用户名: 密码: 验证码:
自组装双酚A分子印迹电化学传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双酚A (BPA)是一种典型的内分泌干扰物,具有三致效应和内分泌干扰性。目前在世界各地的水体中均有检出双酚A,其环境行为及风险评价目前成为环境领域的研究热点,但是由于双酚A在环境样品中的复杂性,寻找具有快速、高灵敏性和高选择性的现场检测的方法成为关键问题。
     本文研究通过分子印迹技术制备特异识别水中痕量双酚A电化学传感器。以双酚A为模板分子,氨基丙基三乙氧基硅烷(APTES)为功能单体,正硅酸乙酯(TEOS)为交联剂,采用自组装方法,分别在铟锡氧化物(ITO)电极和碳纳米管离子液体修饰金电极表面合成双酚A分子印迹膜,标记为MIPs-ITO和MIPs-Au,制备高灵敏性和高选择性响应水体中双酚A的分子印迹电化学传感器。
     电极的表面形态结构和电化学性质使用原子力显微镜和红外光谱分析仪进行表征。通过循环伏安法研究分子印迹传感器对双酚A的响应特性,结果表明,制备双酚A电化学传感器具有良好的灵敏度和选择性。MIPs-ITO电极对双酚A的浓度响应线性范围是0.5~50μgL-1,检测限是0.094μgL-1,双酚A结构相似物苯酚、对氨基苯酚和对硝基苯酚对电极结果影响很小。MIPs-Au电极对双酚A响应线性范围0.5~70μgL-1,检出限为0.072μg L-1,MIPs-Au电极对干扰物质对苯酚、对氨基苯酚、对硝基苯酚和对叔丁基苯酚的响应电流选择比分别为23.37,11.09,24.39和26.99,显示了该电极具有良好的选择性,达到了现场检测水中双酚A的标准。
     本研究使用自组装方法制备双酚A分子印迹聚合物,使用碳纳米管和离子液体修饰电极表面,发展了一种检测水体中双酚A的新方法。本研究为水体中的双酚A的高灵敏度选择性现场检测提供重要的技术支撑,对实现准确快速的突发环境事件预警、环境风险评价具有重要意义。
Because of the mutagenic, carcinogenic, teratogenic and endocrine disrupting effects, bisphenol A (BPA) has been listed as a typical endocrine disruptor. Owing to the complexity of BPA environmental samples, highly sensitive and selective detection methods become the key issues restricted related studies.
     Based on the specific recognition ability of molecularly imprinted polymers (MIPs), a novel electrochemical sensor with high sensitivity and selectivity was constructed for detection of BPA. By the approach of self-assembly, molecular imprinted polymers (MIPs) have been synthesized with BPA as template molecule,3-aminopropyltriethoxysilane (APTES) as functional monomer and tetraethoxysilane (TEOS) as cross linker. The MIPs film was fabricated onto an Indium tin oxide (ITO) electrode (MIPs-ITO). The MIPs film was also fabricated onto a gold electrode which modified with single-wall carbon nanotube and ionic liquids (MIPs-Au).
     The BPA imprinted electrodes were characterized by AFM and FT-IR. The affinity and selectivity of the electrochemical sensors were characterized by cyclic voltammetry (CV). MIPs-ITO electrode was linear to the concentration of BPA in the range from 0.5 to 50μg L-1 and the detection limit was 0.094μg L-1. Furthermore, MIPs-ITO electrode showed low response to the interfering compounds. MIPs-Au electrode was linear to the concentration of BPA in the range from 0.5 to 70μg L-1 and the detection limit was 0.072μg L-1. At the same concentration, the current response of BPA at MIPs-Au electrode was 23.37,11.09,24.39 and 26.99 times that of phenol, p-aminophenol, p-nitrophenol and p-Tert-butylphenol respectively, which indicated that the MIPs-Au electrode performed excellent selectivity.
     By the approach of self-assembly, MIP film has been synthesized fabricated onto electrode which modified with single-wall carbon nanotube and ionic liquids. This study will provide important technical support to rapid and highly sensitive field analysis of BPA in water, and has important significance for environmental risk assessment and early warning of environmental emergencies.
