用户名: 密码: 验证码:
量子神经网络模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子计算和神经网络结合而产生的量子神经网络(Quantum Neural Network,QNN)是新兴和前沿的学科之一,目前在全世界还处于研究者个体探索的阶段,发展还很不成熟。科学家研究量子神经网络一方面设计新型的量子神经网络模型,另一个方面研究某种模型的具体工作算法和实际应用。
     在分析量子力学和量子计算理论中的一些原理和概念的基础上,通过设计神经网络拓扑结构和训练算法,形成新的量子神经网络模型。本论文创造性研究成果如下
     (1)提出了量子M-P和感知器网络模型
     利用量子线性叠加提出了量子M-P神经网络模型。并且在网络输入的量子状态为正交态和非正交态的两种情况下描述了该网络的工作原理以及它的权值更新算法。同时结合量子计算和传统的感知器网络提出了量子感知器网络模型,通过对量子感知器进行实例分析、性能分析和仿真实验表明一个单神经元量子感知器能实现单神经元经典感知器无法实现的XOR功能。
     (2)提出了带权值的量子神经网络模型
     在Grover量子算法的基础上,提出了一个带权值的量子神经网络和对它的训练方法,这种权值训练方法完全工作在量子机制下。这种网络能处理现实中的一些经典问题。并且基于Grover量子搜索算法的权值更新算法总能以一定的概率学习训练样本,达到网络的目的。
     (3)提出了量子Hopfield神经网络模型
     提出了存储矩阵元素基于概率分布的量子Hopfield神经网络模型,它的存储容量或记忆容量提高到了神经元个数的2N倍,比传统的Hopfield神经网络有了指数级的提高。并且工作过程符合量子演化过程。
     (4)提出了无权值的量子神经网络模型
     提出了两种无权值的量子神经网络,一种是量子竞争神经网络,它通过量子竞争能够对模式进行识别和分类。它在存储待识别的模式时存储容量或记忆容量比传统的竞争神经网络有了指数级的提高。另一种是随时间演化的量子门网络,它通过依赖于时间的初始哈密顿量所对应的本征态为量子初始态。随后哈密顿量随时间发生变化,经过一定的时间T后哈密顿量所对应的量子本征态就是网络需要的目标状态。
     (5)提出了量子多模式识别网络模型
     本论文为量子多模式识别网络模型设计了三种不同的量子多模式识别算法:一种是多模式高概率量子搜索算法,它通过一系列的幺正操作能在模式集中以较高的概率搜索目标,并且该算法在搜索多目标模式时能在一次算法的执行中就找到目标。另一种是带冗余项的多模式识别算法,它采用了新的模式集量子初态和量子编码设计方案。并充分利用量子计算的并行特性,可以同时对模式集中的多个模式以一定的概率进行识别。最后一种是部分多模式识别算法,它把数据库的N个搜索项分成K等份,在此基础上,它可以在数据库中以量子算法同时搜索到多个模式,并且它又比全局多模式搜索算法减少了(3b/4p)~(1/2)-π/6(b/p)~(1/2)搜索迭代次数。
Quantum neural network (QNN) is one of the young and outlying science built upon the combination of classical neural network and quantum computing. Its development just starts all over the world, which is in the state that the researcher explores it individually. The work of the scientists devoting to the QNN includes not only developing working algorithm and application of some models but also designing novel QNN models.
     On the base of the analysis of some principles and concepts of the quantum mechanics and quantum computation theory, this dissertation designs topology structure or learning algorithm of neural network and then forms the new QNN models. The main contributions of this dissertation are summerized as follows:
     (1)The quantum M-P and perceptron network models are proposed.
     Making use of quantum linear superposition, a quantum M-P neural network is presented. Moreover, the working principle of this proposed network and its corresponding weight updating algorithm are expatiated in the two cases of input state being in the orthogonal and non-orthogonal basic set, respectively. At the same time, a monolayer quantum perceptron network is presented using some merits of quantum computation, especially quantum parallelism. The case、performance analysis and simulation on the monolayer quantum perceptron show that the proposed network with only one neuron can realize XOR function unrealizable with a classical perceptron having a neuron.
     (2) A model of QNN with weight is presented.
     Upon the analysis of the Grover’s quantum algorithm, a model of QNN with weight vector and its corresponding training method are proposed. It also can be shown that this model’s training method works in quantum mechanism. Results on the data set show that this network model can deal with some classical problem and the proposed weight updating algorithm based on the Grover always can learn training examples with a certain percentage.
     (3) A quantum hopfield neural network (QHNN) model is proposed.
     This dissertation presents a quantum Hopfield neural network (QHNN) whose elements of the storage matrix are performed in a probabilitic way. Contrasting to the conventional Hopfield neural network, the storage capacity of the QHNN is increased by a factor of 2~N, and its working process accords with quantum evolvement process.
     (4) The models of QNN without weight are presented.
     Two kinds of the model of QNN without weight are proposed: one is the quantum competitive neural network (QCNN) that can recognize patterns and class patterns via quantum competition. Contrasting to the conventional competitive neural network, the storage capacity or memory capacity of the QCNN is exponentially increased by a factor of 2n. Another is the time-dependent quantum gate network, which has the initial quantum state that is the eigenstate of time-dependent Hamiltonian operator. Then Hamiltonian evolve in time and the eigenstate corresponding to the final Hamiltonian is the target state of the network after the time T. Seeing from the macroscopy, this quantum target state can be considered to evolve from the initial state.
