用户名: 密码: 验证码:
东秦岭二郎坪地区西庄河花岗岩体的成因及形成机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
出露于东秦岭二郎坪地区的西庄河花岗岩一直被认为是与二郎坪弧后盆地蛇绿岩有关的幔源型花岗岩,并利用其Pb-Pb蒸发法定年结果来限定二郎坪蛇绿岩的形成时代。本文在详细的野外地质调研基础上,通过对该花岗岩以及新近在其中发现的暗色包体系统的岩相学、地球化学、年代学及锆石Hf同位素研究,在以下方面取得重要进展:
     1、详细的岩相学研究,在暗色包体中发现大量反映岩浆混合作用的显微结构证据,如:(1)寄主花岗岩呈粗粒花岗质结构,但暗色包体为斑状-似斑状结构或辉绿结构;(2)包体中发育反映岩浆快速冷凝的针状磷灰石;(3)包体中的斜长石呈明显的成分环带结构;(4)包体中存在由黑云母、角闪石等暗色矿物环绕眼球状石英斑晶所构成的眼斑结构;(5)包体中的斜长石斑晶骑跨寄主花岗岩和包体的边界,等等。
     2、地球化学研究显示,寄主花岗岩具高硅(SiO2=66.84%~71.57)、富碱(K2O+Na2O=6.08~7.41%)的特点,同时显示高Sr(327.04×10-6~613.97×10-6)、低Y(12.30×10-6~17.17×10-6)和Yb(1.36×10-6~1.88×10-6)及高Sr/Y(介于24~38)比值的特征;岩石的稀土总量中等,轻、重稀土分异强烈((La/Yb)N=12.35~23.28),Eu呈弱负异常-明显的正异常(δEu介于0.97~1.34)。在微量元素的原始地幔标准化蛛网图上,明显富集Rb、Ba、Th、U等大离子亲石元素和轻稀土,相对亏损Nb、Ta、Ti等高场强元素和重稀土,显示出与大洋俯冲有关的O型埃达克岩的地球化学特征。
     暗色包体Si02含量较低(53.38%~56.39%),同时显示高铝(Al2O3=14.11%~16.78%)、高镁(MgO=3.24%~3.9%,Mg#值=45.1~51.0)和高碱(K20+Na2O=5.92%~7.43%)的特征,属于钾玄岩-高钾钙碱性系列岩石。包体的稀土总量较高(∑REE=120.91×10-6~220.87×10-6),具轻稀土富集型的稀土配分模式,具有中等-弱的负铕异常(δEu介于0.65~0.86)。在原始地幔标准化蛛网图也表现出富集Rb、Ba、Th、U等大离子亲石元素,相对亏损Nb、Ta、Ti等高场强元素,总体显示出岛弧火山岩的地球化学特征。
     与寄主花岗岩相比,暗色包体具有明显高于寄主花岗岩的稀土含量和明显低的轻重稀土分异程度排出了暗色包体为岩浆早期结晶集合体的可能性;在微量元素原始地幔标准化蛛网图上,包体和花岗岩显示出相似的配分曲线特征,而且在全岩组分的哈克图解及其它主微量多元素协变图解上,寄主花岗岩及暗色包体均显示线性相关的特点,说明两者岩石成分的变异与岩浆混合作用有关。
     3、CL图像和原位微量元素分析结果表明,花岗岩和暗色包体中的锆石皆为典型岩浆结晶锆石的特征。LA-ICP-MS锆石原位U-Pb定年结果得到寄主花岗岩和暗色包体的结晶年龄分别为460±0.9 Ma和461±1.4 Ma,两者在误差范围内完全一致。
     4、锆石Hf同位素研究揭示寄主花岗岩与暗色包体存在明显差异,其中,花岗岩锆石的εHf(t)值变化于8.37~11.13之间,包体的锆石εHf(t)值变化于11.65~15.16之间,指示两者来自不同的岩浆源区。
     5、综合岩相学、地球化学、年代学和锆石Hf同位素研究结果,论证指出东秦岭二郎坪地区的西庄河花岗岩形成于岛弧构造环境,是早古生代俯冲洋壳熔融的中酸性岩浆与楔形地幔部分熔融来源的基性岩浆混合的产物,其中的暗色包体可能是岩浆混合过程中基性岩浆的残余。
The Xizhuanghe granite locates in Erlangping area of Xixia County, western of Henan Provinces. It has been considered as mantle-derived granite which was related to the Erlangping Ophiolite. And zircon Pb-Pb evaporation dating of this granite had been employed to constrain the formation age of the Erlangping Ophiolite. Based on detailed field investigation, the thesis focuses its studies on petrography, geochemistry, geochronology and zircon Hf isotope of the Xizhuanghe granite and mafic enclaves within it. The main achieves of the thesis can sum up in the following aspects:
     1. Petrographic studies found abundant microstructure of magmatic mixing within the mafic enclaves, for instance:(1) the enclaves show porphyritic-porphyaceous texture or diabasic texture while the host granite shows coarse-grained granitic texture; (2) acicular prismatic apatites occurring in the enclaves reflecting rapid cooling of magma; (3) plagioclase phenocrysts from the enclaves display composition zoning; (4) quartz phenocrysts within the enclaves are surrounded by dark colored minerals like biotite and amphibole; (5) plagioclase phenocrysts lie on the boundary of granite and the mafic enclaves.
