pituitary-adrenal activity during exercise training are centrally mediated.Am J Physiol Regul Integr Comp Physiol,2005,289(5):R1360-1371.
    [11]崔玉鹏,张儿,王保成,等.大负荷运动训练与模拟失重对大鼠hpa轴影响的对比研究.中国运动医学杂志,2008,27(1):90-92.
    [12]Droste,S.K.,Chandramohan,Y.,Hill,L.E.,et al.Voluntary exercise impacts on the rat hypothalamic-pituitary-adrenocortical axis mainly at the adrenal level.Neuroendocrinology,2007,86(1):26-37.
    [13]Raastad,T.,Bjoro,T.,Hallen,J.Hormonal responses to high- and moderate-intensity strength exercise.Eur J Appl Physiol,2000,82(1-2):121-128.
    [14]Roca,C.A.,Schmidt,P.J.,Deuster,P.A.,et al.Sex-related differences in stimulated hypothalamic-pituitary-adrenal axis during induced gonadal suppression.J Clin Endocrinol Metab,2005,90(7):4224-4231.
    [15]Luger,A.,Deuster,P.A.,Kyle,S.B.,et al.Acute hypothalamic-pituitary-adrenal responses to the stress of treadmill exercise.Physiologic adaptations to physical training.N Engl J Med,1987,316(21):1309-1315.
    [16]Droste,S.K.,Gesing,A.,Ulbricht,S.,et al.Effects of long-term voluntary exercise on the mouse hypothalamic-pituitary-adrenocortical axis.Endocrinology,2003,144(7):3012-3023.
    [17]Otawa,M.,Arai,H.,Atomi,Y.Molecular aspects of adrenal regulation for circadian glucocorticoid synthesis by chronic voluntary exercise.Life Sci,2007,80(8):725-731.
    [18]Hayes,K.,Sprague,S.,Guo,M.,et al.Forced,not voluntary,exercise effectively induces neuroprotection in stroke.Acta Neuropathol,2008,115(3):289-296.
    [19]Fediuc,S.,Campbell,J.E.,Riddell,M.C.Effect of voluntary wheel running on circadian corticosterone release and on HPA axis responsiveness to restraint stress in Sprague-Dawley rats.J Appl Physiol,2006,100(6):1867-1875.
    [20]Contarteze,R.V.,Manchado Fde,B.,Gobatto,C.A.,et al.Stress biomarkers in rats submitted to swimming and treadmill running exercises.Comp Biochem Physiol A Mol Integr Physiol,2008,151(3):415-422.
    [21]Adamec,R.,Kent,P.,Anisman,H.,et al.Neural plasticity,neuropeptides and anxiety in animals-implications.for understanding and treating affective disorder following traumatic stress in humans.Neurosci Biobehav Rev,1998,23(2):301-318.
    [22]崔冬雪.游泳锻炼对实验性抑郁症大鼠神经内分泌及行为学的影响[D].华东师范大学,2005.
    [23]Kawashima,H.,Saito,T.,Yoshizato,H.,et al.Endurance treadmill training in rats alters CRH activity in the hypothalamic paraventricular nucleus at rest and during acute running according to its period.Life Sci,2004,76(7):763-774.
    [24]Malisch,J.L.,Saltzman,W.,Gomes,ER.,et al.Baseline and stress-induced plasma corticosterone concentrations of mice selectively bred for high voluntary wheel running.Physiol Biochem Zool,2007,80(1):146-156.
    [25]Paredes,S.D.,Sanchez,S.,Parvez,H.,et al.Altered circadian rhythms of corticosterone,melatonin,and phagocytic activity in response to stress in rats.Neuro Endocrinol Lett,2007,28(4):489-495.
    [26]陈佩杰,许豪文,段子才,等.运动过程中糖皮质激素受体的变化.上海体育学院学报,2002,26(1):33-36,42.
