用户名: 密码: 验证码:
材料和结构的拓扑优化关键理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拓扑优化比尺寸或形状优化具有更显著的节省材料和改进结构性能的技术优势,经过近二十年的快速发展,拓扑优化的研究应用已扩展到许多领域。拓扑优化本质上具有同时优化材料和结构的能力,这为对结构重量、性能敏感的航空航天、汽车等工业领域提供了大幅提升结构性能、挖掘材料潜力的技术基础。结构宏观材料布局和材料细观微结构设计分别处在宏观、细观两个空间尺度,但具有相同的优化实质。目前,材料微结构设计与宏观结构拓扑优化处于分离状况,没有充分发挥材料性能和拓扑优化的技术潜力。因此,以拓扑优化技术为依托,开展材料/结构一体化设计新理念与相关技术的研究,设计具有多功能的材料/结构系统,消除材料、结构界限,已成为当前结构优化的发展方向。本文以此为背景开展关键基础理论与方法的研究,主要成果如下:
     回顾了现有解决拓扑优化中数值计算不稳定问题的几种方法,提出适用于非规则网格的广义周长控制方法。该方法以单元间几何距离为计算参数,建立连续二次型广义周长计算表达式,方便近似处理和优化计算,消除了优化结果的棋盘格和中间密度值。根据三相材料拓扑优化中周长的多样性和特殊性,拓展周长定义,提出四种周长控制新方法,其中针对不同类别设计变量分别进行独立周长约束的方法具有最佳控制效能,能获得清晰的材料分布优化结果。大量由两相、三相材料组成的2D和3D结构的拓扑优化算例验证了方法的有效性,为材料和结构的拓扑优化设计奠定了基础。
     以均匀化方法为基础,结合有限元数值计算开发实现了材料微结构的等效性能求解和灵敏度计算软件。以此为基础,综合考虑微结构等效性能,建立了多相材料微结构多目标优化模型;利用周长控制方法,开展了两相、三相材料微结构多目标优化设计,获得清晰的微结构构型。从优化模型和实现算法上分析比较了分别以极端性能和给定性能为目标的微结构设计问题,并结合单一体积约束下具有特定性能微结构的优化模型开展了具有特定泊松比的微结构反设计,获得了满足要求的微结构构型,为开展材料/结构的一体化设计铺平了道路。
     以自然界多孔材料结构的组织结构特征为指导思想,建立了具有分层梯度变化的材料/结构模型,提出了材料/结构一体化设计方法。采用分步计算策略完成了材料/结构的一体化设计。首先进行结构宏观优化确定材料分布,其次进行细观微结构的精细设计获得了呈梯度分布的多孔材料结构,实现了对结构性能的显著改进。结合材料/结构一体化设计思想,比较了不同长宽比微结构体胞对优化结果的影响,验证了基于均匀化理论的优化设计方法不具备揭示尺度效应的能力。另外,对三相材料构成的材料/结构的一体化优化进一步验证了所建立的模型和方法的有效性。
     提出尺度关联的材料/结构一体化设计方法。结合分层梯度的材料/结构设计模型,利用超单元方法和变量关联技术,采用分步计算方法对包含不同表征体胞数的材料/结构进行优化设计,优化结果展现了明显的尺度效应,并显示出设计域包含表征体胞的数目、表征体胞的长宽比例对优化结果的影响。发现随着设计域包含表征体胞数的增加,优化结构性能逐渐趋同于基于均匀化方法的优化结果。对圆环对称结构、圆柱夹芯结构,以及三相材料所构成的材料/结构的优化计算,进一步展现了尺度对优化结果的影响。
     研究讨论了弱耦合热弹性结构的拓扑优化设计。基于弱耦合热弹性结构有限元分析计算过程,将弱耦合热弹性结构拓扑优化分解为三类优化子问题,并对子问题分别进行了研究。基于结构散热性能的优化问题比较了不同热载荷形式、不同材料模型时的优化结果,阐述了均布热流载荷下的优化模型对优化结果的影响。非耦合的多目标优化包括宏观结构拓扑优化和周期性材料/结构优化两个方面,通过变化加权因子和边界条件得到不同的优化结果,结果显示了明显的尺度效应。对已知温度场的热力耦合结构的拓扑优化,以桁架结构为例,分析了热、机械载荷的相对大小、材料惩罚模型的不同惩罚因子对优化结果的影响,提出采用不同惩罚模型应对不同类别载荷的处理思想,获得了收敛于0-1的优化解,实现了热力耦合热弹性结构的拓扑优化设计。
Topology optimization has been rapidly developing in the last two decades and is now extended in new application areas at an increasing rate, because it achieves by far greater savings and design improvement than sizing or shape optimization. Its intrinsic capacity of simultaneous optimal design of materials and structures promises to attain higher material and structural efficiency in aerospace and automobile industries, where some indexes such as weight are crucial to the performance of structures. In general, structure optimization and material design are dealt with based on the same topology optimal techniques in different scales. Currently, the potential ability of topology optimization is not fully explored, as material layout and design of microstructure are separated in the design procedure. It is necessary to investigate the integrated design methodology of materials and structures for designing the multifunctional material and structural system and removing the frontier etween materials and structures. The main research work in the dissertation will be introduced as follows:
     A generalized perimeter scheme with weak rotational mesh-dependence is proposed to prevent numerical instabilities associated with checkerboards and intermediate densities in topology optimization. The scheme of quadratic form means that it is easy to establish a suitable explicit approximation and favors its implementation in convex programming. Based on the characteristics of density design variables associated with multiphase materials, the general concept of perimeter is extended and four kinds of perimeter control methods are proposed for topology optimization multiphase materials. Several 2D and 3D optimal examples made of two or three different materials phases are carried out for the compliance minimization. It shows that checkerboards and intermediate values of density variables are able to be eliminated efficiently.
