用户名: 密码: 验证码:
TiAl合金片层组织形成机理及摩擦磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用浸渗-反应合成方法制备的Ti-50Al合金,通过OM、SEM及TEM等手段,系统地研究了热处理过程中的升温速率、保温温度、保温时间及冷却方式等重要因素对该合金组织和性能的影响,并提出一种简单高效的热处理工艺使Ti-50Al合金组织获得细小均匀的全片层组织,同时对片层组织形成机理进行了分析。此外,本文还研究了不同载荷和滑动速度下Ti-50Al合金的摩擦磨损特性和机理。
     研究结果表明,Ti-50Al合金组织致密,没有较大孔洞和缺陷,材料成分均匀,几乎没有偏聚现象发生。热处理工艺研究表明:Ti-50Al合金在1400℃以上短时间保温缓慢冷却即可形成晶粒大小为150μm左右的片层组织,而利用快速升温双温热处理工艺则可以将其细化至30μm左右,实验时最佳的热处理工艺为:(快速升温)1250℃×3h空冷+(快速升温)1400℃×5min炉冷。
     Ti-50Al合金的片层组织由单个α2片和多个γ片组成,γ相在( )αα2相上析出,通过切变机制形成6种不同位相,构成真孪晶、伪孪晶、有序筹等界面特征,随后γ相长大形成较大片层。此外,γ相也在α2γ和γγ界面处析出,形成细小的片层。
     摩擦磨损试验结果表明:当滑动速度在1.0m/s以下时,具有片层组织的Ti-50Al合金的摩擦系数保持在0.5左右不变,磨损量随载荷和滑动速度的增大而增大,磨损机制主要为磨粒磨损;而当滑动速度大于1.5m/s时,其摩擦系数升高,磨损量急剧下降,磨损机制发生变化,以对磨盘的氧化磨损和粘着磨损为主。与铸态合金相比,具有片层组织的Ti-50Al合金具有较好的耐磨性,且在低速时具有较好的摩擦稳定性。
In the paper, Ti-50Al is successfully fabricated by the infiltration-reaction synthesis method, it is studied that influence of heating speed, temperature, time, cooling speed and other important facts on the microstructure and properties by OM, SEM, TEM and so on. A simple and efficient heat-treatment processing is determined to make Ti-50Al alloy with the fine and homogeneous full-lamellar microstructure. Besides, it is analyzed to the forming mechanism of lamellar microstructure. Furthermore, the properties and the mechanisms of friction and wear of Ti-50Al alloy in the different loads and sliding speeds are studied in the paper.
     The results show that macrostructure of Ti-50Al alloy appears to be free of porosity and homogeneous hardly with segregation. In terms of the study of heat treatment processing, it is found that the full-lamellar microstructures with grain sizes of about 150μm can be obtained after Ti-50Al alloy make short-time holding above 1400℃and then cooling slowly, and to use rapid-heating double-temperature heat treatment, the grain sizes can be refined to 30μm. During the experiment, the best heat treatment processing is that (rapid heating)1250℃×3h(air cooling)+(rapid heating)1400℃×5min(furnace cooling).
     The lamellar microstructure of Ti-50Al alloy is made of singleα2 plate and severalγplates.γphase is precipitated out ofαphase. By shearing mechanism, theγγinterface consists of four twin-crystal characteristic: twin, pseudo-twin, anti-phase and order domain doundary. And then these phases grow to the larger lamellars. Hereby it is observed thatγphase is precipitated out of phase boundary, finally forms fine lamellar. So while Ti-50Al alloy is holding at high temperature,γphase is precipitated out ofαphase, while holding at low temperature,γphase is precipitated out ofα2γandγγphase boundaries.
     The friction and wear tests of Ti-50Al show that wear loss of the full-lamellar microstructure for Ti-50Al alloy increases with load and sliding speed when sliding speed is lower than 1.0m/s, and friction coefficient is relatively invariable at about 0.5, wear mechanism is mainly abrasive wear. When the sliding speed is higher than 1.5m/s, the wear mechanism has changed to mainly oxidization wear and adhesive wear of the counterparts so that wear loss decreases significantly, and friction coefficient increases. Compared to as-cast Ti-50Al alloy, The Ti-50Al alloy with full-lamellar microstructure has better wear resistance, and friction stability at low sliding speed.