    [27]Ekstrand,J.,Hellsten,J.,Tingstrom,A.Environmental enrichment,exercise and corticosterone affect endothelial cell proliferation in adult rat hippocampus and prefrontal cortex.Neurosci Lett,2008,442(3):203-207.
    [28]Li,J.,Wang,J.,Zhao,D.,et al.[Experimental navigation and deuteroexhaustive exercise suppress the function of the hypothalamic-pituitary-testicle axis in rats].Zhonghua Nan Ke Xue,2008,14(1):58-61.
    [29]Brown,D.A.,Johnson,M.S.,Armstrong,C.J.,et al.Short-term treadmill running in the rat:what kind of stressor is it? J Appl Physiol,2007,103(6):1979-1985.
    [30]辛东,李晖.力竭性运动时大鼠脑组织自由基产生及氧化,抗氧化能力的动态观察.中国运动医学杂志,1999,18(4):321-323.
    [31]Molteni,R.,Wu,A.,Vaynman,S.,et al.Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor.Neuroscience,2004,123(2):429-440.
    [32]Acikgoz,O.,Aksu,I.,Topcu,A.,et al.Acute exhaustive exercise does not alter lipid peroxidation levels and antioxidant enzyme activities in rat hippocampus,prefrontal cortex and striatum.Neurosci Lett,2006,406(1-2):148-151.
    [33]Rammal,H.,Bouayed,J.,Younos,C.,et al.Evidence that oxidative stress is linked to anxiety-related behaviour in mice.Brain Behav Immun,2008.
    [34]Teepker,M.,Anthes,N.,Fischer,S.,et al.Effects of oxidative challenge and calcium on ATP-levels in neuronal cells.Neurotoxicology,2007,28(1):19-26.
    [35]He,P.,He,W.,Wang,A.,et al.PBDE-47-induced oxidative stress,DNA damage and apoptosis in primary cultured rat hippocampal neurons.Neurotoxicology,2008,29(1):124-129.
    [36]张天锡,赵卫国,卞留贯.抗自由基与脑损害的防治.临床神经外科杂志,2005,2(4):188-190.
    [37]Leonardo,C.C.,Eakin,A.K.,Ajmo,J.M.,et al.Delayed administration of a matrix metalloproteinase inhibitor limits progressive brain injury after hypoxia-ischemia in the neonatal rat.J Neuroinflammation,2008,5:34.
    [38]Nistico,R.,Piccirilli,S.,Cucchiaroni,M.L.,et al.Neuroprotective effect of hydrogen peroxide on an in vitro model of brain ischaemia.Br J Pharmacol,2008,153(5):1022-1029.
    [39]Aizawa,K.,Iemitsu,M.,Otsuki,T.,et al.Sex differences in steroidogenesis in skeletal muscle following a single bout of exercise in rats.J Appl Physiol,2008,104(1):67-74.
    [40]Valimaki,V.V.,Alfthan,H.,Lehmuskallio,E.,et al.Risk factors for clinical stress fractures in male military recruits:a prospective cohort study.Bone,2005,37(2):267-273.
    [41]Hawkins,V.N.,Foster-Schubert,K.,Chubak,J.,et al.Effect of exercise on serum sex hormones in men:a 12-month randomized clinical trial.Med Sci Sports Exert,2008,40(2):223-233.
    [42]Valimaki,V.V.,Alfthan,H.,Ivaska,K.K.,et al.Serum estradiol,testosterone,and sex hormone-binding globulin as regulators of peak bone mass and bone turnover rate in young Finnish men.J Clin Endocrinol Metab,2004,89(8):3785-3789.
    [43]Remes,T.,Vaisanen,S.B.,Mahonen,A.,et al.Aerobic exercise and bone mineral density in middle-aged finnish men:a controlled randomized trial with reference to androgen receptor,aromatase,and estrogen receptor alpha gene polymorphisms small star,filled.Bone,2003,32(4):412-420.