     Using the homogenization method and the finite element method, the effective properties and the sensitivities with respect to element densities of material microstructures are calculted. A multi-objective model is presented to optimize the topology of the microstructure with two or three-phase materials, subject to constraints on volume fraction and perimeter control. A comparative study is carried out for design of microstructures with the extreme properties and the prescribed elastic properties including the modeling and the algorithm. Several designs of microstructures with the prescribed properties are tested. These works are the basis for the integrated design of materials and structures.
     Inspired by hierarchical structure of natural or biological materials, an computational model for the integrated design of materials and structures consisting of hierarchical cellular material levels or layers is described and an integrated design methodology is proposed for the global stiffness maximization of the overall structure and local design of material microstructures based on the homogenization method of multi-scale computing. The optimal design procedure includes two steps. Firstly, the material layout is figured out. Secondly, topologies of microstructures of intermediate density materials are designed. Numerical results show that the proposed method is well adapted to the design of lightweight structures. In addition to this, another issue about influences of microstructure aspect ratio on the optimal design is discussed and numerical experiences show that the integrated design methodology based on homogenization method is unable to reflect scale effect. The three-phase material integrated design is investigated and computational results illustrate the procedure.
     An integrated design methodology characterizing Representative Volume Element scale is proposed. Based on the proposed concept of design element (DE), designs of materials and structures are dealt with in a unified way. By changing the periodic arrangement, the scale and aspect ratio of the DE, scale-related effects are well revealed and distinguished in the final optimal results. Furthermore, numerical design problems for 2D layered structures with cellular core, three-phase material structures, circular structures and cylindrical grid structures are investigated to illustrate the proposed approach.
     Topology optimization of weakly coupled thermo-elastic problems in steady state is discussed. The optimal design is decomposed into three sub-problems. Numerical results are obtained in different thermal loading cases. Different interpolation schemes are compared for maximizing the thermal conduction efficiency. It is shown that the optimal model affects optimal design subject to distributed heating over the structure. To study the scale-effect, the multi-objective design associated with rigidity and thermal conduction is performed by considering the whole design domain and the periodic partitionof the design domain. Finally, truss structures with uniform temperature distribution are analyzed and optimized. Different penalty approaches are tested to prevent intermediate densities and influences of penalty parameter on optimal results.
引文
Allaire G, Jouve F and Maillot H (2004). Topology optimization for minimum stress design with the homogenization method, Structural and Multidisciplinary Optimization, 28(2/3):87-98.
