用户名: 密码: 验证码:
Al-Ti-B细化剂制备工艺优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过氟盐法和钛颗粒法两种制备工艺制备了不同Ti/B的Al-Ti-B细化剂,并对铝硅合金进行了细化对比实验。通过XRD、扫描电镜(SEM)分析了细化剂的相组成及其形貌和分布的变化规律。利用光学体视镜和扫描电镜(SEM)对细化后的铝硅合金组织进行了观察,并通过INSTRON-5500R电子万能材料测试机对细化后的铝硅合金进行力学性能测试,综合分析自制Al-Ti-B细化剂的细化效果。
     两种方法制备的不同Ti/B的Al-Ti-B细化剂分析结果表明,随Ti/B的减小,Al-Ti-B细化剂中TiAl3相由块状逐渐向片状转变,尺寸逐渐减小,体积分数逐渐减少,TiB2相逐渐增加。钛颗粒法与氟盐法相比变化更明显。通过细化对比实验得到氟盐法制备Al-3Ti-1B细化剂具有最好的细化效果,对Al7Si合金细化后晶粒约大小为0.57mm2,二次枝晶间距在28μm左右,抗拉强度约为142MPa,屈服强度约为55.4MPa,延伸率约为6.6%。本文通过热力学与动力学分析得到,当温度T≤1608.63℃时,TiB2在铝熔体中是稳定存在的;当T≤886.87℃时,铝熔体中稳定存在TiB2和TiAl3相。
     本文研究了制备工艺参数对Al-3Ti-1B细化剂的影响,并通过正交实验对各工艺参数进行了优化,其中工艺参数包括:保温温度、保温时间、冷却方式。结果表明:保温温度780℃,保温时间30min,采用铁冷铁激冷工艺制备的Al-3Ti-1B细化剂具有最好的细化能力。经工艺优化后,自制的Al-3Ti-1B细化剂与LSM公司进口的Al-5Ti-1B细化剂相比,细化后Al7Si合金的抗拉强度提高5.49%,屈服强度下降0.39%,而延伸率有了明显提高,提高19.17%。
     数学模型计算和实验结果分析表明,自制的Al-3Ti-1B细化剂在两个小时以内仍具有良好的细化能力;同时自制的Al-3Ti-1B细化剂和进口的Al-5Ti-1B细化剂对ZL101合金进行细化对比实验,结果表明自制的Al-3Ti-1B细化剂对壁厚的敏感性减弱。
The Al-Ti-B refiners with different ratio of Ti and B were prepared by means of halide salts and Ti particles, and the contrastive experiments of Al-Si alloy refinement were prepared. The phase morphology and distribution in Al-Ti-B refiners were studied by using OM and SEM, meanwhile, the microstructure and mechanical properties of Al-Si alloy which refined by different Al-Ti-B refiner were tested on OM and INSTRON-5500R. The effects of different refiners on Al-Si alloy were also discussed.
     The preparation of refiners with different ratio of Ti and B results showed that the morphology of TiAl3 changed from block to flake, and with increased of Ti/B the size decreased, however the fraction of TiB2 increased gradually. The refinement experiments results indicated that the refinement of Al-Si alloy with Al-3Ti-1B refiner prepared by means of halide salts was better than that of others, the grain size of Al7Si alloy and the dendrite arm space were 0.57mm2and 28μm, respectively. The mechanical properties e.g. tensile strength, yield strength and elongation were 142Mpa, 55.4Mpa and 6.6%, respectively. Therefore, the analysis of thermodynamic and kinetics showed that TiB2 existed steadily in melt when T≤1608.63℃, in addition, TiB2 and TiAl3 existed steady simultaneity when T≤886.87℃.
     In the preparation experiment of Al-3Ti-1B refiners, the effects of preparation parameters on Al-3Ti-1B refines were achieved, and the optimized parameters were obtained. The preparation parameters included holding temperature, holding time and cooling rate. The results indicated that Al-3Ti-1B master alloy prepared by iron chilling, and holding at 780℃for 30min, which has the best refinement ability on Al7Si alloy. Compared with Al-5Ti-1B import refiner, the self-made Al-3Ti-1B refiner could enhance the tensile strength of Al7Si alloy by 5.49%, the yield strength decreased by 0.39%, but the elongation increased sharply by 19.17%.
     The mathematical model and experimental research on recession ability of Al-3Ti-1B alloy were studied. The results demonstrated that Al-3Ti-1B refiner had a good refining ability in 2 hours. Compared with Al-5Ti-1B import refiner on ZL101 alloy, the effect of Al-3Ti-1B refiner on the thickness of ZL101 alloy reduced.
