用户名: 密码: 验证码:
气候变化对中国北方针叶林森林火灾的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以中国东北大兴安岭地区北方针叶林为研究对象,利用Delta及WGEN二种统计降尺度方法时间解集HadCM3 IPCC SRES A2a和B2a情景下气候基准时段(1961-1990年)与未来不同时段(2020s,2010-2039年;2050s,2040-2069年;2080s,2070-2099年)的逐月的最高温度、相对湿度、降水和风速数据,将得到的逐日天气数据经过参数率定和应用检验的加拿大火险天气指标系统,结合其输出的FWI和SSR指标与林火动态因子的统计相关性,在假设林火动态对当前及未来气候变化具有相同响应方式的基础上,定量和定性相结合预估未来该区北方针叶林林火状况的潜在变化趋势。结果表明:
     IPCC SRES A2a、B2a情景下,21世纪大兴安岭地区森林火险天气、森林火险等级、过火面积显著增加,其增加的幅度随着采用的IPCC SRES的情景、选取的降尺度方法以及选择的研究时期的不同而不同,但无论是哪种排放情景驱动下,无论是哪种统计降尺度模拟结果,也无论是未来哪段研究时期都显示其整体相对于基准年(1961-1990年)呈增加趋势,且这种增加趋势可能会随着时间的推进更加明显。
     大兴安岭地区21世纪3时段每30年FWI均值可能呈现一致增加趋势,与基准情景的(1961-1990年)相比,通过DW法模拟的各时段年均FWI值可能增加了近2成;DA法可能增加近5成。到21世纪后期,在DW SRES A2a下,年均FWI值可能增加超3成;DA SRES A2a下,年均FWI可能增加超7成。
     在同时期同排放情景下,春季防火期的FWI均值最大。DW下,夏季FWI值的增幅可能最明显,平均增加可能超3成。到21世纪后期,DW SRES A2a下,夏季防火期FWI值FWI均值可能增加超1倍。DA下,秋季的增幅可能最明显,平均增加可能超4成。到21世纪后期,DA SRESA2a下,秋季防火期FWI均值可能增加近1倍。
     DW下,2050s和2080s时段各月FWI均值总体呈现增加趋势,月均FWI可能增加超3成。其中,7、8月可能增加的幅度最大,到21世纪后期,A2a情景下FWI值可能分别增加近1.5倍和超2倍。DA下,21世纪3时段各月FWI均值呈现一致增加趋势,月均FWI可能增加超3成。其中,7、8、11和12月可能增加的幅度最大,到21世纪后期,A2a情景下FWI值可能分别增加约1.2倍、1.2倍、1倍和1.1倍。
     HadCM3模式在SRES A2a和B2a情景下,通过DW和DA法模拟未来火险等级日变化差异较大。DW SRES A2a和B2a下,平均年极高、高火险日数日数相对于基准年都呈增加趋势;而DA SRES A2a下,DW SRES A2a和B2a下,平均年极高、高火险日数都呈减少趋势。
     CFFWIS输出SSR值与1966-2008年研究区的历史过火面积存在显著相关(r,0.16-0.61),SSR增值能作为过火面积增量指标。大兴安岭地区21世纪3时段每30年SSR均值呈现一致增加趋势,与基准情景的(1961-1990年)相比,通过DW法模拟的各时段年均SSR值可能增加了近3成;DA可能增加了超5成。到21世纪后期,在DW SRES A2a下,年均SSR值可能增加超7成;DA SRES A2a下,年均SSR值可能增加超1倍。
     春季防火期的SSR均值最大。DW下,夏季的增幅可能最明显,平均增加可能超4成。到21世纪后期,DW SRES A2a下,夏季防火期SSR均值增加可能超1.5倍。DW下,夏、秋季的增幅可能同样明显,夏季平均可能增加超7成,秋季平均可能增加约8成。到21世纪后期,DA SRES A2a下,夏、秋季防火期SSR值可能分别增加约1.7倍和1.5倍;DA SRES A2a下,SSR均值均可能增加超1倍。
This study chose the Great Xing'an Mountains boreal forests of northeastern China as research object. Monthly projections such as maximum temperature, relative humidity, precipitation and wind speed were used from the Hadley Centre's General Circulation Model HadCM3, using two climate scenarios (A2a and B2a) for both the baseline period of 1961-1990 (referred to as 1980s) and the future scenario periods (the period 2010-2039 referred to as 2020s, the period 2040-2069 referred to as 2050s, the period 2070-2099 referred to as 2080s), then downscaled by the delta change methods and weather generator to represent daily finer local climate variability. Before FWI and SSR were projected, the Canadian Forest Fire Weather Index System was first calibrated and validated using both local weather data and fire data. This study made a quantitative and qualitative assessment of the variation trend of fire dangers and fire regime in Great Xing'an Mountains boreal forests, assuming that the fire regime respond to future warming similar to the manner during the past century.