    Allaire G, Jouve F, Toader AM (2004), Structural optimization using sensitivity analysis and a level-set method, Journal of Computational Physics, 194:363-393.
    Ambrosio L, Buttazzo G (1993), An optimal design problem with perimeter penalization, Calculus of Variations and Partial Differential Equations,1:55-69.
    Baron E (2003), On dynamic behaviour of medium-thickness plates with uniperiodic structure, Archive of Applied Mechanics, 73:505-516.
    Beckers M (1999), Topology optimization using a dual method with discrete variables, Structural Optimization, 17:14-24.
    Beckers M (2000), Dual methods for discrete structural optimization problems, International Journal for Numerical Methods in Engineering, 48:1761-1784.
    Bendsφe MP and Kikuchi N (1988), Generating optimal topologies in structural design using a homogenization method, Computer Methods in Applied Mechanics and Engineering, 71: 197-224.
    Bendsφe MP (1989), Optimal shape design as a material distribution problem, Structural Optimization, 1:193-202.
    Bendsφe MP, Sigmund O (1999), Material interpolations in topology optimization, Archives of Applied Mechanics, 69:635-654.
    Bensoussan A, Lions JL, Papanicolaou G (1978), Asymptotic analysis for periodic structures, Amsterdam: North Holland
    Borrvall T (2001), Topology optimization of elastic continua using restriction, Archives of Computational Methods in Engineering, 8(4):351-385.
    Burgueno R, Quagliatab MJ, Mohantyc AK, et al (2005), Hierarchical cellular designs for load-beating biocomposite beams and plates, Materials Science and Engineering A, 39(1/2):178-187.
    Bruns TE (2005), A reevaluation of the SIMP method with filtering and an alternative formulation for solid-void topology optimization, Structural and Multidisciplinary Optimization, 30(6):428-436.
    Bruyneel M, Duysinx P (2005), Note on topology optimization of continuum structures including self-weight, Structural and Multidisciplinary Optimization, 29(4):245-256.
    Cheng G and Olhoff N (1981), An investigation concerning optimal design of solid elastic plates, International Journal of Solids and Structures, 17:305-323.
    Cherkaev AV, Palais R (1996), Optimal design of three dimensional axisymmetric elastic structures, Structural Optimization, 12:35-45.
    Cho S, Choi JY (2005), Efficient topology optimization of thermo-elasticity problems using coupled field adjoint sensitivity analysis method, Finite Elements in Analysis and Design, 41:1481-1495.
    Cribb JL (1963), Shrinkage and thermal expansion of a two-phase material, Nature, 220:576-577.
    Diaz AR and Kikuchi N (1992), Solutions to shape and topology eigenvalue optimization problems using a homogenization method, International Journal for Numerical Methods in Engineering, 35:1487-1502.
    Diaz AR, Sigmund O (1995), Checkerboard patterns in layout optimization, Structural Optimization, 10:40-45.
    Diaz AR, Benard A (2003), Topology optimization of heat-resistant structures, Proc ASME Des Eng Tech Conf2A:633-639.
    Dom W, Gomory R, Greenberg M (1964), Automatic design of optimal structures, J. de mecanique, 3:25-52.
    Drenchhan J, Lumsdaine A (2003), Design of a piezoelectric Actuator Using Topology optimization, Smart structures and materials 2003: modeling, signal Processing, and Control, proceedings of SPIE Vol. 5049.
    Du J, Olhoff N (2004), Topological optimization of continuum structures with design-dependent surface loading, Structural and Multidisciplinary Optimization, 27(3), Part Ⅰ: new computational approach for 2D problems, 151-165; Part Ⅱ: algorithm and examples for 3D problems, 166-177.
    Duysinx P (1996), Layout optimization: a mathematical programming approach, LTAS-Report OA-41, University of Liege, Belgium
    Eschenauer HA, Kobelev VV, Schumacher A (1994), Bubble method for topology and shape optimization of structures, Structural Optimization, 8:42-51.