引文
[1]金新龙.双酚A、辛基酚和壬基酚等内分泌干扰物的分析方法及其在京津典型区域的污染分布[D].天津:南开大学,2004.
    [2]Staples C A, Dorn P B, Klecka G M,et al. A review of the environmental fate, effects, and exposures of bisphenol A[J]. Chemosphere,1998,36(10):2149-2173.
    [3]杨丹,李丹丹,刘姗姗,等.双酚A对机体的影响及其作用机制[J].现代预防医学,2008,35(17):3280-3282.
    [4]杜克久,徐晓白.环境雌激素研究进展[J].科学通报,2000,45(21):2241-2247.
    [5]Krishnan A, Stathis P, Permuth S, et al. Bisphenol A:an estrogenic substance is released from polycarbonate flasks during autoclaving[J]. Endocrinology,1993,132(6):2279-2286.
    [6]Watabe Y, Kondo T, Morita M, et al. Determination of bisphenol A in environmental water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device[J]. Journal of Chromatography A,2004.1032(1-2):45-49.
    [7]周鸿,张晓健,王占生.水中内分泌干扰物在我国的研究进展[J].中国给水排水,2002,18(9):26-28.
    [8]金鹏飞,傅得兴.应警惕双酚A的潜在毒性[J].首都医药,2009,(10):23.
    [9]Lang I A, Galloway T S, Scarlett A, et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults[J]. The Journal of The American Medical Association,2008,300(11):1303-1310.
    [10]张想竹,侯绍刚,吴明书.双酚A的环境行为研究进展[J].安阳工学院学报,2006,(2):10-17.
    [11]王燕春,刘启凯,赵庆祥.双酚A废水的污染状况及处理技术[J].城市环境与城市生态,2005,]8(4):15-17.
    [12]Mackay D, Paterson S. Calculating fugacity[J]. Environmental Science & Technology,1981, 15(9):1006-1014.
    [13]邓红梅,梁春营,陈永亨.水环境中双酚A的污染及其生态毒理效应[J].环境污染与防治,2009,31(7):70-76.
    [14]Matsumoto G, Ishiwatari R, Hanya T. GC-MS identified of phenols and aromatic acid in river waters[J]. Water Research,1977,11(8):693-698.
    [15]Hendriks A J, Maasdiepeveen J L, NOORDSIJ A, et al. Monitoring response of XAD-concentrated water in the Rhine Delta-a major part of the toxic compounds remains unidentified[J]. Water Research,1994,28(3):581-598.
    [16]Belfroid A, van Velzen M, van der Horst B, et al. Occurrence of bisphenol A in surface water and uptake in fish:evaluation of field measurements[J]. Chemosphere,2002,49(1):97-103.
    [17]Bolz U, Hagenmaier H, Korner W. Phenolic xenoestrogens in surface water, sediments, and sewage sludge from Baden-Wurttemberg, south-west Germany[J]. Environmental Pollution, 2001,115(2):291-301.
    [18]Azevedo D A, Laeorte S, Viana P, et al. Occurrence of nonylphenol and bisphenol A in surface water from Portugal[J]. Journal of Brazil Chemistry Society,2001,12(4):532-537.
    [19]李正炎,Li D H西瓦湖及其邻近河流中双酚A的浓度分布[J].海洋湖沼通报,2004,(2):30-35.
    [20]Jin X L, Jiang G B, Huang G L, et al. Determination of 4-tert-octylphenol,4-nonylphenol and bisphenol A in surface waters from the Haihe River in Tianjin by gas chromatography-mass spectrometry with selected ion monitoring[J]. Chemosphere,2004,56(11):1113-1119.
    [21]马晓雁,高乃云,李青松,等.黄浦江原水及水处理过程中内分泌干扰物状况调查[J1.中国给水排水,2006,22(19):1-4.
    [22]薛晓飞,吴峰,邓南圣.关于武汉地区河流与湖泊中内分泌干扰物质的调查与分析[J]洛阳大学学报,2005,20(4):33-36.
    [23]龚剑,冉勇,杨余,等.珠江广州河段表层水中雌激素化合物的污染状况[J].环境化学,2008,27(2):242-244.