     A significant increase in fire weather, fire danger rating and area burned were found for the 21st century in Great Xing'an Mountains under IPCC scenarios (A2a and B2a), and theirs rate of increase varied with the emissions scenarios, statistical downscaling methods and study periods. Whichever emissions scenarios, statistical downscaling methods or study periods were chosen, an increasing trend of fire severity was found, relative to the figure of the baseline period of 1961-1990. Moreover, the trend would be more evident as time goes by.
     As for the yearly time scale, almost all annual mean FWI demonstrated an increasing pattern under the two climate change scenarios for the three future periods over the 21st century in study region, compared to the figure of the baseline period of 1961-1990. Under DW methods, the annual mean FWI was predicted to rise by about 20% and it would go up by about 30% by the end of this century. Under DA, it was predicted to rise by over 50% and over 70% by the end of this century.
     In the same period and emission scenarios, the seasonal mean FWI suggested that the study region would experience the highest fire danger in spring fire season. Under DW, the highest increase of the FWI would happen in summer fire season, the seasonal mean FWI was predicted to rise by over 30% and it would double by the end of this century. Under DA, the highest increase of the FWI would happen in autumn fire season, the seasonal mean FWI was predicted to rise by over 40% and it would double by the end of this century.
     Under DW, the monthly mean FWI would have an increasing trend in the future during the period of 2050s and 2080s which was predicted to rise by over 30%, and the highest increase of the FWI would happen in July and August. For example, under Scenario A2a, the monthly average FWI was anticipated to increase by about 1.5 times and 2 times by the end of the 21st century, respectively. Under DA, the monthly mean FWI would have an increasing trend for the three future periods over the 21st century which was predicted to rise by 30%, and the highest increase of the FWI would happen in July, August, November and December. For example, the monthly average FWI was anticipated to increase by about 1.2,1.2,1,1.2 times by the end of the 21st century, respectively.
     The fire danger rating under DW was different from that of DA. Under DW, Forest fires that occurred on days with high fire danger tended to be large fires. The study indicated that in the future, the number of days with very high and extremely high danger was anticipated to increase. Under DA, the study indicated that in the future, the number of days with very high and extremely high danger was anticipated to decrease.
     Our results confirmed that the relationship between historical area burned and average SSR values among the study area was illustrated by a significant linear regression(r,0.16-0.61). The considerable evidence could lead us to conclude that the increased SSR values could translate into increased area burned. As for the annual time scale, almost all annual mean SSR demonstrated an increasing pattern under the two climate change scenarios for the three future periods over the 21st century in study region, compared to the figure of the baseline period of 1961-1990. Under DW methods, the annual mean SSR was predicted to rise by about 30% and it was predicted to rise by over 70% by the end of the 21st century. Under DA, it was predicted to rise by over 50% and would double by the end of the 21st century.
     In the same period and emission scenarios, the seasonal mean SSR suggested that the study region would experience the highest area burned in spring fire season. Under DW, the highest increase of the SSR would happen in summer fire season, the seasonal mean SSR was predicted to rise by over 40% and it would increase by 1.5 times by the end of the 21st century. Under DA, the highest increase of the SSR would happen in spring and autumn fire season; the seasonal mean SSR were predicted to rise by about 70%,80% and it would double by the end of the 21st century.