     (5)A model of quantum multi-pattern recognition network is proposed.
     Three kinds of quantum multi-pattern recognition algorithms are designed for the quantum multi-pattern recognition network: The first one is the multi-pattern highprobable quantum search algorithm that can search targets highprobably in the pattern sets through a series of unitary transformation. This algorithm can find goals by only one searching of the pattern. The second one is the algorithm of multi-pattern recognition with spurious items, which introduces a new design scheme of initializing quantum state and quantum encoding on the pattern set. Owing to the power of quantum parallel speciality, this method can recognize simultaneously with a certain probability multi-pattern of the pattern set. The final one is the multi-pattern partial quantum search algorithm. It separates the database of N items into K blocks and this algorithm can search concurrently multi-pattern in the database. Besides, it takes about (3b/4p)~(1/2)-π/6(b/p)~(1/2) fewer iterations than the global multi-pattern search algorithm.
引文
[1] J. Ahn, T. C. Weinacht, P. H. Bucksbaum.Information storage and retrieval through quantum phase.Science Vol 287 21 January 2000.
    [2] Christoph Durr,Peter H?yer.A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014 v2 7 Jan 1999.
    [3] Ralf Schutzhold.Pattern recognition on a quantum computer.arXiv:quant-ph/0208063 v3 3 Dec 2002
    [4] David Horn and Assaf Gottlieb.Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Physical Review Letters, Vol. 88, Number 1,7 JAN 2002.
    [5] Mitja Perus and Horst Bischof. Loo Chu Kiong.Quantum-implemented selective reconstruction of high-resolution images. arXiv:quant-ph/0401016 v1 5 Jan 2004.
    [6] Hameroff S R. Quantum coherence in microtubules: an intra-neuronal substrate for emergent consciousness. J. of Consciousness Studies,1994, 1: 91-118
    [7] Isaac L. Chuang, Neil Gershenfeld and Mark Kubinec.Experimental implementation of fast quantum searching.Vol.80, Number 15,Physical Review Letters,13 April 1998.
    [8] Intel Corporation.Moores’law:Changing the PC platform for an other 20 years .http://www. developer.intel.com/solutions/archive/issue2/focus.htm,1998.
    [9] Jie-Yu Zhao.implementing associative memory with quantum neural networks.Proceedings of the Third International Conference on Machine Laming and Cybernetics, Shanghai, 26-29 August 2004'
    [10] Ambaryan, T.R.Neuro-quantum networks in tasks of pattern recognition. 2005 International Conference on Physics and Control, 2005,24-26 Aug. 2005 Page(s):527– 530.
    [11] G. Bonnell and G. Papini.quantum neural network.International Journal of Theoretical Physics, Vol. 36, No. 12, 1997.
    [12] Rodney Van Meter.Training classical for quantum computation using indirection. http://www.tera.ics.keio.ac.jp/person/rdv/quantum/publications/pay-the-exponential-full-inline.pdf, April 29, 2004
    [13] Hugo de Garis, Amit Gaur, and Ravichandra Sriram.Quantum versus evolutionary systems.Total versus Sampled Search.ICES 2003, LNCS 2606, pp. 457–465, 2003
    [14] Christopher Altman, Jarosl_aw Pykacz,and Romàn R. Zapatrin.Superpositional quantum network topologies.International Journal of Theoretical Physics, Vol. 43, No. 12, December 2004
    [15] J. P. Dowling, J. D. Franson, H. Lee, and G. J. Milburn.Towards scalable linear-optical quantum computers.Quantum Information Processing, Vol. 3, Nos. 1–5, October 2004
    [16] Chu Kiong Loo, M. Perus, and H. Bischof.Simulated quantum-optical object recognition from high-resolution images.Optics and Spectroscopy, Vol. 99, No. 2, 2005, pp. 218–223.
    [17] L. Ma,and K. Khorasani, Constructive feedforward neural networks using Hermite polynomial activation functions, IEEE Transactions on Neural Networks 16, 821 (2005).
    [18] Jie Bao,Mengxian Pan, Jun Gao.Potential function explain of the quick qlgorithm of sy- nergetic neural network.http://www.public.iastate.edu/~baojie/pub/2001-06-24potential.pdf
    [19] A. Daffershofer.,H. Haken. Synergetic computers for pattern recognition- a new approach to recognition of deformed patterns. Pattern Recognition, Vol. 27, No. 12, pp. 1697-1705 (1994)
    [20] H.Haken,R.Haas and W.Banzhaf.a new learning algorithm for synergetic computers. Biological Cybernetics,62,107-111(1989)
    [21] G. Resconi,A.J. van der Wal.Morphogenic neural networks encode abstract rules by data. Information Sciences 142 (2002) 249–273
    [22] M. Akazawa, E.Tokuda,N.Asahi and Y. Amemiya.Quantum Hopfield network using single-electron circuits---a novel Hopfield network free from the local-minimum difficulty.Analog Integrated Circuits and Signal Processing, 24, 51-57, 2000
    [23] Yukinari Kurita.Indispensable role of quantum theory in the brain dynamics.BioSystems 80 (2005) 263–272.