    [44]Garcia-Segura,L.M.,Wozniak,A.,Azcoitia,I.,et al.Aromatase expression by astrocytes after brain injury:implications for local estrogen formation in brain repair.Neuroscience,1999,89(2):567-578.
    [45]杜喆,韩芳,石玉秀.Ptsd样大鼠海马mr和gr变化的研究.中国组织化学与 细胞化学杂志,2007,16(6):695-700.
    [46]Lupien,S.J.,McEwen,B.S.The acute effects of corticosteroids on cognition:integration of animal and human model studies.Brain Res Brain Res Rev,1997,24(1):1-27.
    [47]叶建宁,陆建华,熊加祥.海马nmda受体调节严重烫伤应激后hpa轴兴奋性的相关机制研究.中华神经医学杂志,2006,5(10):982-985.
    [48]Gomez,F.,Lahmame,A.,de Kloet,E.R.,et aL Hypothalamic-pituitary-adrenal response to chronic stress in five inbred rat strains:differential responses are mainly located at the adrenocortical level.Neuroendoerinology,1996,63(4):327-337.
    [49]Ploughman,M.Exercise is brain food:the effects of physical activity on cognitive function.Dev Neurorehabil,2008,11(3):236-240.
    [50]Jian-Zheng,Z.,Yong-Xiang,Z.,Jin-Huang,Z.Increased corticosterone levels in plasma and hippocampus and their relationship with hippocampal ATP depletion in senescence accelerated mice.Chinese Journal of Pharrnacology.and Toxicology,1988,12(1):12-15.
    [51]Haack,D.,Luu,H.,Cho,J.,et al.Exercise reverses chronic stress-induced Bax oligomer formation in the cerebral cortex.Neurosci Let-t,2008,438(3):290-294.
    [52]杨志华.脑内nf-κb及其病理生理学意义.国外医学:生理病理科学与临床分册,2000,20(6):504-506.
    [53]Auphan,N.,DiDonato,J.A.,Rosette,C.,et al.Immunosuppression by glucocorticoids:inhibition of NF-kappa B activity through induction of I kappa B synthesis.Science,1995,270(5234):286-290.
    [54]Lu,Y.S.,Yeh,P.Y.,Chuang,S.E.,et al.Glucocorticoids enhance cytotoxicity of cisplatin via suppression of NF-{kappa}B activation in the glucocorticoid receptor-rich human cervical carcinoma cell line SiHa.J Endocrinol,2006,188(2):311-319.
    [55]Doucas,V.,Shi,Y.,Miyamoto,S.,et al.Cytoplasmic catalytic subunit of protein kinase A mediates cross-repression by NF-kappa B and the glucocorticoid receptor.Proc Natl Acad Sci U S A,2000,97(22):11893-11898.
    [56]Clemens,J.A.,Stephenson,D.T.,Dixon,E.P.,et al.Global cerebral ischemia activates nuclear factor-kappa B prior to evidence of DNA fragmentation.Brain Res Mol Brain Res,1997,48(2):187-196.
    [57]程大丽,乔宠,张淑兰,et al.γ干扰素对肿瘤坏死因子α诱导子宫颈癌Hela细胞凋亡及核因子κB活化的影响.中华妇产科杂志,2005,40(5):353-354.
    [58]Chen,Q.,Cederbaum,A.Ⅰ.Menadione cytotoxicity to Hep G2 cells and protection by activation of nuclear factor-kappaB.Mol Pharmacol,1997,52(4):648-657.
    [59]Ueno,T.,Sawa,Y.,Kitagawa-Sakakida,S.,et al.Nuclear factor-kappa B decoy attenuates neuronal damage after global brain ischemia:a future strategy for brain protection during circulatory arrest.J Thorac Cardiovasc Surg,2001,122(4):720-727.
    [60]Banan,A.,Farhadi,A.,Fields,J.Z.,et al.Evidence that nuclear factor-kappa B activation is critical in oxidant-induced disruption of the microtubule cytoskeleton and barrier integrity and that its inactivation is essential in epidermal growth factor-mediated protection of the monolayers of intestinal epithelia.J Pharmacol Exp Ther,2003,306(1):13-28.