引文
[1]国家气候变化对策协调小组办公室,中国21世纪议程管理中心.全球气候变化-人类面临的挑战.北京:商务印书馆,2004
    [2]Gelbspan R.,戴星翼,程远,张真.炎热的地球.上海:上海译文出版社,2001
    [3]IPCC. Climate Change 2007:The Physical Science Basis Intergovernmental Panel on Climate Change. Http://www.ipcc.ch/.2007
    [4]丁一汇,任国玉,石广玉,宫鹏,郑循华,翟盘茂,张德二,赵宗慈,王绍武,王会军,罗勇,陈德亮,高学杰,戴晓苏.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势.气候变化研究进展,2006,2(1):3-8
    [5]国务院新闻办公室.中国应对气候变化的政策与行动.北京:外文出版社,2008
    [6]胡会峰,刘国华.森林管理在全球CO2减排中的作用.应用生态学报,2006,17(4):709-714
    [7]张小全,武曙红,何英,侯振宏.森林、林业活动与温室气体的减排增汇.林业科学,2005,4(16):150-156
    [8]刘羊旸,张辛欣.应对气候变化林业在行动—访国家林业局局长贾治邦.中国绿色时报,2009Http://www.forestrv.gov.cn/nortal/main/s/207/content-20034 6.html
    [9]FAO, Rome. Global forest resources assessment 2005. Fire Management Working,2006
    [10]刘燕华.气候变化与科技创新.北京:科学出版社,2009
    [11]Andrews P., Finney M., Fischetti M. Predicting wildfires. Scientific American,2007, 297:47-55
    [12]钟韵瑶.希腊大火警示全球气候危机Orient fire protection,2007(4):44-47
    [13]贾治邦.致全国秋冬季森林防火工作会议的信.森林防火,2007(3):1-1
    [14]雷加富.继往开来乘势而上全力做好相持阶段森林防火工作.森林防火,2005(3):1-4
    [15]王明玉.气候变化背景下中国林火相应特征及趋势.中国林科院博士学位论文.2009
    [16]田晓瑞,舒立福,王明玉,赵凤君.林火与气候变化研究进展.世界林业研究,2006,19(5):38-42
    [17]Conard S. G., Ivanova G. A. Wildfire in Russian boreal forests-potential impacts of fire regime characteristics on emissions and golbal carbon balance estimates. Environmental pollution,1997,98:305-313
    [18]贾丙瑞,周广胜.北方针叶林对气候变化响应的研究进展.地球科学进展,2009,24(6):668-74
    [19]赵凤君.气候变化对内蒙古大兴安岭林区森林火灾的影响研究.中国林业科学研究院博士学位论文,2007
    [20]Johnson E. A. Fire and vegetation dynamics:studies from the North American boreal forest. Cambridge University Press,1992
    [21]Bush M. B. Ecology of a Changing Planet (3rd Edition). Pearson Education asia limitied and tsinghua university press,2003
    [22]Flannigan M. D., Harrington J. B. A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953-80). Journal of applied meteorology,1988,27:441-452
    [23]Swetnam T. W. Fire history and climate change in giant sequoia groves. Science,1993, 262:885-889
    [24]Wheaton E. Changing fire risk in a changing climate:a literature review and assessment. SRC publication,2001
    [25]Higgins D. G. Ramsey G. S. Canadian forest fire statistics:1988-1990. Information report PI-X-107E/F. Petawawa National Forestry Institute, Minister of Supply and Services Canada, Ontario.1992
    [26]Fauria M. M., Joneson E. A. Large-scale climatic patterns contral large lighting fire occurrence in Canada and Alaska forest regions. Journal Geophys Research,2006,111
    [27]Rorig M. L., Ferguson S. A. Characteristics of lightning and wildland fire ignition in the Pacific Northwest. Journal Appli Meteorol 1999,38(11):1565-1575
    [28]Clark J. S. Fire and climate change during the last 750yr in northwestern Minnesota. Ecological Monographs,1990,60(2):135-159
    [29]Balling R. C., Meyer G.A.,Wells S. G Climate change in Yellowstone National Park:Is the drought-related risk of wildfires increasing? Climate Change,1992(22):33-45