    [24] Mitja Perus and Horst Bischof.Quantum-wave pattern recognition:from simulations towards implementation.arXiv:quant-ph/0303092 v2 27 Mar 2003
    [25] Max Tegmark.The importance of quantum decoherence in brain processes.arXiv:quant-ph/ 9907009 v2 10 Nov 1999
    [26] Mitja Perus,Horst Bischof,Chu Kiong Loo.Bio-computational model of object-recognition: Quantum Hebbian processing with neurally shaped Gabor wavelets.BioSystems 82 (2005) 116–126
    [27] Mitsunaga Kinjo,Shigeo Sato,Koji Nakajima.Quantum adiabatic evolution algorithm for a quantum neural network.ICANN/ICONIP 2003, LNCS 2714, pp. 951–958, 2003.
    [28] Andrei Khrennikov.quantum-like brain:”interference of minds”. BioSystems 84 (2006) 225–241
    [29] Willard L. Miranker.A neural network wave formalism. Advances in Applied Mathematics 37 (2006) 19–30
    [30] H.Haken.information flow in synergetic computers.Annalen der Physik,7,folge,Band 48,Heft 1-3,1991,s.97-102.
    [31] H.Haken.recognition of patterns and movement patterns by a synergetic computer.Parallel Processing in Neural Systems and Computers,P451-456,1990.
    [32] Teijiro Isokawa, Tomoaki Kusakabe, Nobuyuki Matsui and Ferdinand Peper.Quaternion neural network and its application.KES 2003, LNAI 2774, pp. 318–324, 2003.Springer- Verlag Berlin Heidelberg 2003
    [33] Lov K. Grover.From schr?dinger’s equation to the quantum search algorithm.arXiv: quant-ph/0109116 22 Sep 2001
    [34] Alexander Yu. Vlasov.quantum computions and images recognition.arXiv: quant-ph/ 9703010 v1 7 Mar 1997
    [35] D. K. Ferry, R. Akis,J. Harris.Quantum wave processing.Superlattices and Microstructures, Vol. 30, No. 2, 2001.
    [36] Michael J. Bremner, Christopher M. Dawson,et al.A practical scheme for quantum computation with any two-qubit entangling gate.arXiv:quant-ph/0207072 v1 12 Jul 2002.
    [37] Gao Shan.A possible connection between self-consciousness and quantum.Axiomathes Volume 14, Number 4 / September, 2004,P295-305.
    [38] Faber J., Gilson A.,Giraldi. Quantum models for artificial neural network. http://arquivosweb.lncc.br/pdfs/QNN-Review.pdf,2003
    [39] Li Weigang.Entangled neural networks. http://www.cic.unb.br/~weigang/qc/enn2000. pdf
    [40] Fariel Shafee. Entangled quantum networks.Technical report, http://arxiv.org/ftp/quantph/ papers/0203/0203010.pdf, 2002
    [41] Fariel Shafee.Neural networks with quantum gated nodes.arXiv:quant-ph/0202016 v2,25 Jun 2004
    [42] Fariel Shafee.Information in entangled dynamic quantum networks.Microelectronics Journal 37 (2006) 1321–1324.
    [43] Shafee, F., Neural networks with quantum gated nodes. Engineering Applications of Artificial Intelligence (2006),doi:10.1016/j.engappai.2006.09.004.
    [44] Fariel Shafee. Neural network with Semiclassical Excitation.arXiv:quant-ph/0202015 v3 25 Jun 2004.
    [45] A.A.Ezhov,A.G. Khromov,and G.P.Berman.Multivariable functions approximation using a single quantum neuron. http://www.triniti.ru/CTF&VM/ Articles/Khromov1.pdf2001)
    [46] Laxmidhar Behera and Bharat Sundaram.Stochastic filtering and speech enhancement using a recurrent quantum neural network.2004. Proceedings of International Conference on Intelligent Sensing and Information Processing. 2004 Page(s):165– 170, IEEE, New York, NY, USA.
    [47] Laxmidhar Behera and Indrani Kar.Quantum stochastic filtering. 2005 IEEE International Conference on Systems, Man and Cybernetics. Volume 3,10-12 Oct. 2005 Page(s):2161- 2167 Vol. 3, IEEE, New York, NY, United States.
    [48] Laxmidhar Behera,Indrani Kar,Avshalom C. Elitzur. A recurrent quantum neural network model to describe eye tracking of moving targets.Foundations of Physics Letters, Vol. 18, No. 4, August 2005.
    [49] Behman, E.C., Chandrashkar, V.G., Wang, C.K.: A quantum neural network computes entanglement. Physical Review Letters, 1(2002)152-159.
    [50] Shiyan H.: Quantum neural network for image watermarking, Lecture Notes in Computer Science, Springer-Verlag, (2004)669-674.
    [51] Gopathy,P., Nicolaos, B., Karayiannis N.B.: Quantum neural networks: Inherently fuzzy feedforward neural networks. IEEE Transactions on neural networks, (1997)679-693.
    [52] Daqi Zhu,ErKui Chen,Yongqing Yang. A quantum neural networks data fusion algorithm and its application for fault diagnosis.ICIC 2005, Part I, LNCS 3644, pp. 581– 590, 2005.