     2. Geochemical studies indicate that the host granite has high SiO2 (66.84%~71.57), alkali (K2O+Na2O=6.08~7.41%), Sr (327.04×10-6~613.97×10-6) contents, low Y (12.30×10-6~17.17×10-6) and Yb (1.36×10-6~1.88×10-6) contents, with high Sr/Y ratios (24~38). LREE and HREE of the granite are markedly fractionated.δEu shows slightly negative-obviously positive anomaly (8Eu=0.97-1.34). Primitive mantle normalized trace element spider pattern shows obvious enrichment in LILE and LREE such as Rb, Ba, Th, U, etc. and relative depletion in HSFE and HREE such as Nb, Ta, Ti, etc., displaying geochemical features of O-type adakites which are related to subduction of oceanic slab.
     Mafic enclaves have relative lower SiO2 (53.38%-56.39%) but high Al2O3 (14.11%~16.78%), MgO(MgO=3.24%~3.9% and Mg number is (45.1~51.0) and alkali (K2O+Na2O=5.92%-7.43%) contents, belong to the shoshonite-high-K calc-alkalic series. The enclaves have high∑REE (120.91×10-6~220.87×10-6) abundance and LREE-enriched Chondrite-normalized REE patterns with moderate-slightly negative anomaly (δEu=0.65-0.86). Primitive mantle normalized trace element spider pattern shows obvious enrichment in LILE and LREE such as Rb, Ba, Th, U, etc. and relative depletion in HSFE and HREE such as Nb, Ta, Ti, etc., displaying geochemical features of island-arc volcanics.
     Comparing with the host granite, the mafic enclaves show obviously high REE contents but lower LREE-HREE fractionating, excluding the possibility of mafic enclaves resulted from crystal fractionation. Meanwhile, the granite and the mafic enclaves show similar variation trend of trace elemental compositions on the primitive mantle normalized spider patterns and linear correlation on the covariogram of Harker and other major and trace elements, indicating the magmatic mixing.
     3. CL images and trace element analysis show that zircons from the host granite and mafic enclaves show the characteristics of magma crystallization. In situ LA-ICP-MS zircon U-Pb dating yield the crystallization ages of 460±0.9 Ma for the host granite and 461±1.4 Ma for the enclaves.
     4. Zircon Hf isotopic compositions of the host granite are different from those of the mafic enclaves. ZirconεHf(t) values range from 8.37-11.13 for host granite and 11.65-15.16 for enclaves.
     5. Studies of petrography, geochemical, geochronology and zircon Hf isotopes show that, the Xizhuanghe granite which located in Erlangping area of the western Henan Province was formed in island arc setting. Mixing of the medium-acid magma produced by partial melting of the early Paleozoic subducting oceanic slab with the basaltic magma derived from partial melting of the mantle wedge resulted in the formation of the Xizhuanghe granite. The mafic enclaves within the granitic pluton may be the enclosed basaltic magma during the magmatic mixing process.
引文
[1]Andersen T. Correction of common lead in U-Pb analyses that do not report204Pb[J]. Chem Geol,2002,192:59-79
    [2]Atherton M P, Pertord N. Generation of sodium-rich magmas from newly underplated bassaltic crust[J]. Nature,1993,362:144-146
    [3]Barbarin B. Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids of the Sierra Nevada Bathholith California[J]. Journal of Geophysical Research,1990,95(B11): 17747-17756
    [4]Barbarin B. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:mature, origin and relations with the hosts[J]. Lithos, 2005,80:155-177
    [5]Baxter S and Feely M.. Magma mixing and mingling textures in granitoids:examples from the Galway Granite, Connemara[J], Ireland. Mineralogy and Petrology,2002,76,63-74
    [6]Bonin, B. A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos.2007,97,1-29
    [7]Bunsen, R W. U" ber die Processe der vulkanischen Gesteinsbildungen Islands[J]. Ann. Phys. Chem. (DritteReihe) 1851,83:197-272
    [8]Chappell B W, white A J R. Restite enclaves and the restite model In:Didier J, Barbarin B, eds Enclaves and Granite Petroloty [J].Amsterdam:Elsevier,1991,375-381
    [9]Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet[J]. Geology,2003,31:1021-1024
    [10]Defant M J, Drummond M S. Derivation of some modern arc magmas by meltong of young subducted lithosphere[J]. Nature,1990,347:662-665
    [11]Didier J. Granites and their enclaves:The bearing of enclaves on the origin of granite development in Petrology[J]. Amsterdam:Elsevier,1973,393.