    [24]Hu J Y, Wang Z S, Ng W J, et al. Disinfection by-products in water produced by ozonation and chlorination[J]. Environmental Monitoring and Assessment,1999,59(1):81-93.
    [25]Hu J Y, Aizawa T, Ookubo S. Products of aqueous chlorination of bisphenol A and their estrogenic activity [J]. Environmental Science & Technology,2002,36(9):1980-1987.
    [26]Toyo'oka T, Oshige Y. Determination of alkylphenols in mineral water contained in PET bottles by liquid chromatography with coulometric detection[J]. Analytical Sciences,2000,16(10): 1071-1076.
    [27]汤先伟,金一和,张颖花,等.沈阳市自来水中的烷基酚类污染物[J].环境与健康杂志,2005,22(3):190-191.
    [28]张海峰,胡建英,常红,等SPE-LC-MS法检测杭州地区饮用水水源及自来水中的双酚A[J].环境化学,2004,23(5):584-586.
    [29]Fromme H, Kuchler T, Otto T, et al. Occurrence of phthalates and bisphenol A and F in the environment[J]. Water Research,2002,36(6):1429-1438.
    [30]Stuat J D, Capulong C P, Launer K D, et al. Analyses of phenolic endocrine disrupting chemicals in marine samples by both gas and liquid chromatography-mass spectrometry[J]. Journal of Chromatography A,2005,1079(1-2):136-145.
    [31]王晓春,刘晓端,杨永亮,等.环境和生物样品中痕量双酚A的分析方法[J].岩矿测试,2009,28(6):557-568.
    [32]张平,邓正栋,程婷婷,等.水样中双酚A检测技术研究[J].中国环境监测,2008,24(6):11-17.
    [33]程红波.基于分子印迹-碳纳米管的双酚A电化学传感器的制备[D].大连:大连理工大学大学,2010.
    [34]Zafra A, del Olmo M, Suarez B, et al. Gas chromatographic-mass spectrometric method for the determination of bisphenol A and its chlorinated derivatives in urban wastewater[J]. Water Research,2003,37(4):735-742.
    [35]李英,王楼明,张琛,等.固相微萃取-气相色谱-质谱法测定水中双酚A[J].质谱学报,2005,26(1):18-21.
    [36]Shao B, Han H, Hu J Y, et al. Determination of alkylphenol and bisphenol A in beverages using liquid chromatography/electrospray ionization tandem mass spectrometry[J]. Analytica Chimica Acta,2005,530(2):245-252.
    [37]肖晶,邵兵,吴永宁,等HPLC-FL法检测尿液中类雌激素双酚A和烷基酚[J].中国食品卫生杂志,2008,20(2):111-114.
    [38]Zhao M P, Li Y Z, Guo Z Q, et al. A new competitive enzyme-linked immunosorbent assay (ELISA) for determination of estrogenic bisphenols[J]. Talanta,2002,57(6):1205-1210.
    [39]庄惠生,李金花,王琼娥.测定双酚A的流动注射化学发光法研究[J].中国环境监测,2004,20(4):15-17.
    [40]庄惠生,唐舒雅.微量环境荷尔蒙类物质双酚A的荧光分析研究[J].中国环境监测,2006,22(3):17-19.
    [41]Tschmelak J, Proll G, Gauglitz G. Verification of performance with the automated direct optical TIRF immunosensor (River Analyser) in single and multi-analyte assays with real water samples[J]. Biosensors and Bioelectronics,2004,20(4):743-752.
    [42]Mita D G, Attanasio A, Arduini F, et al. Enzymatic determination of BPA by means of tyrosinase immobilized on different carbon carriers[J]. Biosensors and Bioelectronics,2007, 23(1):60-65.
    [43]Li W, Seifert M, Xu Y, et al. Comparative study of estrogenic potencies of estradiol, tamoxifen, bisphenol-A and resveratrol with two in vitro bioassays[J]. Environment International,2004, 30(3):329-335.
    [44]Pauling L. A theory of the structure and process of formation of antibodies[J]. J. A. Am Chem Soc,1940,62(3):2643-2657.