引文
1李宝辉,孔凡涛,陈玉勇等. TiAl金属间化合物的合金设计及研究现状.航空材料学报. 2006, 26(2): 72~78
    2 S. Malinova, T. Novoselovab, W. Shac. Experimental and Modelling Studies of the Thermodynamics and Kinetics of Phase and Structural Transformations in a Gamma TiAl-based Alloy. Materials Science and Engineering. 2004, A386: 344~353
    3 J. Barbosa, C.S. Ribeiro, A.C. Monteiro. Influence of Superheating on Casting ofγ-TiAl. Intermetallics. 2007: 1~11
    4 K. Liu, Y.C. Ma, M. Gao, et al. Single Step Centrifugal Casting TiAl Automotive Valves. Intermetallics. 2005, 13: 925~928
    5彭超群,黄伯云,贺跃辉.合金化对TiAl基合金性能的影响及机理.中国有色金属学报. 1998, 8(suppl.1): 11~17
    6 X.H. Wu. Review of Alloy and Process Development of TiAl Alloys. Intermetallics. 2006, 14: 1114~1122
    7贺跃辉,黄伯云,陈小群等. Ti-Al基合金α+γ两相区退火的显微组织转变特征.稀有金属. 1997, 2(21): 109~114
    8 X.J. Xu, J.P. Lin, Y.L. Wang, et al. Effect of Forging on Microstructure and Tensile Properties of Ti-45Al-(8–9)Nb-(W,B,Y) Alloy. Journal of Alloys and Compounds. 2006: 175~180
    9秦高梧,郝士明. Ti-Al系金属间化合物.稀有金属材料与工程. 1995, 24(2): 1~7
    10刘冰,范润华,孙家涛等. TiAl基合金的研制及其在汽车上的应用.材料·工艺·设备. 2005, 3: 29~38
    11刘轶,侍新琳. TiAl金属间化合物研究.沈阳航空工业学院学报. 2001, 18(1): 27~29
    12 H.N. Lee, D.R. Johnson, H. Inui, et al. Microstructural Control through Seeding and Directional Solidification of TiAl Alloys Containing Mo and C. Acta mater. 2000, 48: 3221~3233
    13 Q.F. X, J.N. Wang, J.Wang, et al. On the Massive Transfirmation in TiAl-based Alloys. Intermetallcs. 2001, 9: 361~367
    14 D. Hu. Effect of Composition on Grain Refinement in TiAl-based Alloys. Intermetallics. 2001, 9: 1037~1043
    15 W.M. Yin, V. Lupinc, L. Battezzati. Microstructure Study of aγ-TiAl Based Alloy Cotaining W and Si. Materials Science and Engineering. 1997, A239/240: 713~721
    16 H.F. Chladil, H. Clemens, H. Leitner, et al. Phase Tansformations in High Niobium and Carbon Containingγ-TiAl Based Alloys. Intermetallics. 2006, 14: 1194~1198
    17 Zh.G. Jiang, B. Chen, K. Liu, et al. Effects of Boron on Phase Transformation of High Nb Containing TiAl-based Alloy. Intermetallics. 2007, 15: 738~743
    18 D. Hu, R.R. Botten. Phase Transformations in Some TiAl-based Alloys. Intermetallics. 2002, 10: 710~715
    19 R.M. Imayev, V.M. Imayev, M. Oehring, et al. Alloy Design Concepts for Refined Gamma Titanium Aluminide Based Alloys. Intermetallics. 2007, 15: 451~460
    20 J. Boddoes, W. Wallace, L. Zhao. Current Understanding of Creep Behavior of Nearγ-Titanium Aluminides [J]. International Materials Reviews. 1995, 40(5): 197
    21 Y.W. Kim. Microstructural Evolution and Mechanical Properties of a Forged Gamma Titanium Aluminide Alloy. Acta Mater. 1992, 40(6): 1121~1134
    22 A. Denquin, S. Naka. Phase Transformation Mechanisms Involved in Two-phase TiAl-based Alloys-I: Lamellar Structure Formation. Acta Mater. 1996, 44(1): 343~352
    23 D. Srivastava, D. Hu, I.T.H. Chang, et al. The Influence of Thermal Processing Route on the Microstructure of Some TiAl-based Alloys. Intermetallics. 1999, 7: 1107~1112