    [30]Lynch J. A., Hollis J. L., Hu F. S. Climatic and landscape controls of the boreal forest fire regime:Holocene records from Alaska. Journal of Ecology,2004,92(3):477-489
    [31]Grenier D. J., Bergeron Y., Kneeshaw D.,Sylvie G Fire frequency for the transitional mixedwood forest of Timiskaming, Quebec, Canada. Candian jounal of forest research, 2005(35):655-656
    [32]秦大河,陈宜瑜,李学勇.中国气候与环境演变(上卷)-气候与环境的演变及预测.北京:科学出版社,2005
    [33]秦大河,丁一汇.中国西部环境变化的预测.北京:科学出版社,2002
    [34]丁一汇.中国气候变化科学概论.北京:气象出版社,2009
    [35]Westerling A. L., Hidalgo H. G., Cayan D. R., Swetnam T. W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science,2006,313:940-943
    [36]吕爱锋,田汉勤.气候变化、火干扰与生态系统生产力.植物生态学报,2007,31(2):242-251
    [37]Miller C., Urban D. L. Forest Pattern, Fire, and Climatic Change in the Sierra Nevada. Ecosystems,1999,2:76-87
    [38]Flannigan M. D., Amiro B. D., Logan K. A., Wotton B. M. Forest fires and climate change in the 21 st century. Mitigation and adaptation strategies for global change,2006,11: 847-859
    [39]Lavorel S., Flannigan M. D., Lambin E. F., Scholes M. C. Vulnerability of land systems to fire:Interactions among humans, climate, the atmosphere, and ecosystems. Mitigation and Adaptation Strategies for Global Change,2007,12:33-53
    [40]Soja A. J., Tchebakova N. M., French N. H. F., Flannigan M. D., Shugart H. H., Stocks B. J., Sukhinin A. I., Parfenova E. I., Chapin F. S., Stackhouse P. W, Jr. Climate-induced boreal forest change Predictions versus current observations. Global and Planetary change, 2007,56:274-296
    [41]田晓瑞,王明玉,舒立福.全球变化背景下的我国林火发生趋势及预防对策.森林防火,2003(3):31-34
    [42]Hennessy K., Lucas C., Nicholls N., Bathols J., Suppiah R., Ricketts J. Climate change impacts on fire-weather in south-east Australia. Climate impacts Group,2005
    [43]Mckenzie D., Gedalof Z., Peterson D. L., Mote P. Cliamte change, wildfire, and conservation. Conservation biology,2004,18:890-902
    [44]Florent M., Rambal S., Joffre R. Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Global change biology,2002,8: 423-437
    [45]Running S. W. Is global warming causing more, larger wildfires? Science,2006,313: 927-928
    [46]Pausas J. P. Changes in fire and climate in the eastern Iberian peninsula (Mediterranean Basin). Climatic Change,2004:337-350
    [47]Williams A. A. J., Karoly D. J., Tapper N. The sensitivity of Australian fire danger to climate change. Climate Change,2001,49(1):171-191
    [48]Mollicone D., Eva H. D., Achard F. Ecology:human role in Russian wild fires. Nature, 2006,440:436-437
    [49]赵凤君,舒立福,田晓瑞,王明玉.气候变化与林火研究综述.森林防火,2005(4):19-21
    [50]赵凤君,王明玉,舒立福,王春乙.气候变化对林火动态的影响研究进展.气候变化研究进展,2009,5(1):50-55
    [51]Flannigan M. D., Bergeron Y., Engelmark O., Wotton B. M. Future wildfire in circumboreal forests in relation to global warming. Journal of vegetation science,1998,9: 469-476