    [12]Elhlou S, Belousova E, Griffin W L. Trace element and isotopic composition of G J red zircon standard by laser ablation[J]. Geochim Cosmochim Acta,2006,70 (Suppl):A158
    [13]Griffin W L, Wang X, Jackson SE, et al., Zircon Chemistry and Magma Genesis, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan Igneous Complexes[J]. Lithos,2002, 1:237-269
    [14]Gutscher M A, Maury R, Eissen J P, et al. Can slab melting becaused by flat suduction? [J]. Geology,2000,28:535-538.
    [15]Hawkesworth C J and Kemp A I S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution[J]. Chem. Geol,2006,226:144-162.
    [16]Holden, P., Halliday, A. N., Stephens, W. E., et al., Chemical and isotopic evidence for major mass-transfer between mafic enclaves and felsic magma[J]. Chem. Geol.1991,92:135-152
    [17]Hou Z O, Gao Y F, Qu X M, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth Planet Sci Lett,2004,220:139-155
    [18]Langmuir C H, Vocke R D, Hanson G N. A general mixing equation with applications to Icelandic basalts[J]. Earth Planet Sci Lett,1978,37:380-392
    [19]Li X H, Li Z X, Li W X, et al. U-Pb zircon,geochemical and Sr-Nd-Hf isotopic constrains on age and origin of Jurassic I and A-type granites from central Guangdong,SE China:A major igneous events in response to foundering of a subducted flat-slab[J]. Lithos,2007,96:186-204
    [20]Mass R, Nicholls I A, Legg C. Igneous and metamorphic enclaves in the S-type Deddick granodiorite,Lachlan fold belt, SE Australia:petrographic,geochemical and Nd-Sr isotopic evidence for crustal melting and magma mixing[J]. Journal of Petrology,1997,38(3):815-842
    [21]Peacock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust[J]. Earth Planet Sci Lett,1994,121:227-244
    [22]Perugini D., De Campos C., Dingwell D. B., et al., Trace Element Mobility During Magma Mixing:Preliminary Experimental Results[J]. Chemical Geology,2008,256 (3-4):146-157
    [23]Piccoli P M, Candela P A. Apatite in igneous system. In:Kohn M J, Rakovan J, Hughes J M, eds. Reviews in Mineralogy and Geochemistry[J]. The Mineralogical Society of America,2002, 48:255-292
    [24]Rapp R P. A review of experimental constraints on adakite petrogenesis in:Sympusium on adakite-likerocks and their geodynamic significance(abstract) [J]. Beijing, China,2001,10-12
    [25]Reid J B J, Evans O C and Fates D C. Magma mixing in granitic rocks of the central Sierra Nevada, California[J]. Earth Planet. Sci. Lett.,1983,66:243-261
    [26]Rubatto D. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb age and metamorphism[J]. Chemical Geology,2002,184:123-138
    [27]Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[A]. In:Saunders A D and Norry M J(eds.). Magmatism in the Ocean Basins, Geol. Soc. Spic.,1989,42:313-345
    [28]Stern C R, Kilian R. Role of the subducte slab,mantle wedge and continental crust in the generation of adakites from the Austral Volcanic Zone[J]. Contrib Miner Petrol,1996,123: 263-281
    [29]Vernon R H. Restite, xenoliths and microgranitoid enclaves in granites. Journal and Proccedings of the Royal Society of New South Wales[J].1983,116:77-103
    [30]Vernon R H. Intepretation of microstructures of microgranitoid enclaves[J]. In:Didier J, Barbarin B, eds. Enclaves and Granite Petrology Amsterdan:Elsevier,1990,277-291
    [31]Vernon R H and Paterson S R. How late are K-feldspar megacrysts in granites? [J]. Lithos, doi:10.1016/j. lithos.2008.01.001
    [32]Vervoort J D, and Patchett P J. Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambriam crustal derived granites[J]. Geochim Cosmochim Acta,1996, 60:3717-3733
    [33]Vervoort J D, Patchett P J, Blichert-Toft J, et al. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system[J]. Earth Planet Sci Lett,1999,168:79-99
    [34]Waight, T E., Dean, A A., Nicholls, I A., Sr and Nd isotopic investigations towards the origin of feldspar megacrysts in microgranular enclaves in two I-type plutons of the Lachlan Fold Belt, southeast Australia[J]. Australian Journal of Earth Sciences,2000a,47:1105-1112
    [35]Wilcox R E. The idea of magma mixing:history of a struggle for acceptance[J]. Journal of Geology,1999,107:421-432
    [36]Wu F Y, Yang Y H, Xie L W. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chem Geol,2006,234:105-126
    [37]Yang J H, Wu F Y, Chung S L, Wilde S A, et al., A hybrid origin for the Qianshan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence[J].2006, Lithos 89: 89-106
    [38]Yang, J H., Wu, F Y., Wilde, S A., et al., Tracing magma mixing in granite genesis:in situ U-Pb dating and Hf-isotope analysis of zircons[J]. Contrib. Mineral. Petrol.2007,153 (2): 177-190
    [39]Zhu Y F.1994. Petrological significance of zoned plagioclase in Eldjurti granite and mafic microgranular enclaves, north Caucasus, Russia. [J] Chinese Journal of Geochemistry,13 (2): 142-155
    [40]陈丹玲,刘良,孙勇,等.北秦岭松树沟高压基性麻粒岩锆石的LA-ICP-MS U-Pb定年及其地质意义[J].科学通报,2004,49(18):1901-1908.