    [45]Wulff G, Sarhan A, Zabrocki K. Enzyme-Analogue built polymers and their use for the resolution of racemates[J]. Tetrahedron Letters,1973,14(44):4329-4332.
    [46]George V, Lars I A, Ralf M, et al. Drug assay using antibody mimics made by molecular imprinting[J]. Nature,1993,361:645-647.
    [47]赖家平,何锡文,郭洪声,等.分子印迹技术的回顾、现状与展望[J].分析化学研究报告,2001,29(7):836-844.
    [48]姜忠义.分子印迹技术[M].北京:化学工业出版社,2003,1-10.
    [49]郭洪声,何锡文.药物头孢氨苄分子模板聚合物水中结合性质研究[J].分析化学,2000,8(10):1214-]219.
    [50]Zheng N, Li Y Z, Chang W B. Sulfonamide imprinted polymers using co-functional[J]. Anal Chim Acta,2002,452(2):277-283.
    [51]董襄朝,孙慧,吕宪禹.邻羟基苯甲酸MIP对于异构体的识别及色谱行为研究[J].化学学报,2002,60(11):2035-2042.
    [52]Kempe M, Mosbach K. Separation of amino acid, peptides and proteins on molecularly imprinted stationary phase[J]. J. Chromato. A,1995,691(1-2):317.
    [53]Zhu Q Z, Haupt K, Knopp D. Molecularly imprinted polymer for metsulfuron-methyl and its binding characteristics for sulfonylurea herbicides[J]. Anal Chim Acta,2002,468(2):217-227.
    [54]Wulff G, W. Grobe-Einsler, W. Vesper, et al. Enzyme-Analogue built polymers:5. On the specificity distribution of chiral cavities prepared in synthetic polymers[J]. Makromol. Chem., 1977,178:2817-2825.
    [55]R. Arshady, K. Mosbach. Synthesis of substrate-selective polymers by host-guest polymerization[J]. J. Makromol. Chem.,1981,182:687-692.
    [56]M. J. Whitcombe, M. E. Rodriguez, P. Villar, et al. A new method for the introduction of recognition site functionality into Polymers Prepared by molecular imprinting:Synthesis and characterization of Polymeric receptors for cholesterol[J]. J. Am. Chem. Soc.,1995,117(27): 7105-7111.
    [57]J. Matsui, K..Fujiwara, T. Takeuchi. Atrazine selective polymers prepared by molecular imprinting of trialkylmelamines as dummy template species of atrazine[J]. J. Anal. Chem.,2000, 72(8):1810-1813.
    [58]Haginaka J,Takehira H.Hosoya K,et al.Molecularly imprinted uniform-sized polymer-based stationary phase for naproxen comparison of molecular recognition ability of the molecularly imprinted polymers prepared by thermal and redox polymerization techniques[J]. Journal of Chromatography A,1998.816:113-121
    [59]董襄朝.分子印迹聚合物在复杂体系分离中的应用研究进展[J].分析测试学,2004,23(6):119-123.
    [60]William W J, Kofinas P. Molecularly imprinted polymers hydrogels displaying isomerically resolved glucose binding[J]. Biomaterials,2001,22(12):1485-1491.
    [61]王进防,周良模,刘学良,等.三元交联剂分子烙印手性固定相[J].分析化学,2000,28:1224-1228.
    [62]Ye L, Weiss R, Mosbach K. Synthesis and characterization of molecularly imprinted microspheres[J]. Macromolecules,2000,33:8239-8245.
    [63]郑细鸣,涂伟萍.分子印迹聚合物结合与识别能力的影响能力[J].材料导报,2004,18(10):57-59.
    [64]Delaney T, Mirsky V M, Ujbricht M, et al. Impedometric herbicide chemosensors based on molecularly imprinted Polymers[J]. Anal. Chim. Acta,2001,435:157-162.
    [65]Panasyuk T L, Mirsky V M, Piletsky S A, et al. Electropolymerized molecularly imprinted Polymers as receptor layers in capacitive chemical sensors[J]. Anal Chem,1999,71:4609-4613.