引文
1苏学常.国产Al-Ti-B细化剂的冶金质量.轻金属. 1996(1): 50-51
    2张作贵,刘相法,边秀房等. Al-Ti-B中间合金的遗传性研究与推广应用.铸造. 2000(10): 758
    3 Chunlei Wang, Mingxing Wang, Zhiyong Liu. The grain refining action of fine TiB2 particles in the electrolytic low-titanium aluminum with Al–4B addition. Materials science and engineering A 427 (2006): 148–153
    4高泽生.世界铝晶粒细化剂供应工业.轻金属. 1999 (9):50-53; (10):53-55
    5王丽娟,单常志,黄晶.常用细化剂对1100合金细化效果研究.轻合金加工技术. 2001(11):8-10
    6马洪涛,李建国,张伯清等. Al-Ti-B合金组织分析.中国有色金属学报. 2001(11): 801-805
    7 Lu H T, Wang L C, Kung S K. Grain refining in A356 alloys. Journal of chinese foundry man’s association. 1981(29): 10-18
    8 R.Kiusalaas etc. Relation between phases present in master alloys of AI-Ti-B type
    9 R.Kiusalaas etc. Grain refining in solidification processing. 1987, Vol. 137, The in stitute of metals,London(1988)
    10 G. Davies, A. Hell-awell. Metal. Trans. 1970(V1): 275-280
    11 J. A. Mareantonio and L. E. Mondolfo. Metal. Trans.1971(V2):465-471
    12 Mark Easton and David Stjolm. Grain refinement of aluminum alloy: part1. The nucleant and solute paradigms-a review of the literature, Metallurgical and Materials trans. 1999, 30A(6):1613-1622
    13 Mohanty P S, Gruzleski J E. Grain refinement of aluminum by TC. Scr Metal et Mater,1994,31(2):197
    14 Mohanty P S, Gruzleski J E. Grain refinement mechanisms of hypoeutectic Al-Si alloys. Acta Mater,1996,44(9):3749
    15邦达列夫,那帕尔科夫,塔拉雷什金.变形铝合金的细化处理.冶金工业出版社, 1988: 58-63
    16于亚鑫,邱竹贤,张明杰等.铝硼及铝钛硼中间合金的研制(上).轻金属. 1988(4): 31-34
    17于亚鑫,邱竹贤,张明杰等.铝硼及铝钛硼中间合金的研制(下).轻金属. 1988(5): 30-347
    18 Murty B S,Kori S A. Manufacture of Al-Ti-B master alloys by the reaction of complex halide salts with molten aluminum. Material processing technology, 1999, 89-90: 152-158
    19陈学忠编译.铝-硼和铝-钛-硼中间合金的制造(上).Модифичироьаниеaпюминиевыхдеформируемыхсплавов,Москва. 1979
    20 Nikitin V I. Wanqi JL E. Preparation of Al-Ti-B Grain refiner by SHS technology. ScriptaMater.2000, 42: 561-566
    21陈辉煌,陈本孝,林立杰.电解法制取铝钛硼中间合金.江西有色金属. 2001(12)
    22邱竹贤,于亚金,张明杰.铝电解槽中生产Al-Ti合金.轻金属. 1986(4): 32-37
    23邱竹贤.铝电解.冶金工业出版社, 1982
    24赵恒先.电解法制取中间铝合金的热力学.轻金属. 1983(11): 26-28
    25张时华.铝钛硼中间合金的研制与应用.轻金属. 1987 (4): 56-57
    26В.И.Бондарев.铝-硼和铝-钛-硼中间合金的制造. 1979: 146-150
    27 Yuce Birol. Production of Al-Ti-B master alloys from Ti sponge and KBF4. Journal of alloys and compounds 440. 2007 :108-112
    28陈亚军,许庆彦,黄天佑等.氟盐法制备Al-Ti-B中间合金的研究.铸造技术. 2006: 601-604
    29 A L Greer. The mechanism of grain refinement of aluminum. Third international conference on solidification and gravity, Miskolc Hungary, 1999(4): 26-29
    30冯汝田.推广Ai-Ti-B晶粒细化剂提高铝材质量与经济效益.轻合金加工技术. 1991, 19(6): 1-4
    31 A Banerji, W Reif. Metallographic investigation of TiC nucleates in the newly developed AI-Ti-C grain refiner. JMater Sei, 1994, 29: 1958
    32 Crossley. F. A. Mondolfo. L. F. Trans Aime. 1951(191): 114-320
    33蒙多尔福LF著.王祝堂等译.铝合金的组织与性能.冶金工业出版社, 1988: 329
    34 Yucel Birol. An improved practice to manufacture Al–Ti–B master alloys by reacting halide salts with molten aluminium. Journal of alloys andcompounds 420 (2006): 71–76
    35 Hongjun Ni, Baode Sun, Haiyan Jiang. Effect of JDN-I flux on DAS of A356 alloy at different cooling rate. Materials science and engineering A348 (2003): 1-5
    36 L. Backerud, R. Kiusalaas, H. Klang. Method for production of master alloys for grain refining treatment of aluminum melts. US Patent 5, 104, 616 (1992)
    37 Yucel Birol. Production of Al–Ti–B master alloys from Ti sponge and KBF4. Journal of alloys and compounds 440 (2007): 108–112
    38 W. Reif, W. Schneider. Paper presented at seventh international light metals
    39陈亚军,许庆彦,黄天佑.铝合金晶粒细化剂的研究进展. 2006(12): 57-61
    40冯庆玲,王明. AI-Ti-C中间合金中的碳化钛的失效问题.清华大学学报. 1994, 34(5): 106
    41张作贵,刘相法,边秀房. TiB2分布形态对AlTi5B细化特性的影响.特种铸造及有色合金. 1999(5): 12-13
    42罗起全.铝合金熔炼与铸造.广东科技出版社, 2002: 103-126
    43马洪生,孝云桢,刘劲波.铝钛硼晶粒细化机理(2).轻金属. 1991(3): 57-59
    44 GB3247-82.铝及合金加工制品低倍组织检验方法.中国标准出版社, 1999: 414-416
    45陈禅平.重熔料对亚共晶铝硅合金组织与性能的影响.哈尔滨工业大学硕士学位论文. 2006: 16
    46郝士明.材料热力学.化学工业出版社, 2003: 79
    47李洪桂等.稀有金属冶金原理及工艺.冶金工艺出版社, 1981: 187
    48雷永泉等.铸造过程物理化学.新时代出版社, 1982: 196
    49陈学忠译.轻金属. 1983(12): 66
    50铸造手册编著组.铸造有色金属手册.机械工业出版社, 1978: 224
    51 Shewmon. P. G. Diffusion in solids. McGraw-hill,1963
    52黄继华.金属及合金中的扩散.科学出版社, 1986: 157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700