    Eschenauer HA, Olhoff N (2001), Topology optimization of continuum structures: A review, ASME Applied Mechanics Reviews, 54(4), 331-390.
    Evans AG, Hutchinson JW, Ashby MF (1999), Multifunctionality of cellular metal systems, Progress in Materials Science, 43:171-221.
    Evans AG, Hutchinson JW, Fleck NA, et al (2001), The topological design of multifunctional cellular metal, Progress in Materials Science, 46:309-32.
    Femandes P, Guedes JM, and Rodrigues H (1999), Topology optimization of three-dimensional linear elastic structures with a constraint on "perimeter', Computers & structures, 73:583-594.
    Fish J, Shek K (2000), Multi-scale analysis of composite materials and structures, Composites Science and Technology, 60:2547-2556.
    Fleury C, Zhang WH (2000), Selection of appropriate approximation schemes in multi-disciplinary engineering optimization, Advances in Engineering Software, 31:385-389.
    Fujii D, Chen BC, Kikuchi N (2001), Composite material design of two-diemnsional structures using the homogenization method, International Journal for Numerical Methods in Engineering, 50:2031-2051.
    Fucks MB, Shemesh NNY (2004), Density-based topological design of structures subjected to water pressure using a parametric loading surface, Structural and Multidisciplinary Optimization, 28(1): 11 - 19.
    Garreau S, Masmoudi M, Guillaume P (1999), The topological sensitivity for linear isotropic elasticity, ECCM'99, Munich/Germany.
    Gea HC (1996), Topology optimization: A new microstructure-based design domain method, Computers & Structures, 61:781-788.
    Gersborg-Hansen A, Bendsoe MP, Sigmund O (2006), Topology optimization of heat conduction problems using the finite volume method, Structural and Multidisciplinary Optimization, 31 (4):251-259.
    Gibiansky LV, Sigmund O (2000), Multiphase elastic composites with extremal bulk modulus, Journal of the Mechanics and Physics of Solids, 48(3):461-498.
    Gibson LJ, Ashby MF (1997), Cellular solids: structure and properties (2~(nd) ed), Cambridge: the Press Syndicate of the University of Cambridge
    Guedes JM, Taylor JE (1997), On the prediction of material properties and topology for optimal continuum structures, Structural Optimization, 14:193-199.
    Guinovart-Diaz R, Rodriguez-Ramos R, Bravo-Castillero J, et al (2005), A recursive asymptotic homogenization scheme for multi-phase fibrous elastic composites, Mechanics of Materials, 37 (2005): 1119-1131.
    Guo X, Gu YX (2004), A new density-stiffness interpolation scheme for topology optimization of continuum structures, Engineering Computations, 21 (1):9-22.
    Haber RB, Jog CS, Bendsφe MP (1996), A new approach to variable-topology shape design using a constraint on perimeter, Structural Optimization, 11:1-12.
    Harasaki H and Arora JS (2001), A new class of evolutionary methods based on the concept of transferred force for structural design, Structural and Multidisciplinary Optimization, 22:35-56.
    Hasin Z, Shtrikman S (1963), A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, 11:127-140.
    Hassani B, Hinton E (1998), A review of homogenization and topology optimization, Computers & Structures, 71(6), Part Ⅰ: Homogenization theory for media with periodic structure 707-718, Part Ⅱ: Analytical and numerical solution of homogenization equations 719-738, Part Ⅲ: Topology optimization using optimality criteria 739-756.
    Jakiela MJ, Chapman C, Duda J, et al (2000), Continuum structural topology design with genetic algorithms, Computer Methods in Applied Mechanics and Engineering, 186(4):339-356.
    Jensen JS, Sigmund O (2005), Topology optimization of photonic crystal structures: a High-bandwidth Low-Loss T-Junction waveguide, J. Opt. Soc. Am. B, 22(6):1191-1198.
    Jensen JS, Pedersen NL (2006), On maximal Eigenfrequency separation in Two-Material structures: the 1D and 2D Scalar Cases, Journal of Sound and Vibration, 289:967-989.
    Jog CS, Haber RB (1996), Stability of finite element models for distributed-parameter optimization and topology design, Computer Methods in Applied Mechanics and Engineering, 130:203-226.