    [53] Miao Fuyou,Xiong Yan,Chen Huanhuan and Wang Xingfu. A fuzzy quantum neural network and is application in pattern recognition.Chinese Journal of Electronics, Vo1.14,No.3,July 2005
    [54] Animesh Datta,Steven T. Flammia,and Carlton M. Caves.Entanglement and the power of one qubit.Physical Review A 72,042316,2005
    [55] A.A.Ezhov.Role of interference and entanglement in quantum neural processing. Proceedings of SPIE -- Volume 4591,2001,pp.367-379
    [56] E.C.Behrman,V.Chandrashekar,Z.Wang,C.K.Belur,J.E.Steck,and S.R.Skinner.A quantum neural network computes entanglement.http://www.cs.umanitoba.ca/~toulouse/qc/qann1.pdf
    [57] C.A.Trugenberger. Probabilistic quantum memories .Phys. Rev. Lett. 87, 067901 (2001).
    [58] C.A.Trugenberger,.phase transitions in quantum pattern recognition.Phys. Rev. Lett. 89, 277903 (2002).
    [59] T. Brun, H. Klauck, A. Nayak, M. Ro¨tteler, andCh. Zalka.Comment on“probabilisticquantum memories”, Phys. Rev. Lett. 91,209801 (2003).
    [60] C.A.Trugenberger.Trugenberger replies. Phys. Rev. Lett. 91,209802 (2003).
    [61] C. A. Trugenberger. Quantum pattern recognition. Quantum Information Processing,Vol.1, No.6,December 2002.
    [62] A. Narayanan, Quantum algorithms. Tech.Report 374, Department of Computer Science, University of Exeter, (1998)
    [63] Guifre Vidal.Efficient classical simulation of slightly entangled quantum computations. physical review letters,vol.91,number 14,2003.10.
    [64] Richard Jozsa.Entanglement and quantum computation.quant-ph/9707034 17 Jul 1997
    [65] Michail Zak and Colin P. Williams. Quantum neural nets.International Journal of Theoretical Physics, Vol. 37, No. 2, 1998
    [66] Michail Zak.entanglement-based communications.Chaos,Solitons and Fractals 13(2002) 39-41
    [67] Michail Zak.Quantum decision-maker. Information Sciences 128 (2000) 199-215
    [68] Michail Zak.Dynamical networks for information processing. Information Sciences 165 (2004) 149–169
    [69] Jie Zhou, Qiang Gan, Adam Krzyzak, Ching Y. Suen.Recognition of handwritten numerals by quantum neural network with fuzzy features.International Journal on Document Analysis and Recognition(IJDAR) (1999) 2: 30-36
    [70] R.W.Newcomb,C.H.Yang,and A.M.Hodge.quantum dot neural network neurons.seventh international conference in control,automation,robotics and vision(ICARCV’02),Dec 2002,Singapore.
    [71] Benoit Morel.Biologically plausible learning rules for neural networks and quantum computing. Neurocomputing 32-33 (2000) 921-926
    [72] E. Fahri,S. Gutman.Analog analogue of a digital quantum computation, Phys. Rev. A 57 (1998)2403-2407.
    [73] Gerasimos Rigatos, Spyros Tzafestas.Neural structures using the eigenstates of a quantum harmonic oscillator.Open Sys. & Information Dyn. (2006)13: 27-41
    [74] G.G. Rigatos, S.G. Tzafestas.Quantum learning for neural associative memories.Fuzzy Sets and Systems 157 (2006) 1797– 1813
    [75] Jerome R.,Busemeyer,Zheng Wang and James T. Townsend.Quantum dynamics of human decision-making.Journal of Mathematical Psychology, Volume 50, Issue 3, June 2006, Pages 220-241
    [76] M. Boyer, G. Brassard, P. Hoyer and A.Tapp, Tight bounds on quantum searching, Fortsch .Phys. 46 (1998), 493–506
    [77] Deutsch D. Quantum computational networks. Proceedings of the Royal Society of London (series A), 1989,425:73~90.
    [78] Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London (series A), 1985,400:97~117
    [79] Goong Chen,Stephen A. Fulling,and Marlan O.Scully.Grover's Algorithm for Multiobject Search in Quantum Computing.
    [80] M. V. Altaisky.Quantum neural network.arXiv:quant-ph/0107012 v2 5 Jul 2001.
    [81] Kak S C. On quantum neural computing. Information Sciences, 1995,83(3&4): 143-160
    [82] Menneer T. Quantum artificial neural networks . Ph. D. thesis of The Univ. of Exeter, UK,1998.
    [83] Menneer T, Narayanan A. Quantum-inspired Neural Networks. Tech. Rep. R329, Univ. of Exeter, 1995
    [84] Li Wei-gang. Quantum neural computing study. http://www.cic.unb.br//~weigang/qc/ enn2000.pdf
    [85] Bob Ricks, Dan Ventura,Training a quantum neural network.Neural Information Processing Systems, pp. 1019-1026, December 2003
    [86] Ricks, B., Ventura, D.: Training a quantum neural network. Advances in Neural Information Processing Systems 16 (2003)
    [87] Li Fei,Zhao Shengmei,Zheng Baoyu.,Performance of a single quantum neuron.Chinese Journal of Electronics,Vol.14,No.1,Jan.2005:111-114.
    [88] Subhash Kak,Rotating a qubit,Information Sciences 128 (2000) 149-154.
    [89] Deutsch, D. and R. Jozsa, Rapid solution of problemsby quantum computation, Proceedings of the Royal Society,London A, v439, pp. 553-558, 1992.