    [61]Liuwantara,D.,Elliot,M.,Smith,M.W.,et al.Nuclear factor-kappaB regulates beta-cell death:a critical role for A20 in beta-cell protection.Diabetes,2006,55(9):2491-2501.
    [62]Tahera,Y.,Meltser,Ⅰ.,Johansson,P.,et al.Glucocorticoid receptor and nuclear factor-kappa B interactions in restraint stress-mediated protection against acoustic trauma.Endocrinology,2006,147(9):4430-4437.
    [63]Chong,Z.Z.,Li,F.,Maiese,K.The pro-survival pathways of mTOR and protein kinase B target glycogen synthase kinase-3beta and nuclear factor-kappaB to foster endogenous microglial cell protection.Int J Mol Med,2007,19(2):263-272.
    [64]Chen,C.H.,Chuang,J.H.,Liu,K.,et al.NITRIC OXIDE TRIGGERS DELAYED ANESTHETIC PRECONDITIONING-INDUCED CARDIAC PROTECTION VIA ACTIVATION OF NUCLEAR FACTOR-kappaB AND UPREGULATION OF INDUCIBLE NITRIC OXIDE SYNTHASE.Shock,2008.
    [65]白宝丰,张蕴琨.力竭运动后大鼠脑皮质运动区谷氨酸受体nr2a蛋白含量及酪氨酸磷酸化水平的变化.中国运动医学杂志,2005,24(4):400-403,433.
    [66]张建军.耐力训练及力竭运动后大鼠海马CA1区神经元形态学、N-甲基-D- 天冬氨酸受体及突触体素的变化.郑州大学学报(医学版),2008,43(5):881-884.
    [67]Biondi,O.,Grondard,C.,Lecolle,S.,et al.Exercise-induced activation of NMDA receptor promotes motor unit development and survival in a type 2spinal muscular atrophy model mouse.J Neurosci,2008,28(4):953-962.
    [68]Kitamura,T.,Mishina,M.,Sugiyama,H.Enhancement of neurogenesis by running wheel exercises is suppressed in mice lacking NMDA receptor epsilon 1 subunit.Neurosci Res,2003,47(1):55-63.
    [69]Lou,S.J.,Liu,J.Y.,Chang,H.,et al.Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats.Brain Res,2008,1210:48-55.
    [70]Cyr,M.,Ghribi,O.,Di Paolo,T.Regional and selective effects of oestradiol and progesterone on NMDA and AMPA receptors in the rat brain.J Neuroendocrinol,2000,12(5):445-452.
    [71]Cyr,M.,Thibault,C.,Morissette,M.,et al.Estrogen-like activity of tamoxifen and raloxifene on NMDA receptor binding and expression of its subunits in rat brain.Neuropsychopharmacology,2001,25(2):242-257.
    [72]楼江燕.发育期大鼠惊厥对学习、记忆和海马CaMKⅡ表达的远期影响及运动训练的干预研究.苏州大学硕士论文.[D],2007.
    [73]白俊伟.运动对大鼠空间学习记忆能力及脑内CaMKⅡ、Synapsin Ⅰ、PSD-95影响.华东师范大学硕士学位论文.[D],2007.
    [74]Kamphuis,P.J.,Gardoni,F.,Kamal,A.,et al.Long-lasting effects of neonatal dexamethasone treatment on spatial learning and hippocampal synaptic plasticity:involvement of the NMDA receptor complex.FASEB J,2003,17(8):911-913.
    [75]Gartside,S.E.,Leitch,M.M.,McQuade,R.,et al.Flattening the glucocorticoid rhythm causes changes in hippocampal expression of messenger RNAs coding structural and functional proteins:implications for aging and depression.Neuropsychopharmacology,2003,28(5):821-829.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700