    [52]Stocks B. J., Fosberg M. A., Lynham T. J., Mearns L, Wotton B. M., Yang Q., Jin J. Z., Lawrence K., Hartley G. R., Mason J. A., Mckenney D. W. Climate Change and forest fire potential in Russsian and Canadian boreal forests. Climatic Change,1998,38:1-13
    [53]Brown T. J., Hall B. L., Westerling A. L. The impact of twenty-first century climate change on wildland fire danger in the western United States:an application perspective. Climate Change,2004,62:365-388
    [54]Roads J., Fujioka F., Chen S., Burgan R. Seasonal fire danger forecasts for the USA. International Journal of Wildland Fire,2005,14:1-18
    [55]Tymstra C., Flannigan M. D., Armitage O. B., Logan K. H. The impact of climate change on area burned in Alberta's Boreal Forest. International Journal of Wildland Fire,2007,16: 153-160
    [56]Flannigan M. D., Wagner C. E. V. Climate change and wildfire in Canada. Canadian journal of forest research,1991,21:66-72
    [57]Carvalho A. C., Flannigan M. D., Logan K. A., Gowman L. M., Miranda A. I., Borrego C. The impact of spatial resolution on area burned and fire occurrence projections in Portugal under climate change. Climatic Change,2009,98:177-197
    [58]Pinol J., Terradas J., Lloret F. Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Climatic change,1998,38:345-357
    [59]Flannigan M. D., Logan K. A., Amiro B. D., Skinner W. R., Stocks B. J. Future area burned in Canada. Climatic change,2005,72:1-16
    [60]Krawchuk M. A., Cumming S. G., Flannigan M. D. Predicted changes in fire weather suggest increases in lightning fire initiation and furture area burned in the mixedwood boreal forest. Climatic Change,2009,92:83-97
    [61]Seiler W, Crutzen P. J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climate Change,1980,2:207-247
    [62]Andreae M. O., Merlet P. Emission of trace gases and aerosols from biomass burning. Global biogeochem cycles,2001,15(4):955-966
    [63]Flannigan M., Campbell I., Wotton M., Carcaillet C., Richard P., Bergeron Y. Future fire in Canada's boreal forest:paleecology results and general circulation model-regional climate model simulations. Candian jounal forest research,2001(31):854-864
    [64]贾朋群.美国森林大火释放大量二氧化碳.中国气象局培训中心,2007.http://streaml (?)ma gov cn/info unit/ReadNews asp?NewsID=957
    [65]王明星.气溶胶与气候.气候与环境研究,2000,5(1):1-5
    [66]Breon F. M. How do aerosols affect cloudiness and climate? Science,2006,313:623-624
    [67]贾朋群.科学家估计美国林火释放的水银.中国气象局培训中心,2007.http://streaml.cma.gov.cn/info unit/ReadNews.asp?NewsID=951
    [68]方精云,唐艳鸿,林俊达,蒋高明.全球生态学:气候变化与生态响应.北京:高等教 育出版社,2000
    [69]黑龙江省年鉴.黑龙江省年鉴,2008
    [70]李华.黑龙江大兴安岭森林雷击火环境及预测预报.中国林业科学研究院农业推广硕士论文,2005
    [71]吕新双.黑龙江省大兴安岭主要乔木树种火灾碳释放研究.东北林业大学硕士论文,2006
    [72]杜建华.黑龙江大兴安岭森林可燃物基础信息库及偃松林火行为研究.北京:中国林业科学研究院,2004
    [73]徐化成.中国大兴安岭森林.北京:科学出版社,1998
    [74]周以良.大兴安岭植被.北京:科学出版社,1991
    [75]杜永胜,王立夫.中国森林火灾典型案例:1953-2005.北京:中国林业出版社,2007
    [76]黑龙江省气候中心.黑龙江气候资料
    [77]范丽军,符淙斌,陈德亮.统计降尺度法对华北地区未来区域气温变化情景的预估.大气科学,2007,31(5):887-897