    [66]Lars I. Andersson, Klaus Mosbach. Enantiomeric resolution on molecularly imprinted polymers prepared with only non-covalent and non-ionic interactions[J]. J. Chromatogr A,1990,516: 313-322.
    [67]Kroger S, Turner A P F, Mosbach K, et al. Imprinted polymer based sensor system for herbicides using differential pulse voltammetry on screen-printed electrodes[J]. Anal. Chem,1999,71: 3698-3702.
    [68]Piletsky S A, Piletskaya E V, Yano K, et al. Biomimetic receptor system for sialic acid based on molecular imprinting[J]. Anal Lett,1996,29:157-170.
    [69]Piletsky S A, Piletskaya E V, Elgersma A V, et al. Optical detection system for triazine based on molecularly imprinted polymers[J]. Anal Lett,1997,30:445-455.
    [70]Jenkias A L, Yin R, Jensen J L. Molecularly imprinted polymer sensors for pesticide and insecticide detection in water[J]. Analyst,2001,126:798-802.
    [71]Cao L, Li S F Y, Zhou X C. Enantioselective sensor based on microgravimetrie quartz crystal microbalance with molecularly imprinted polymer film[J]. Analyst,2001,126(2):184-188.
    [72]Stanley S, Percival C J, Moral T. et al. Enantioselective detection of L-serine. Sens Actuators B, 2003,89:103-106.
    [73]Hiroyuki Y, Katsuyoshi Y, Tetsuo H. Sensitive determination method of estradiol in plasma using high performance liquid chromatography with electrochemical detection[J]. Journal of Chromatography B,2002,775:209-213.
    [74]Tetsuya A, Hideki H, Masae I, et al. Liquid chromatographic-mass spectrometric determination of haloperidol and its metabolites in human plasma and urine[J]. Journal of Chromatography B, 2002,776:107-113.
    [75]Nehal J L, Alex S, William L D, et al. Determination of the antiangiogenesis agent 2-methoxyestnidiol in human plasma by liquid chromatography with ultraviolet detection[J]. Journal of Chromatography B,2004,806:289-293.
    [76]Li J. J, Huynh H, Chan E. Reversed-phase liquid chromatography method to determine COL-3. a matrix metalloproteinase inhibitor, in biological samples[J]. Journal of Chromatography B,2004, 799:311-321.
    [77]Vincenzo P, Francesca B, Roberto M, et al. Liquid chromatographic analysis of the cis(Z)-andtrans(E)-isomers of clopenthixol in human plasma using a novel solid phase extraction procedure[J]. Journal of Chromatography B,2003,792:313-321.
    [78]Tanyifor M T, Sonia K, Howard A, et al. Determination of SU5416, a novel angiogenesis inhibitor, in human plasma by liquid chromatography[J]. Journal of Chromatography B,2004, 805:135-140.
    [79]Sellergen B. Direct drug determination by selective sample enrichment imprinted polymer[J]. Anal. Chem,1994,66(9):1578-1582.
    [80]Nicholls I A, Ramstrom O, Mosbach K. Insights into the role of the hydrogen bond and hydrophobic effect on recognition in molecularly imprinted polymer synthetic peptide receptor mimics.[J]. J. Chromatogr. A,1995.691:349-353.
    [81]Bjamason B, Chimuka L, Ramstrom O. On-line solid-phase extraction of triazine herbicides using a molecular imprinting polymer for selective sample enrichment[J]. Anal. Chem,1999,71: 2152-2156.
    [82]Yoshikawa M., Izumi JmKitao T., Sakmota S. Molecular imprinting polymeric membranes containing DIDE derivatives for optical resolution of amino acid[J]. Macromolecules.1996,29: 8197-9203.
    [83]Nisson G I, Sakaguchi K, Gemeiner P, et al. Molecular imprinting of acetylated carbohydrate derivatives into methacrylic polymers. [J]. J. Chromatogr. A,1995,707:199-203.
    [84]Yu C, Mosbach K. Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient Polymers[J]. J. Org. Chem,1997,62(12):4057-4064.
    [85]Blanco-Lopez M C, Lobo-Castanon M J, Miranda-Ordieres A J, et al. Electrochemical sensors based on molecularly imprinted polymers[J]. TrAC Trends in Analytical Chemistry,2004,23(1): 36-48.