    [90] Grover, Lov, A fast quantum mechanical algorithm for database search, Proceedings, 28th Annual ACM Symposium on the Theory of Computing (STOC), May 1996, pages 212-219,Philadelphia PA, USA.
    [91] Shor, Peter, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal of Computing, v26, pp. 1484-1509, 1997.
    [92] Simon, D., On the power of quantum computation,SIAM Journal of Computation, v26, pp. 1474-83, 1997.
    [93] Ventura D,Martinez T R. Quantum associative memory.Information Sciences 2000,124(1-4):273-296
    [94] Dan Ventura,Implementing competitive learning in a quantum system,Proceedings of the International Joint Conference on Neural Networks ({IJCNN}'99), paper 513,1999.
    [95] Ventura D、Martinez T R, Initializing the amplitude distribution of a quantum state[J], Foundations of Physics Letters, 1999, 12(6): 547-559
    [96] Dan Ventura. A quantum analog to basis function networks, Proceedings of the International Conference on Computing Anticipatory Systems, pp. 286-295, August 2001.
    [97] Dan Ventura and Tony Martinez. An artificial neuron with quantum mechanical properties. Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pp. 482-485, April 1997.
    [98] Perus M. Neuro-quantum parallelism in brain-mind and computer[J].informatica 1996,20:173~183
    [99] A.A.Ezhov a,A.V.Nifanova, Dan Ventura, Quantum associative memory with distributed queries, Information Sciences 128 (2000) 271-293.
    [100] A. Narayanan and T. Meneer. Quantum artificial neural network architectures and components. Information Sciences 128, 2000, pp. 231-255.
    [101] T. Hogg and D. Portnov. Quantum optimization. Information Sciences 128, 2000, pp. 181-197.
    [102] M. Zak. Quantum Decision-maker. Information Sciences 128, 2000, pp. 199-215.
    [103] E.C. Behrman, L.R. Nash, J.E. Steck, V.G. Chandrashekar and S.R. Skinner, Simulations of quantum neural networks, Information Sciences 128, 2000, pp. 257-269.
    [104] A. Ezhov, A. Nifanova and D. Ventura.Distributed queries for quantum associative memory.Information Sciences 128, 2000, pp. 271-293.
    [105] J. Howell, J. Yeazell and D. Ventura. Optically simulating a quantum associative memory. Physical Review A 62, 2000, article #42303.
    [106] D. Ventura. Learning quantum operators. Proceedings of the International Conference on Computational Intelligence and Neuroscience, 2000, pp. 750-752.
    [107] D. Ventura. On the utility of entanglement in quantum neural computing. Proceedings of the International Joint Conference on Neural Networks, 2001, pp. 1565-1570.
    [108] Dan Ventura, Pattern classification using a quantum system, Proceedings of the Joint Conference on Information Sciences, pp.537-640, March 2002.
    [109] M. Nielsen and I. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000.
    [110] Wolfgang Maass,Neural computation withWinner-Take-All as the only nonlinear operation.Advances in Neural Information Processing Systems,vol. 12, MIT Press, 2000.
    [111] Martin T. Hagan,HowARd B.,Dcmuth,Mark Beale. neural network design. PwS Publishing Company a division of Thomson Learing,United States of America,1996
    [112] Vlatko Vedral, Adriano Barenco, and Artur Ekert.Quantum networks for elementary arithmetic operations.Physical Review A, Vol.54,Number 1,July 1996
    [113] Umesh Vazirani. Quantum algorithms.LNCS 2138, pp. 45–46, 2001.Springer-Verlag Berlin Heidelberg 2001
    [114] Andris Ambainis.Quantum lower bounds by quantum arguments.Journal of Computer and System Sciences 64, 750–767 (2002)
    [115] Shor P.W. Algorithms for quantum omputation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science. Santa Fe: IEEE Computer Society Press, 1994. 124~134.
    [116] Sanjay Gupta,R.K.P.Zia. Quantum neural networks. arXiv:quant-ph/0201144 v1,30 Jan 2002
    [117] P.GRALEWICZ.Quantum computing in neural networks.arXiv:quant-ph/0401127 v2,11 Feb 2004
    [118] Alexandr A. Ezhov, Dan Ventura.Quantum neural networks. http://www.triniti.ru/CTF& VM/Articles/Ezhov1.pdf ,2001
    [119] Hugo de GARIS,Ravichandra SRIRAM,Zijun ZHANG.Quantum generation of neural networks.http://www.cs.usu.edu/~degaris/papers/IJCNN-2003-QNN.PDF
    [120] Matsui, Takai, Nishimura. A network model based on qubit-like neuron corresponding to quantum circuit. IEICE, Vol.J81-A, No.12, 1998,pp.1687-1692.
    [121] Takai, Matsui, Nishimura. A neural network based on quantum information theory. Proc. SICE Kansai branch, Annual Symposium, Vol.J81-A, No.12,pp.154-157, Oct 1998,.
    [122] Nobuyuki Matsui, Masato Takai, Haruhiko Nishimura. A learning network based on qubit-like neuron model. Proc. The Seventeenth IASTED International Conference on . Applied Informatics, 1999.