    Kalidindi BL, Houskanp M, Adams BL (2002), Microstructure engineering in design, ALAA 2002-5567,1509-1518.
    Kamat MP (1993), Structural optimization: Status and promise, Progress in Astronautics and aeronautics, American Institute of Astronautics and aeronautics, Vol.150, Washington.
    Kikuchi N, Nishiwaki S, Fonseca JSO, Silva ECN (1998), Design optimization method for compliant mechanisms and material Microstructure, Computer Methods in Applied Mechanics and Engineering, 151:401-417.
    Kouznetsova V, Geers MGD, Brekelmans WAM (2002), Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme, International Journal for Numerical Methods in Engineering, 54:1235-1260.
    Lakes R (1987), Foam structures with negative Poisson's ratio, Science 235:1038
    Lakes R (1993), Materials with structural hierarchy, Nature 361:511-515
    Larsen UD, Sigmund O, Bouwstra A (1997), Design and fabrication of compliant mechanism and material structures with negative Poisson's ratio, Journal of Microelectromechanical Systems, 6(2):99-106.
    Li Q, Steven GP, Xie YM (1999), Displacement minimization of themoelastie structures by evolutionary thickness design, Computer Methods in Applied Mechanics and Engineering, 179:361-378.
    Li Q, Steven GP, Xie YM (2000), Evolutionary structural optimization for stress minimization problems by discrete thickness design, Computers & Structures, 78:769-780.
    Li Q, Steven GP, Xie YM, Querin OM (2004), Evolutionary topology optimization for temperature reduction of heat conducting fields, International Journal of Heat and Mass Transfer, 47:5071-5083.
    Liu JS, Parks GT, Clarkson PJ (2000), Metamorphic development: A new topology optimization method for continuum structures, Structural and Multidisciplinary Optimization, 20:288-300.
    Luo JH, Gea HC (2003), Optimial Stiffener Design for Interior Sound Reduction Using a topology optimization Based Approach, Journal of Vibration and Acoustics, 125:267-273.
    Michell AGM (1904), The limits of economy of materials in frame structures, Philosophical Magazine, Series 6, 8(47):589-597.
    Milton GW, Thien NP (1982), New Bounds on Effective Elastic Moduli of Two-Component Materials, Proc. R. Soc. Lond A, 380:305-331.
    Moses E, Fuehs MB, Ryvkin M (2003), Topological design of modular structures under arbitrary loading, Structural and Multidiseiplinary Optimization, 24:407-417.
    Nakanishi Y (2001), Application of homology theory to topology optimization of three-dimensional structures using genetic algorithm, Computer Methods in Applied Mechanics and Engineering, 190(29):3849-3863.
    Navarrina F, Muinos I, Colominas I, Casteleiro M (2005), Topology optimization of structures: A minimum weight approach with stress constraints, Advances in Engineering Software, 36:599-606.
    Neves MM, Rodrigues H, Guedes JM (2000), Optimal design of periodic linear elastic Microstructures, Computers & Structures, 76(1-3):421-429.
    Niordson CF, Redanz P (2004), Size-effects in plane strain sheet-necking, Journal of the Mechanics and Physics of Solids, 52:2431-2454.
    Onck PR, Andrews EW, Gibson LJ (2001), Size effects in ductile cellular solids, International Journal of Mechanical Sciences, 43: Part Ⅰ: modeling 681-699; Part Ⅱ: experimental results 701-713.
    Park K, Chang S, Youn S (2003), Topology optimization of the primary mirror of a multi-spectral camera, Structural and Multidiscipl inary Optimization, 25:46-53.
    Pecullan S, Gibiansky LV, Torquato S (1999), Scale effects on the elastic behavior of periodic and hierarchical two-dimensional composites, Journal of the Mechanics and Physics of Solids, 47:1509-1542.
    Pedersen P (2000), On optimal shapes in materials and structures, Structural and Multidisciplinary Optimization, 19:169-182.
    Pederson N (2001), On topology optimization of plates with prestress, International Journal for Numerical Methods in Engineering, 51:225-239.