    [86]Prasad K, Prathish K P, Mary Gladis J, et al. Molecularly imprinted polymer (biomimetic) based potentiometric sensor for atrazine[J]. Sensors and Actuators B:Chemical,2007,123(1):65-70.
    [87]Caro E, Marce R M, Borrull F, et al. Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples[J]. TrAC Trends in Analytical Chemistry,2006,25(2):143-154.
    [88]杨本晓,鲜啟鸣,林汉华,等.双酚A分子印迹聚合物的制备及其吸附机制初探[J].南京大学学报(自然科学),2007,43(4):351-357.
    [89]Owens P K, Karlsson L, Lutz E S M, et al. Molecular imprinting for bio-and pharmaceutical analysis[J]. TrAC Trends in Analytical Chemistry,1999,18(3):146-154.
    [90]Kriz D, Kriz C B, Andersson L I, et al. Thin-layer chromatography based on the molecular imprinting technique[J]. Analytical Chemistry,1994,66(17):2636-2639.
    [91]Wulff G, Gross T, Schonfeld R. Enzyme Models Based on Molecularly Imprinted Polymers with Strong Esterase Activity[J]. Angewandte Chemie International Edition in English,1997.36(18): 1962-1964.
    [92]Say R, Erdem M, Ersoz A, et al. Biomimetic catalysis of an organophosphate by molecularly surface imprinted polymers[J]. Applied Catalysis A:General,2005,286(2):221-225.
    [93]Kriz D, Ramstrom O, Svensson A, et al. Introducing biomimetic sensors based on molecularly imprinted polymers as recognition elements[J]. Analytical Chemistry,1995,67(13):2142-2144.
    [94]Barragan I S, Josem K K, Fernandez C, et al. A molecularly imprinted polymer for carbaryl determination in water[J]. Sensors and Actuators B:Chemical,2007,123(2):798-804.
    [95]Tsuru N, Kikuchi M, Kawaguchi H, et al. A quartz crystal microbalance sensor coated with MIP for "Bisphenol A" and its properties[J]. Thin Solid Films,2006,499(1-2):380-385.
    [96]Dickert F L, Forth P, Lieberzeit P, et al. Molecular imprinting in chemical sensing-Detection of aromatic and halogenated hydrocarbons as well as polar solvent vapors[J]. Fresenius' Journal of Analytical Chemistry,1998,360(7-8):759-762.
    [97]赵钧,李建平,蒋复阳.异丙隆分子印迹敏感膜传感器[J].分析化学,2009,37(8):1219-1222.
    [98]Kroger S, Turner A P F, Mosbach K, et al. Imprinted polymer based sensor system for herbicides using differential-pulse voltammetry on screen printed electrodes[J]. Analytical Chemistry, 1999,71(17):3698-3702.
    [99]Kriz D, Mosbach K. Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer[J]. Anal. Chim. Acta,1995,300:71-75.
    [100]Reo S, Toshifumi T, Izumi K. Atrazine sensor based on molecularly imprinted polymer modified gold electrode[J]. Anal. Chem.2003,75:4882-4886.
    [101]Huan S Y, Chu H, Jiao C X, et al. Selective electrochemical molecular recognition of benzenediol isomers using molecularly imprinted TiO2 film electrodes[J]. Anal. China. Acta, 2004,506(1):31-39.
    [102]Blanco L, Lobo C, Miranda O, et al. Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes[J]. Biosens. Bioelectron,2003,18:353-362.
    [103]Zhou Y X, Yu B, Shin E, et al. Potentiometric sensing of chemical warfare agents:surface imprinted polymer integrated with all indium tin oxide electrode[J]. Anal. Chem.,2004.76: 2689-2693.
    [104]Piletsky S A, Piletskaya E V, Panasyuk T L. Imprinted membranes for sensor technology: opposite behavior of covalently and noncovalently imprinted membranes[J]. Macromolecules, 1998,31(9):2137-2138.
    [105]Suedee R, Intakong W, Dickert F L. Molecularly imprinted polymer-modified electrode for on-line conductometric monitoring of haloacetic acids in chlorinated water[J]. Anal. Chim. Acta, 2006,569(1-2):66-75.