    [123] Matsui N, Kouda N, Nishimura H. Neural network based on QBP and its performance. In: Proceedings of international joint coference on neural networks ,2000 III:247–252
    [124] Kouda N, Matsui N, Nishimura H.Learning performance of neuron model based on quantum superposition. In:Proceedings of the 2000 IEEE international workshop on robot and human interactive communication, pp 112–117
    [125] Kouda, N., Matsui, N., Nishimura, H. and Peper, F:Qubit neural network and its efficiency In: Proceedings of Knowledge- Based Intelligent Information Engineering Systems (KES2003), LNAI-2774, pp. 304–310, Springer-Verlag, 2003.
    [126] Kouda, N., Matsui, N., Nishimura, H. and Peper, F.: Qubit neural network and its learning efficiency,Neural Computing and Applications,2005,14(2):114-121.
    [127] Kouda, N., Matsui, N., Nishimura, H. and Peper, F.: An examination of qubit neural network in controlling an inverted pendulum.Neural Processing Letters ,2005,22(3): 277–290 . Springer 2005
    [128] Kouda, N.,Matsui, N. and Nishimura, H.: Image compression by layered quantum neural networks, Neural Processing Letters, 16 (1) (2002), 67–80.
    [129] Weigang L. A study of parallel self-organizing map. E-Print:http://xxx.lanl.gov/lanl e-print quant-ph/9808025, 1998
    [130] Tohru Nitta. An extension of the back-propagation algorithm to complex,numbers, Neural Networks,Vol.10, No.8, pp.1391-1415, 1997.
    [131] A.A.Ezhov. Pattern recognition with quantum neural networks .ICAPR 2001, LNCS 2013, pp. 60?71, 2001
    [132] I. E.Lagaris, A. Likas, and D. I. Fotiadis, artificial neural network methods in quantum mechanics, Comp. Phys. Commun.,vol. 104, pp. 1-14, 1997.
    [133] Anas N. Al-Rabadi and George G. Lendaris.Artificial neural network implementation using many-valued quantum computing. http://www.nwcil.pdx.edu/pubs/papers/IJCNN 2003_Al-Rabadi.pdf
    [134] D.Rakovic.Hopfield-like quantum associaltive neural networks and (quantum)holistic psychosomatic implications.In Proc. 6th Sem. on NNS Applications in Electrical Engineeing NEUREL-2002, B. Reljin, S. Stankovic (eds.)
    [135] M. Perus and S. K. Dey. Quantum systems can realize content-addressable associative memory. Appl. Math. Lett., vol. 13, no. 8, pp. 31-36, 2000.
    [136] Dejan Rakovi?1,3, Ph.D. and Miroljub Dugi?2,3, Ph.D.Quantum holographic and classical Hopfield-like associative nets:implications for modeling two cognive modes of consciousness.Opticheskii Journal, Vol. 72, No. 5 (2005), pp. 13-18
    [137] E.C. Behrman, L.R. Nash, J.E. Steck , V.G. Chandrashekar , S.R. Skinner. Simulations of quantum neural networks.Information Sciences 128 (2000) 257-269.
    [138] Chu Kiong Loo Mitja Perus and Horst Bischof. Associative memory based image and object recognition by quantum holography. Open Sys. & Information Dyn. 11: 277-289, 2004
    [139] Perus. M. Neural networks as a basis for quantum associative networks . Neural Netw World. 2000. VOL.10.P 1001–1013.
    [140] Mitja Perus, Horst Bischof, Tarik Hadzibeganovic.A natural quantum neural-like network.NeuroQuantology 2005 |Issue 3|Page 151-163
    [141] N. B. Karayiannis,A.Mukherjee,J. R. Glover, J. D. Frost, JrR. A. Hrachovy ,E. M. Mizrahi.An evaluation of quantum neural networks in the detection of epileptic seizures in the neonatal electroencephalogram.Soft Comput (2005)DOI 10.1007/s00500-005-0498-4.
    [142] Penrose R.The emperor’s new mind.Oxford Universitive, Press,1989
    [143] McCulloch W,Pitts W.A logical calculus of the idea simmanent in nervous activity.Bulletin of Mathematical Biophysics,1943,10(5):115-133.
    [144] Hebb D.O.The organization of behavior.NewYork:Wiley,1949.
    [145] Rosenblattt F.The perception:A probabilistic model for information storage and oganization in the brain.Psychological Review,1958,65:386-408.
    [146] Hospfield J.Neural networks and physical systems with emergent collective computer abilities.Proc.Natl Acad Sci,1982,79(6):2554-2558.
    [147] R.P.Feynman.Simulating physics with computers.Int. J.Theor. Phys,1982,21 (6&7):467~488
    [148] Michiharu Maeda et al., Qubit neuron according to quantum circuit for XOR problem,Applied Mathematics and Computation (2006), doi:10.1016/j.amc.2006.07.046
    [149] Martin T.Hagan Howard B.Demuth,Dai kui.Neural network design[M].China Machine Press,2005.8.
    [150] Grover,L k. A fast quantum mechanical algorithm for database search.Proceedings, 28th Annual ACM Symposium on the Theory of Computing (STOC), ACM Press,May 1996, pages 212-219,Philadelphia PA, USA
    [151] Boyer M,Brassard G, Hoyer P et al.Tight bounds on quantum searching.Fortsch Phys,1998 (46):493–506.
    [152] Zalka C.Grover’s quantum searching algorithm is optimal.Physical Review A,1999,60:2746 ~2751.