    Pereira JT, Fancello EA, Barcellos CS (2004), Topology optimization of continuum structures with material failure constraints, Structural and Multidisciplinary Optimization, 26(1/2): 50-66.
    Petersson J (1999), Some convergence results in perimeter-controlled topology optimization, Computer Methods in Applied Mechanics and Engineering, 171:123-140.
    Petersson J, Sigmund O (1998), Slope constrained topology optimization, International Journal for Numerical Methods in Engineering, 41:1417-1434.
    Petersson J, Beckers M, Duysinx P (1999), Almost isotropic perimeters in topology optimization, Theoretical and numerical aspects, Proc. of WCSMO-3, Buffalo, NY, USA, 09-TOM 1-1.
    Pecullan S, Gibiansky LV, Torquato S (1999), Scale effects on the elastic behavior of periodic and hierarchical two-dimensional composites, Journal of the Mechanics and Physics of Solids, 47:1509-1542..
    Poulsen TA (2003), A new scheme for imposing a minimum length scale in topology optimization, International Journal for Numerical Methods in Engineering, 57:741-760.
    Qi H, Kikuehi N, Mazumder J (2004), Interface study and boundary smoothing on designed composite material microstructures for manufacturing purposes, Structural and Multidisciplinary Optimization, 26:326-332.
    Querin OM, Steven GP, Xie YM (1998), Evolutionary structural optimization (ESO) using a bidirectional algorithm, Engineering Computations, 15(8): 1031-1048.
    Rajagopalan S, Goldman R, Shin KH, et al (2001), Representation of heterogeneous objects during design, processing and freeform-fabrication. Materials and Design, 22:185-197.
    Rodrigues H, Femandes P (1995), A material based model for topology optimization of thermoelastic structures, International Journal for Numerical Methods in Engineering, 38:1951-1965.
    Rodrigues H, Guedes JM, Bendsφe MP (2002), Hierarchical optimisation of material and structure, Structural and Multidisciplinary Optimization, 4:1-10.
    Rosen DW, Grosse IR (1992), A feature based shape optimization technique for the configuration and parametric design of flat plates, Engineering Computations, 8:81-91.
    Rossow HP and Taylor JE (1973), A finite element method for the optimal design of variable thickness sheets, AIAA J., 11:1566-1569.
    Rozvany GIN (1998), Exact analytical solutions for some popular benchmark problem in topology optimfization, Structural Optimization, 15:42-48.
    Rozvany GIN (2000), Basic geometrical properties of exact optimal composite plates, Computers & Structures, 76:263-275.
    Rozvany GIN, Zhou M, Birker T (1992), Generalized shape optimization without homogenization, Structural Optimization, 4:250-252.
    Schmit LA, Fleury C (1980), Structural synthesis by combining approximation concepts and dual methods, AIAA J.,18:1252-1260.
    Schraad MW, Triantafyllidis N (1997), Scale effects in media with periodic and nearly periodic microstructures: I. Macroscopic Properties, Journal of Applied Mechanics, 64:751-762.
    Sethian JA, Wiegmann A (2000), Structural boundary design via level set and immersed interface methods, Journal of Computational Physics, 163(2):489-528.
    Seo YD, Youn SK, Yeon JH and Chang SY (2004), Topology Optimization of Inner-Wall Stiffener for Critical Buckling Loads of Cylindrical Containers, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York, AIAA 2004-4418.
    Sigmund O (1994a), Materials with prescribed constitutive parameters: an inverse homogenization problem, International Journal of Solids and Structures, 31 (17):2313-2329.
    Sigmund O (1994b), Tailoring materials with prescribed elastic properties, Mechanics of materials, 20:351-368.
    Sigmund O (1994c), Design of material structures using topology optimization, Ph.D. Thesis, Department of Solid Mechanics, Technical University of Denmark
    Sigmund O (2000), A new class of extremal composites, Journal of the Mechanics and Physics of Solids, 48:397-428.
    Sigmund O (2001), Design of multiphysics actuators using topology optimization part Ⅱ: two material structures, Computer Methods in Applied Mechanics and Engineering, 190:6605-6627.