    [78]Gordon C., Cooper C., Senior C. A., Banks H., Gregory J. M., Johns T. C., Mitchell J. F. B., Wood R. A. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Center coupled model without flux adjustments. Climatic Dynamics, 2000,16:147-168
    [79]Pope V. D., G. M., Rowntree P. R., Stratton R. A. The impact of new physical parameterizations in the Hadley Center coupled model without flux adjustments. Climate Dynamics,2000,17:61-81
    [80]王淑瑜,熊喆.5个海气耦合模式模拟东亚区域气候能力的初步分析.气候与环境研究,2004,9(2):240-250
    [81]李颖.完全耦合的海气环流模式中ENSO和亚洲季风的相会作用.北京:中国科学院硕士学位论文,2005
    [82]张光辉.黄河流域降水侵蚀力对全球变化的响应.山地学报,2005,23(4):420-424
    [83]Collins M., Tett S. F., B.C.C. The internal climate vaviability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate dynamics,2001,17: 61-81
    [84]Leckebusch G. C., Ulbrich U. On the relationship between cyclones and extreme windstorm events over Europe under climate change. Global and Planetary Change,2004, 44:181-193
    [85]Nakicenovic N., Swart R. Special report on emissions scenarios. Cambridge University Press,2000
    [86]Arnell N. W. Effects of IPCC SRES emissions scenarios on river runoff:a global perspective. Hydrology and Earth System Sciences,2003,7(5):619-641
    [87]林业部森林防火指挥部.森林火灾扑救与指挥.北京:中国林业出版社,1996
    [88]孙凤华.东北气候变化与极端气象事件.北京:气象出版社,2008
    [89]许吟隆,张勇,林一骅,林而达,林万涛,董文杰,Jones R., Hassell D., Wilson S利用PRECIS分析SRES B2情景下中国区域的气候变化响应.科学通报,2006,51(17):2068-2074
    [90]Akhtar M., Ahmad N., Booij M. J. The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. Journal of Hydrology,2008,335:148-163
    [91]赵芳芳,徐宗学.统计降尺度方法和Delta方法建立黄河源区气候情景的比较分析.气象学报,2007,65(4):653-661
    [92]Lenderink G., Buishand A., Deursen W. V. Estimates of future discharges of the river Rhine using two scenario methodologies:direct versus delta approach. Hydrology and Earth System Sciences,2007,11(3):1145-1159
    [93]张光辉.全球气候变化对黄河流域天然径流影响的情景分析.地理研究,2006,25(2):268-275
    [94]Hay L. E., W. I. L, Leavesley G. H. A comparision of delta change and downscaled GCM scenarios for three mountaionous basins in the United States. Journal of the American Water Resource Association,2000,36(2):387-397
    [95]林忠辉,莫兴国.CLIGEN生成干旱半干旱地区降水相关参数的验证.自然资源学报,2008,23(3):514-527
    [96]Semenov M. A., B. R. J., Barrow E. M., Richardson C. W. Comparison of the WGEN and LAR-WG stochastic weather generators for diverse climates. Climate Research,1998,10: 95-107
    [97]廖要明,张强,陈德亮.中国天气发生器的降水模拟.地理学报,2004,59(5):689-698
    [98]张光辉.CLIGEN天气发生器在黄河流域的适应性研究.水土保持学报.2004,18(1):175-196
    [99]Kilsby C. G., Jones P. D., Burton A., Ford A. C., Fowler H. J., Harpham C., James P., Smith A., Wilby R. L. A daily weather generator for use in climate change studies. Environmental modelling,2007,22:1705-1719
    [100]Dubrovsky M. Research Article Creating Daily Weather Series with Use of the Weather Generator.Environmetrics,1997,8(5):409-424
    [101]Wilks D. S., Wilby R. L. The weather generation game:a review of stochastic weather models. Physical Geography,1999,23(3):329-357