    [153] Biron D,Biham O, Biham E et al.Generalized grover search algorithm for arbitrary initial amplitude distribution[C]//Proceedings of the First NASA International Conference on Quantum Computation and Quantum Communications, California,USA, Spinger-Verlag February 1998,pp.140-147.
    [154] G.L.Long:Grover Algorithm with zero theoretical failure rate. Phys. Rev. A 64 (2001) 022307.
    [155] Lov K.Grover and Jaikumar Radhakrishnan.Is partial quantum search of a database any easier?.arXiv:quant-ph/0407122 v4 7 Feb 2005
    [156] Vladimir E.Korepin and Lov K.Grover.Simple Algorithm for Partial Quantum Search.Quantum Information Processing,Vol. 5,No. 1,February 2006.
    [157] M.Andrecut and M.K.Ali.Adiabatic Quantum gates.International Journal of Theoretical Physics, Vol. 43, No. 4, April 2004
    [158] M.Andrecut and M.K.Ali.Maximum speed of quantum evolution.International Journal of Theoretical Physics,Vol. 43, No. 4,April 2004
    [159] E.Farhi,J.Goldstone,S.Gutmann,M.Sipser.Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106v1 28 Jan 2000.
    [160]解光军.量子神经计算及其模型研究. [博士学位论文],合肥:中国科学技术大学,2002.
    [161]井孝功、张井波.高等量子力学导论.哈尔滨:哈尔滨工业出版社,2004年6月.
    [162]周世勋.量子力学教程.北京:人民教育出版社,1979年2月。
    [163]曾谨言.量子力学教程.北京:科学出版社,2003年2月
    [164]张永德.量子力学.北京:科学出版社,2002年3月。
    [165]张永德.量子信息物理原理.北京:科学出版社,2006年1月。
    [166]李承祖、黄明球等.量子通信与量子计算.长沙:国防科技大学出版社,2000年8月。
    [167]王伟.人工神经网络原理.北京:北京航空航天大学出版社,1995.10。
    [168]解光军、庄镇泉.量子神经网络.计算机科学,2001, 28(7): 1-6
    [169]哀曾任.人工神经网络及其应用.北京:清华大学出版社,1999.
    [170]解光军、庄镇泉.一种量子竞争学习算法.量子电子学报,vol.20.No.1.2003:42-46.
    [171]解光军.量子神经计算技术.吉首大学学报(自然科学版),Vol.26 No.1,2005.1
    [172]张镇九、张昭理、李爱民.量子计算与通信加密.武汉:华中师范大学出版社,2002年09
    [173]尼尔森、赵千川译.量子计算和量子信息——量子计算部分.北京:清华大学出版社, 2004.1.
    [174]尼尔森、郑大钟、赵千川译.量子计算和量子信息——量子信息部分.北京:清华大学出版社,2005.1.
    [175] [美]哈根(Hagan,M.T.)等著、戴葵等译.神经网络设计.北京:机械工业出版社, 2005.8.
    [176]庄镇泉,李斌,解光军等.量子神经计算和量子遗传算法的理论分析和应用.高技术通讯,2005年7月第15卷第7期。
    [177]夏培肃.量子计算.计算机研究与发展,2001年10月第38卷第10期
    [178]钟艳花,余晓敏.量子纠缠联想记忆.量子电子学报,2005.12,第22卷,第6期
    [179]石名俊,杜江峰,朱栋培.量子纯态的纠缠度.物理学报,2000年5月,第49卷第5期.
    [180]李同山,王善斌.量子纠缠与超光速量子通信.山东理工大学学报(自然科学版),2006年3月,第20卷第2期
    [181]赵同,戚飞虎,冯炯.协同式神经网络的识别性能分析.电子学报,2000,28(1):74-77
    [182]胡栋梁,戚飞虎.协同模式识别中不平衡注意参数的研究.电子学报,1999,27(5):4-7
    [183]胡栋梁,戚飞虎.模式识别协同方法中的序参量重构.红外与毫米波学报, 98, 17(3):177-181
    [184]朱大奇.人工神经网络研究现状及其展望.江南大学学报(自然科学版),Vol.3 No.1,2004.2
    [185] N.Margolus,Lev B.Levitin.The maximum speed of dynamical evolution. arXiv:quant- ph/9710043 v2 25 Oct 1998
    [186] Shiyan Hu.Quantum neural network for image watermarking.ISNN 2004, LNCS 3174, pp. 669–674, 2004.Springer-Verlag Berlin Heidelberg 2004
    [187] Dejan RakoviC and Miroljub DugiC.Quantum and classical neural networks for modeling two modes of consciousness:Cognitive Implications.7th Seminar on neural network applications in electrical engineering,NEURAL-2004
    [188] Umesh Vazirani.Fourier transforms and quantum computation.Theoretical Aspects of Computer Science, LNCS 2292, pp. 208?220, 2002.Springer-Verlag Berlin Heidelberg 2002
    [189] Laxmidhar Behera,Indrani Kar,Avshalom C. Elitzur.A recurrent quantum neural network model to describe eye tracking of moving targets. Foundations of Physics Letters, Vol. 18, No. 4, August 2005
    [190] M. Dugic and D. Rakovic.Quantum-mechanical tunneling in associative neural networks.The European physical journal B,13, 781-790 (2000).
    [191] Vladimir E. Korepin and Lov K. Grover.Simple algorithm for partial quantum search.Quantum Information Processing,Vol. 5,No. 1,February 2006.