    Sigmund O, Bendsφe MP (2003), Topology optimization: theory, methods and applications, Berlin, Heidelberg, New York: Springer-Verlag.
    Sigmund O, Petersson J (1998), Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Structural Optimization, 16(1):68-75.
    Sigmund O, Torquato S (1997), Design of materials with extreme thermal expansion using a three-phase topology optimization method, Journal of the Mechanics and Physics of Solids, 45(6):1037-1067.
    Silva ECN, Fonseca JSO, Kikuchi N (1998), Optimal design of periodic piezocomposites, Computer Methods in Applied Mechanics and Engineering, 159:49-77.
    Steven GP, Li Q, Xie YM (2002), Multicriteria optimization that minimizes maximum stress and maximizes stiffness, Computers & Structures, 80:2433-24488.
    Stolpe M, Svanberg K (2001a), An alternative interpolation scheme for minimum compliance topology optimization, Structural and Multidisciplinary Optimization, 22:116-124.
    Stolpe M, Svanberg K (2001b), On the trajectories of penalization methods for topology optimization, Structural and Multidisciplinary Optimization, 21:140-151.
    Suthedand LS, Shenoi RA, Lewis SM (1999), Size and scale effects in composites, Composites Science and Technology, 59: Ⅰ. Literature review, 209-220; Ⅱ. Unidirectional laminates, 221-233; Ⅲ. Woven-roving laminates, 235-251.
    Takano N, Zako M (2000), Integrated design of graded microstructures of heterogeneous materials, Archive of Applied Mechanics, 70:585-596.
    Tantikom K, Aizawa T, Mukai T (2005), Symmetric and asymmetric deformation transition in the regularly cell-structured materials, International Journal of Solids and Structures, 42: Part Ⅰ: experimental study 2199-2210; Part Ⅱ: Theoretical study 2211-2224.
    Thomas JP, Qidwai MA (2004), Mechanical design and performance of composite multifunctional materials, Acta Materialia, 52(8):2155-2164.
    Thomsen J (1992), Topology optimization of structures composed of one or two materials, Structural Optimization, 5:108-115.
    Tian J, Kim T, Lu TJ, et al (2004), The effects of topology upon fluid-flow and heat-transfer within cellular copper structures, International Journal of Heat and Mass Transfer, 47:3171-3186.
    Walpole LJ (1966), On bounds for the overall elastic moduli of inhomogeneous systems, Journal of the Mechanics and Physics of Solids, 14:151-162.
    Wang MY, Wang XM, Guo DM (2003), A level set method for structural topology optimization, Computer Methods in Applied Mechanics and Engineering, 92:227-246.
    Wang MY, Zhou SW (2004), A phase-field method for topology optimization with three material phases, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York: AIAA, 2004:2902-2922.
    Wang XM, Mei YL, Wang MY (2005), Level-set method for design of multi-phase elastic and thermoelastic materials, International Journal of Mechanics and Materials in Design, 1:213-239.
    www.FE-Design.com
    www.ht43.com.cn/chanpin.htm
    www.topopt.dtu.dk
    www.XinXiHua.cn
    Xie YM, Steven GP (1993), A simple evolutionary procedure for structural optimization, Computers & Structures, 49(5):885-896.
    Yang XY, Xie YM, Steven GP (2005), Evolutionary methods for topology optimization of continuous structures with design dependent loads, Computers & Structures, 83:956-963.
    Yin L, Ananthasuresh GK (2001), Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme, Structural and Multidisciplinary Optimization, 23:49-62.
    Yin LZ, Yang W (2001), Optimality criteria method for topology optimization under multiple constraints, Computers & Structures, 79:1839-1850.
    Yoo J, Hong H (2004), A modified density approach for topology optimization in magnetic fields, International Journal of Solids and Structures, 41:2461-2477.
    Yoon GH, Heo S, Kim YY (2005), Minimum thickness control at various levels for topology optimization using the wavelet method, International Journal of Solids and Structures, 42:5945-5970.
    Young V, Querin OM, Steven GP, Xie YM (1999), 3D and multiple load case bi-directional evolutionary structural optimization (BESO), Structural Optimization, 18:183-192.