    24 E.A. Loria. Gamma Titanium Aluminides as Prospective Structural Materials. Intermetallics. 2000, 8: 1339~1345
    25 X.W. Du, J.N. Wang, J.Zhu. The Influence of Si Alloying on the Crept Microstructure and Property of a TiAl Alloy Prepared by Powder Metallurgy. Intermetallics. 2001, 9: 745~753
    26刘咏,黄伯云,周科朝等.粉末冶金γ-TiAl基合金研究的最新进展.航空材料学报. 2001, 21(4): 50~55
    27 P.I. Gouma, S.J. Davey, M.H. Loretto. Microstructure and Mechanical Properties of a TiAl-based Powder Alloy Containing Carbon. Materials Science and Engineering. 1998, A241: 151~158
    28彭超群.循环热处理对TiAl基合金组织与性能的影响.博士学位论文.长沙:中南大学, 2001
    29张德铭,陈贵清,韩杰才等.γ-TiAl基高温结构材料研究评述.中国稀土学报. 2005, 23(suppl.): 163~167
    30张永刚,韩雅芳,陈国良等.金属间化合物结构材料.北京:国防工业出版社, 2001: 705
    31 R. Bohn, T. Klassen, R. Bormann. Room Temperature Mechanical Behavior of Silicon-doped TiAl Alloys with Grain Sizes in the Nano- and Submicron-Range. Acta Mater. 2001, 49: 299~311
    32 J.Ch. Tang, B.Y. Huang, Y.H. He, et al. Hall-Petch Relationship in Two-phase TiAl Alloys with Fully Lamellar Microstructures. Mater Res Bulletin. 2002, 37: 1315~1321
    33林建国,张永刚,陈昌麒.片层宽度对全片层TiAl合金蠕变性能的影响.材料研究学报. 2001, 15(5): 565~570
    34贺跃辉,黄伯云,曲选辉等. TiAl基合金双温热处理及其相变特征的研究[J].中南工业大学学报. 1996, 27(3): 298~302
    35李书江,刘自成,陈国良.循环热处理细化一次锻造的Ti-46Al-8.5Nb-0.2W合金组织.材料科学与工艺. 2000, 8(3): 46~49
    36 J.N. Wang, K. Xie. Grain Size Refinement of a TiAl Alloy by Rapid Heat Treatment. Scripta Mater. 2000, 43: 441~446
    37彭超群,黄伯云. TiAl基合金在快速加热循环热处理过程中的结构失稳.稀有金属材料与工程. 2004, 33(4): 363~367
    38何双珍,贺跃辉,黄伯云等.淬火/回火热处理对TiAl基合金晶粒细化的影响.航空材料学报. 2003, 23(3): 5~10
    39孔凡涛.稀土对TiAl合金凝固组织及性能影响的研究.博士学位论文.哈尔滨:哈尔滨工业大学, 2003
    40 A. Denquin, S. Naka. Phase Transformation Mechanisms Involved in Two-phase TiAl-based Alloys-II: Discontinuous Corarsening and Massive-type Transformation. Acta Mater. 1996, 44: 353~365
    41 M.A. Morris, M. Leboeuf. Kinetics of Grain Growth in aγBased TiAlAlloy [J]. Scripta Mater. 1998, 38(3): 369~374
    42刘文胜,黄伯云,唐建成等.全层状TiAl合金片层生长及影响因素.中国有色金属学报. 2003, 13(1): 153~156
    43 Y.S. Yang, S.K. Wu. Orientation Faults ofγLamellae in a Ti-40at%Al Alloy. Scripta Metallurgica et Materialia. 1991, 25: 255~260
    44陈善华, G. Schumacher. TiAl基合金中γγ界面关系的定量分析.材料工程. 2004, 5: 3~11
    45 L. Lu, D.P. Pope. Slip and Twinning in TiAl PST Crystals. Materials Science and Engineering. 1997, A23/240: 126~130
    46 D. Hu, M. H. Loretto. Slip Transfer between Lamellar in Fully Lamellar TiAl Alloys. 1999, 7: 1299~1306
    47 N.J. Rogers, P.D. Crofts, I.P. Jones, et al. Microstructure Toughness Relationships in Fully Lamellarγ-based Titanium Aluminides. Materials Science and Engineering. 1995, Al92/193: 379~386
    48宋西平.钛、锆、TiAl金属间化合物中的孪生行为.博士学位论文.西安:西安交通大学, 1999
    49 S.A. Jones, M.J. Kaufman. Phase Equilibria and Transformations in Intermediate Titanium-aluminum Alloys. Acta Metallurgica et Materialia. 1993, 41(2): 387~398.