    [102]王幼奇,樊军,邵明安.LARS-WG天气发生器在黄土高原的适应性研究.中国水土保持科学,2007,5(3):24-27
    [103]Richardson C. W., Wright D. A. WGEN:a model for generating daily weather variables. U.S. Department of Agriculture, Agicultural reserch service,1984,8:83
    [104]Kuchar L. Using WGENK to generate synthetic daily weather data for modelling of agricultural processes. Mathematics and computers in simulation,2004,65:69-75
    [105]吴金栋,王石立,张建敏.未来气候变化对中国东北地区水热条件影响的数值模拟研究.资源科学,2000,22(6):36-42
    [106]舒立福,张小罗,戴兴安,等.林火研究综述(2)-林火预测预报.世界林业研究,2003,16(4):34-37
    [107]赵风君,舒立福,田晓瑞,王明玉.森林火险中长期预测预报研究进展.世界林业研究,2007,20(2):55-58
    [108]Wordell T. A., Brown T. J. Forecasting fire danger indices in the United States. Sevilla-Epana wildfire,2007, regional session B
    [109]Hardy C. C., Hardy C. E. Fire danger rating in the United States:An evolution since 1916. International Journal of Wildland Fire, In Press 2007
    [110]胡海清.林火生态与管理.北京:中国林业出版社,2005
    [111]Taylor S. W. Considerations for applying the Canadian Forest Fire Danger Rating Svstem in Argentina. http://www.fao.org/DOCREP/ARTICLE/WFC/XII/0726-B1.HTM. 2001
    [112]Groot W. J., Field R. D., Brady M. A. Development of the Indonesian and Malaysian Fire Danger Rating Systme. Mitigation and adaptation strategies for global change,2007, 12:165-180
    [113]1063-1992 L,全国森林火险区划等级
    [114]储菊香.基于Web的森林火灾预测预报系统的设计与开发.林业资源管理,2003(5):58-60
    [115]Willis C., Wilgen B. V., Tolhurst K., Eversion C., Abreton P. D., Pero L., Fleming G. The Development of a National Fire Danger Rating System for South Africa.2001
    [116]田晓瑞,Mcrae D. J.,张有慧.森林火险等级预报系统评述.世界林业研究,2006,19(2):39-46
    [117]田晓瑞,舒立福,王明玉,赵凤君.大兴安岭林火特征分析.森林防火,2008(2):20-21
    [118]王会研,李亮,刘一,金森.加拿大火险天气指标系统在塔河林业局的适用性.东北林业大学学报,2008,36(11):45-47
    [119]赵凤君,舒立福,田晓瑞,王明玉.1957-2007年云南省森林火险变化.生态学杂志,2009,28(11):2333-2338
    [120]Wagner C. E. van. Development and structure of the Canadian forest fire weather index system. Canadian Forestry Service,1987
    [121]邸雪颖,王宏良.林火预测预报.哈尔滨:东北林业大学出版社,1993
    [122]宋志杰.林火原理和林火预报.北京:气象出版社,1991
    [123]Flannigan M. D., Stocks B. J., Wotton B. M. Climate change and forest fires. The science of the total environment,2000,262:221-229
    [124]孙玉成,马洪伟,王秀国,金森.加拿大火险天气指标(FWI)计算的初始化方法和解释.森林防火,2003(4):12-13
    [125]Forsythe K. W., Dennis M., Marvin C. H. Comparison of mercury and lead sediment concentrations in Lake Ontario (1968-1998) and Lake Erie (1971-1997/98) using a GIS-based Kriging approach. Water quality research journal of Canada,2004,39(3):190-206
    [126]Dai K. Y., Liu G. R., Lim K. M., Gu Y. T. Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods. Computational mechanices,2003,32:60-70
    [127]孙英君,王劲峰,柏延臣.地统计学方法进展研究.地球科学进展,2004,19(2):268-274
    [128]郑永骏,金之雁.对偶Kriging插值方法在气象资料分析中的应用.应用气象学报,2008,19(2):201-208
    [129]姚道荣,钟波,汪海洪,王伟.最小二乘配置与普通Kriging法的比较.大地测量与地球动力学,2008,28(3):77-82
    [130]1172-95 LT,全国森林火险天气等级
    [131]汪扩军,潘志祥.气象灾害监测预警与减灾评估技术.北京:气象出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700