    [106]Panasyuk T L, Mirsky B M, Piletdky S A, et al. Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors[J]. Anal. Chem.,1999,71(20): 4609-4613.
    [107]Zhang Z H, Liao H P, Li H, et al. Stereoselective histidine sensor based on molecularly imprinted sol-gel films[J]. Analytical Biochemistry,2005,336(1):108-116.
    [108]Smith K., Silvernail N. J., Rodgers K. R., et al. Sol-Gel encapsulated horseradish peroxidase: A Catalytic Material for Peroxidation[J]. J. Am. Chem. Soc.,2001,124(16):4247-4252.
    [109]Pathak S. S., Khanna A. S., Sinha T. J. M. "Sol--Gel derived organic-inorganic hybrid coating: A new era in corrosion protection of material[J]." Corros. Rev.,2006,24:28-30.
    [110]Wu C, Wu Y, Xu T, et al. Study of sol-gel reaction of organically modified alkoxysilanes. Part Ⅰ:Investigation of hydrolysis and polycondensation of phenylaminomethyl triethoxysilane and tetraethoxysilane[J]. J. Non-Cryst. Solids,2006,352(52-54):5642-5651.
    [111]Wang G, Lu H, Hu N. Electrochemically and catalytically active layer-by-layer films of myoglobin with zirconia formed by vapor-surface sol-gel deposition[J]. J. Electroanal. Chem., 2007,599(1):91-99.
    [112]Guo W, Lu H, Hu N. Comparative bioelectrochemical study of two types of myoglobin layer-by-layer films with alumina:Vapor-surface sol-gel deposited Al2O3 films versus Al2O3 nanoparticle films[J]. Electrochim. Acta,2006,52(1):123-132.
    [113]Pandey P. C., Upadhyay S., Tiwari I., et al. An ormosil-based peroxide biosensor:A comparative study on direct electron transport from horseradish peroxidase[J]. Sensor and Actuat. B,2001,72(3):224-232.
    [114]Liu H., Tan Y. Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode[J]. Anal. Chim. Acta.,1997,344(3):187-199.
    [115]Li W, Erkang W. Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode[J]. Electrochem. Comm.2004,6(1):49-54.
    [116]Zhou Y., Hu N., Zeng Y., et al. Heme protein-clay films:Direct electrochemistry and electrochemical catalysis[J]. Langmuir,2002,18(1):211-219.
    [117]Mukhopadhyay I., Freyland W. Electrodeposition of Ti nanowires on highly oriented pyrolytic graphite from an. ionic liquid at room temperature[J]. Langmuir,2003,19(6):1951-1953.
    [118]Francesca D. A., Vincenzo F., Renato N., et al. Room temperature ionic liquids structure and its effect on the mononuclear rearrangement of heterocycles:An approach using thermodynamic parameters[J]. J. Org. Chem.,2006,71(26):9637-9642.
    [119]Imperato G., Konig B, Chiappe C. Ionic green solvents from renewable resources (Microreview) [J]. Eur. J. Org. Chem.,2007,7:1049-1058.
    [120]Wasserscheid P, Keim W. Ionic liquids-new solutions for transition metal catalysis[J]. Angew. Chem. Int. Ed.,2000,39:3772-3789.
    [121]Peng J. F, Liu J. F, Hu X. L, et al. Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography[J]. J. Chromatogr. A,2007,1139(2):165-170.
    [122]Yanes E. G., Gratz S. R., Baldwin M. J., et al. Capillary electrophoretic application of l-Alkyl-3-methylimidazolium-based ionic liquids[J]. Anal. Chem.,2001,73(16):3838-3844.
    [123]Namutdinova G., Sensfuss S., Schrodner M., et al. Quasi-solid state polymer electrolytes for dye-sensitized solar cells:Effect of the electrolyte components variation on the triiodide ion diffusion properties and charge-transfer resistance at platinum electrode[J]. Solid State Ionics, 2006,177(35-36):3141-3146.