    50 H.I. Aaronson, T. Furuhara, M.G. Hall, et al. On the Mechanism of Formation of Diffusional Plate-shaped Transformation Products. Acta Materialia. 2006, 54(5): 1227~1232.
    51 S. Zghal, M. Thomas, A. Couret. Structural Transformations Activated during the Formation of the Lamellar Microstructure of TiAl Alloys. Intermetallics. 2005, 13: 1008~1012
    52 S. Zghal, M. Thomas, S. Naka. Phase Transformations in TiAl Based Alloys. Acta Mater. 2005, 53: 2653~2664
    53 M.P. Bravo, I. Madariaga, K. Ostolaza, et al. Microstructural Refinement of TiAl Alloy by a Two Step Heat Treatment. Scripta Materialia. 2005, 53: 1141~1146
    54 H. Clemens, A. Bartels, S. Bystrzanowski, et al. Grain Refinement inγ-TiAl-based Alloys by Solid State Phase Transformations. Intermetallics. 2006, 14: 1380~1385
    55唐建成,黄伯云,刘文胜等.锻造TiAl在热处理时晶粒长大的动力学分析.稀有金属材料与工程. 2000, 29(3): 164~167
    56何双珍,贺跃辉,黄伯云等.直接热处理细化铸态TiAl基合金的研究进展.材料导报. 2003, 17(6): 25~27
    57 G.Zh. Xu, H. Liang, J.J. Liu, et al. Engine Tribology and Surface Modification Technology.金属热处理. 2006, 31(2): 1~11
    58 Y.Y. Chen, B.H. Li, F.T. Kong. Microstructural Refinement and Mechanical Properties of Y-bearing TiAl Alloys. Journal of Alloys and Compounds. 2008, 457: 265~269
    59 R. Gerling, F.P. Schimansky, A. Stark, et al. Microstructure and Mechanical Properties of Ti45Al5Nb+(0-0.5C) Sheets. Intermetallics. 2008, 16: 689~697
    60 T. Tetsui. Development of a TiAl Turbocharger for Passenger Vehicles. Materials Science and Engineering. 2002, A329/331: 582~588
    61 D. Eylon, M.M. Keller, P.E. Jones. Development of Permanent-mold Cast TiAl Automotive Valves. Intermetallics. 1998, 6: 703~708
    62欧阳鸿武,刘咏,贺跃辉等.粉末冶金TiAl基合金排气门的研制.材料·工艺·设备. 2001, 1: 26~28
    63马洪涛. Fe-Al金属间化合物基摩擦材料制备与摩擦磨损机制研究.博士学位论文.山东:山东大学, 2005
    64欧阳鸿武,刘泳,贺跃辉. TiAl基合金排气阀的研制和应用前景.材料导报. 2003, 17(4): 8~10
    65杨丽影,刘佐民. TiAl基合金成分对其高温摩擦学性能的影响.机械工程材料. 2006, 30(11): 1~3
    66李云堂,徐正林,贺少怀等.汽车刹车片的研制和性能试验.太原理工业大学报. 1996, 1: 20~22
    67翟秋亚,徐锦锋. Al2O3纤维增强铝基复合材料干滑动磨损机制的研究.摩擦学学报. 2005, 25(6): 535~539
    68李东南,林涵,范有发.转速对压铸镁合金AZ91D摩擦磨损特性的影响.特种铸造及有色合金. 2007, 27(5) : 388~390
    69陈春梅. Mg97Zn1Y2合金高温性能与摩擦学行为研究.硕士学位论文.吉林:吉林大学, 2005.
    70杨丽颖,刘佐民. TiAl基合金的摩擦学设计.济南大学学报. 2006, 20(2): 167~171
    71 J. Hampshire, P.J. Kelly, D.G. Teer. Structure and Mechanical Properties of Co-deposited TiAl Thin Films. Thin Solid Films. 2002, 420/421: 386~391

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700