    Zhang WH (2003a), A compromise programming method using multibounds formulation and dual approach for multicriteria structural optimization, International Journal for Numerical Methods in Engineering, 58:661-678.
    Zhang WH (2003b), On the Pareto optimum sensitivity analysis in multicriteria optimization, International Journal for Numerical Methods in Engineering, 58:955-977.
    Zhang WH, Domaszewski M, Fleury C (1998), A new mixed convex approximation method with applications for truss configuration optimization, Structural Optimization, 15:237-241.
    Zhang WH, Duysinx P (2003), Dual approach using a variant perimeter constraint and efficient sub-iteration scheme for topology optimization, Computers & structures, 81(22/23):2173-2181.
    Zhang WH, Fleury C (1997), A modification of convex approximation methods for structural optimization, Computers & Structures, 64:89-95.
    Zhang WH, Yang HC (2001), A study of the weighting method for a certain type of multicriteria optimization problem, Computers & Structures, 79:2741-2749.
    Zhang WH, Yang HC (2002), Efficient gradient calculation of the Pareto optimal curve in multicriteria optimization, Structural and Multidisciplinary Optimization, 23:311-319.
    Zhou M, Shyy YK, Thomas HL (2001), Checkerboard and minimum member size control in topology optimization, Structural and Multidisciplinary Optimization, 21:152-158.
    Zhu Y, Qiu J, du H, Tani J (2002), Simultaneous optimal design of structural topology, actuator locations and control parameters for a plate structure, Computational Mechanics, 29:89-97.
    曹宗杰,闻绑椿,陈塑寰(2001),智能结构振动控制中压电传感器与执行器位置的拓扑优化,振动工程学报,14(1):90-95.
    程耿东,刘书田(1996),单向纤维复合材料导热性预测,复合材料学报,13(1):78-85.
    刘书田,曹先凡(2005),零膨胀材料设计与模拟验证,复合材料学报,22(1):126-132.
    刘书田,程耿东(1997),用均匀化方法预测单向纤维复合材料热膨胀行为,复合材 料学报,14(1):76-82.
    刘书田,贾海朋,王德伦(2004),狭长结构拓扑优化,计算力学学报,21(6):653-657.
    刘书田,郑新广,程耿东(2001),特定弹性性能材料的细观结构设计优化,复合材料学报,18(2):124-127.
    刘震宇,王晓明,郭东明(2000),利用窗函数解决连续体结构拓扑优化中的棋盘格式问题,中国机械工程,11(6):704-706.
    刘陪生(2004),多孔材料引论,北京:清华大学出版社
    潘燕环,嵇醒,薛松涛(1997),单向复合材料损伤刚度的双重均匀化方法,同济大学学报,25(6):623-628.
    荣见华,姜节胜,胡德文等(2003),基于应力及其灵敏度的结构拓扑渐进优化方法,力学学报,35(5):584-591.
    隋允康,杨德庆,孙焕纯(2000),统一骨架与连续体结构拓扑优化的ICM理论与方法,计算力学学报,17(1):28-33.
    隋允康,彭细荣(2005),结构拓扑优化ICM方法的改善,力学学报,37(2):190-198.
    王勖成,邵敏(1996),有限单元法基本原理和数值方法(第二版),北京:清华大学出版社
    袁振,吴长春(2003a),复合材料周期性线弹性微结构的拓扑优化设计,固体力学学报,35(1):39-41.
    袁振,吴长春(2003b),复合材料扭转轴截面微结构拓扑优化设计,力学学报,24(1):40-45.
    袁振,吴长春(2003c),采用非协调元的连续体结构拓扑优化设计,力学学报,35(1):176-180.
    张卫红,汪雷,孙士平(2006),基于导热性能的复合材料微结构拓扑优化设计,航空学报(已录用)
    赵康,郭旭,丁佳(2005),基于拓扑描述函数的特定性能复合材料设计,力学学报,37(5):586-592.
    周履,范赋群(1991),复合材料力学,北京:高等教育出版社
    左孔天,陈立平,张云清等(2005),用拓扑优化方法进行热传导散热体的结构优化设计,机械工程学报,41(4):13-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700