    [192] Lov K. Grover and Jaikumar Radhakrishnan.Is partial quantum search of a database any easier?.arXiv:quant-ph/0407122 v4 7 Feb 2005
    [193] G. L. Long.Grover algorithm with zero theoretical failure rate.arXiv:quant-ph/0106071 v1 13 Jun 2001.
    [194] A.S.Gupta,A.Pathak.Modified grover’s search algorithm in O(M+logN) steps.arXiv: quant-ph/0506093 v1 12 Jun 2005
    [195] Dan Ventura and Tony Martinez.Quantum associative memory with exponential capacity.Proceedings of the International Joint Conference on Neural Networks, pp. 509-13, May 1998
    [196] M.Andrecut and M.K.Ali.Maximum speed of quantum evolution.International Journal of Theoretical Physics, Vol. 43, No. 4, April 2004
    [197] M.Andrecut and M.K.Ali.Adiabatic Quantum gates.International Journal of Theoretical Physics, Vol. 43, No. 4, April 2004
    [198] R. Jozsa. Entanglement and quantum computation. in Geometric Issues in the Foundations of Science. S. Huggett, L. Mason, K.P. Tod, S.T. Tsou, and N.M.J.Woodhouse (eds). Oxford University Press, (1997)
    [199] J.A. Jones, and M. Mosca. Implementation of a quantum algorithm to solve Deutsch’s problem on a nuclear magnetic Resonance Quantum Computer. quantph/981027, 2 (1998)
    [200] K. Dorai, Arvind, and A. Kumar.Implementation of a Deutsch-like quantum algorithm utilizing entanglement at the two-qubit level on an NMR quantum information processor.quant-ph/0006103 (2000)
    [201] I. Chuang, N. Gershenfeld, and M. Kubinec. Experimental implementation of fast quantum searching. Physical Review Letters, 80, 3408-3411 (1998)
    [202] J. Jones, M. Mosca and R.H. Hansen. Implementation of a quantum search algorithm on a quantum computer. Nature, 393, 344-346 (1998)
    [203] D. Meyer. Does Rydberg state manipulation equal quantum computation?. Science ,289, 1431-a (2000)
    [204] D. Deutsch, and R. Jozsa. Rapid solution of problems by quantum computation. Proc. Roy. Soc. London, A 439, 553-558 (1992)
    [205] Arvind. Quantum entanglement and quantum computational algorithms. Pramana J. of Physics, 56, 357-365 (2001)
    [206] S. Lloyd. Quantum search without entanglement. Phys. Rev. A 61, 010301/1-4,(2000)
    [207] D. Meyer. Sophisticated quantum search without entanglement. quant-ph/0007070 (2000)
    [208] B.M. Terhal, and J.A. Smolin. Single quantum querying of a database.Phys. Rev. A 58, 1822-1826 (1998)
    [209] C. Dorrer, and I.A. Walmsley. Computing with interference: All-optical single-query 50-element database search in Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference. May 6-11. Baltimore (2001)
    [210] R.I.G. Hudges. The structure and interpretation of quantum mechanics. Harvard University Press, Cambridge, Massachusets and London, pp. 289-294 (1989)
    [211] D. Deutsch. The fabric of reality, Alen Lane: The Penguin Press (1997)
    [212] A. Narayanan,and M. Moore,. Quantum inspired genetic algorithms. In Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC96),IEEE Press (1996)
    [213] Zhou RiGui,Jiang Nan and Ding Qiulin. Model and training of QNN with weight. Neural Processing Letters,Vol,24,Number3,Dec.,2006,p261-269, Springer.
    [214] RiGui Zhou et al.Quantum perceptron network, Lecture Notes in Computer Science, 4131:651-657,2006.9, Springer-Verlag
    [215]周日贵,谢强,姜楠等.多模式高概率量子搜索算法.南京航空航天大学学报,Vol.39,No.2,2007, p227-230
    [216] Rigui Zhou,Jiang Nan and Ding Qiulin. Multi-pattern recognition Based on Grover’s Algorithm. Chinese Journal of Electronics, 2007,16 (4): 679-682
    [217] Rigui Zhou, Qiulin Ding. Quantum M-P neural network. International Journal of Theoretical Physics, 2007, 46(12): 3209–3215,Springer
    [218] RiGui Zhou, Qiulin Ding. Dynamic analysis and application of QANN,IEEE Computer Society Press,Volume 2,20-24 April 2006.6 Page(s):347-351(IMSCCS|06)
    [219] RiGui Zhou, Qiulin Ding. Self-qrganizing quantum neural network,IEEE International Joint Conference on Neural Network Proceedings, Vols 1-10:1067-1072, 2006
    [220] Pang C Y, Zhou Z W, Chen P X et al, Design of quantum VQ iteration and quantum VQ encoding algorithm taking O( N ) steps for data compression, Chinese Physics,Vol.15,No.3,pp.618-623, March 2006.
    [221] [10] Pang C Y, Zhou Z W, Guo G C, A hybrid quantum encoding algorithm of vector quantization for image compression, Chinese Physics,Vol.15, No.12, pp.3039 -3043,December,2006.
    [222] Pang C Y ,Loading n-dimensional vector into quantum registers from classical memory with O(logN) steps, arXiv: quant-ph/0612061v3 4 Jun 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700