    [124]Branco L. C., Rosa J. N., Ramos J. J. M., et al. "Preparation and characterization of new room temperature ionic liquids[J]." Chemisty-Eur. J.,2002,8:3671-3677.
    [125]Mehnert C. P., Cook R. A., Dispenziere N. C., et al. Supported ionic liquid catalysis:A new-concept for homogeneous hydroformylation catalysis[J]. J. Am. Chem. Soc.,2002,124(44): 12932-12933.
    [126]Shi F., Zhang Q., Li D, et al. Silica gel confined ionic liquids a new attempt for the development of supported nanoliquid catalysis[J]. Chem. Eur. J.,2005,11(18):5279-5288.
    [127]Zhou Y., Schattka J. H., Antonietti M. Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique[J].Nano. Lett.,2004,4(3):477-481.
    [128]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58.
    [129]Mivamoto Y. Mechanically stretched carbon nanotubes:Induction of chiral current[J]. Phys. Rev. Lett.,1996,54:11149-11152.
    [130]Zhou C., Kong J., Yenilmez E., et al. Modulated chemical doping of individual carbon nanotubes[J]. Science.2000,290:1552-1555.
    [131]Dai H., Wong E. W., Lieber C. M. Probing electrical transport in nanomaterials:Conductivity of individual carbon nanotubes[J]. Science,1996,272:523-626.
    [132]Kavan L., Dunsch L. Electrochemistry of carbon nanotubes[J]. Topics Appl. Physics,2008,111: 567-603.
    [133]Zhao Q., Gan Z. H., Zhuang Q. K. Electrochemical sensors based on carbon nanotubes[J]. Electroanalysis,2002,14:1609-1613.
    [134]Sherigara B. S., Kutuer W., Souza F. D. Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes[J]. Electroanalysis,2003,15:753-772.
    [135]He P., Xu Y., Fang Y. Applications of carbon nanotubes in electrochemical DNA biosensors[J]. Microchim. Acta,2006,152:175-186.
    [136]Henning T. H., Salama F. Carbon in the Universe[J]. Science,1998,282:2204-2210.
    [137]Pan Z. W., Xie S. S., Chang B. H., et al. Very long carbon nanotubes[J]. Nature,1998,394 (13): 631-632.
    [138]吴康兵,姚绍军,胡胜水.碳纳米管膜电极的制备及其分析应用[J].分析科学学报,2004,20:537-541.
    [139]成会明.纳米碳管制备、结构、特性及应用[M].北京:化学工业出版社,2002:27.
    [140]Musameh M., Wang J., Merkoci A., et al. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes[J]. Electrochem. Commun.,2002,4: 743-746.
    [141]吴芳辉,赵广超,魏先文.多壁碳纳米管修饰电极对对苯二酚的电催化作用[J].分析化学,2004,32(8):1057-1060.
    [142]Yu X. F., Mu T. The study of the attachment of a single-walled carbon nanotube to a self-assembled monolayer using X-ray photoelectron spectroscopy[J]. Surface Science,2000, 461:199-207.
    [143]Liu Z. F., Shen Z. Y., Zhu T. Organizing singlewalled carbon nanotubes on gold using a wet chemical self-assembling technique[J]. Langmuir,2000,16(8):3569-3573.
    [144]Duesberg G.S.,Roth S.,Downes P.,et al.Modification of single-walled carbon nanotubes by hydrothermal treatment.Chem Mater,2003,15:3314-3319.
    [145]Chen G. Z., Shaffer M. S. P., Coleby D., et al. Carbon nanotubes and polypyrrole composites: coating and doping[J]. Adv. Mater,2000,12:522-526.
    [146]Wang Z., Liu J., Liang Q., et al. Carbon nanotubes-modified electrodes for simultaneous determination of dopamine and ascorbic acid[J]. Analyst,2002,127:653-658.
    [147]王宗花,刘军,颜流水,等.羧基化碳纳米管嵌入石墨修饰电极对多巴胺和抗坏血酸的电催化[J].分析化学,2002,30(9):1053-1057.
    [148]陈荣生,肖华,黄卫华,等.单壁碳纳米管修饰的高灵敏纳米碳纤维电极[J].高等学校化学学报,2003,24(5):808-810.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700