    [41]陈隽路,徐学义,王洪亮,等.北秦岭早古生代埃达克岩地球化学特征及岩石成因[J].地质学报,2008,82(4):475-484
    [42]陈岳龙,杨忠芳,张宏飞,等.北秦岭晚古生代—中生代花岗岩类的Nd,Sr,Pb同位素地球化学特征及Nd、Sr同位素演化[J].地球科学—中国地质大学学报,1996,21(5):481-486
    [43]胡芳芳,范宏瑞,杨进辉,等.胶东文山南花岗闪长岩体的岩浆混合成因:闪长质包体及寄主岩石的地球化学,Sr-Nd同位素和锆石Hf同位素证据[J].岩石学报,2005,21(3):569-586
    [44]胡能高,赵东林,徐柏青,等.北秦岭含柯石英榴辉岩的发现及其意义[J].科学通报,1994,39(21):20-13
    [45]金维浚,张旗,何登发,等.西秦岭埃达克岩的SHRIMP定年及其构造意义[J].岩石学报,2005,21(3):959-966
    [46]李伍平,王涛,王晓霞.北秦岭灰池子花岗质复式岩体的源岩讨论—元素同位素地球化学制约[J].地球科学—中国地质大学学报,2001,26(3):269-278
    [47]李昌年.岩浆混合作用及其研究评述[J].地质科技情报,2002,21(4):49-53
    [48]李武显,董传万,周新民.平潭和漳州深成杂岩中斜长石捕虏晶与岩浆混合作用[J].岩石学报,1999,15(2):286-290
    [49]李武显,李献华.蛇绿岩中的花岗质岩石成因类型及构造意义[J].地球科学进展,2003,18:392-397
    [50]刘良,周鼎武.东秦岭商南松树沟高压基性麻粒岩的发现及初步研究[J].科学通报,1994,39(17):1599-1601
    [51]柳小明,高山,袁洪林,等93nm LA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析[J].岩石学报,2002,18(3):408-418
    [52]陆松年,李怀昆,陈志宏,等.秦岭中-新元古代地质演化及对Rodinia超级大陆事件的响应[M].北京:地质出版社,2003,1-194
    [53]陆松年,于海峰,李怀坤,等.“中央造山带”早古生代缝合带及构造分区概述[J].地质 通报,2006,25(12):59-69
    [54]卢欣祥.东秦岭与蛇绿杂岩有关的幔源型(M-型)花岗岩的地质地球化学[M].西北大学出版社,1987,149-162
    [55]罗照华,柯珊,谌宏伟.埃达克岩的特征成因及构造意义[J].地质通报,2003,21(7):436-440
    [56]马昌前.造山岩套中镁铁质和长英质岩浆的相互作用研究进展[J].地质科技成情报,2003,22(3):1-8
    [57]莫宣学,罗照华,肖庆辉,等.花岗岩类岩石中岩浆混合作用的认识与研究方法.见:肖庆辉,邓晋福,马大铨,等主编.花岗岩研究思维与方法[M].北京:地质出版社,2002,55-63
    [58]裴先治,王涛,丁仨平,等.东秦岭商丹带北侧新元古代埃达克质花岗岩及其地质意义[J].中国地质,2003,30(4):372-381
    [59]曲晓明,王鹤年,饶冰.郭家岭花岗闪长岩体中闪长质包体的成因研究[J].矿物学报,1997,17(3):302-309
    [60]任纪舜,陈廷愚,牛宝贵,等.中国东部及邻区大陆岩石圈的构造演化与成矿[M].北京:科学出版社,1990,58-66
    [61]孙勇,卢欣祥,韩松,等.北秦岭早古生代二郎坪蛇绿岩片的组成和地球化学[J].中国科学(D辑),1996,26:49-55
    [62]孙卫东,李曙光,孙勇,等.北秦岭西峡二郎坪群枕状熔岩中一个岩枕的年代学和地球化学研究[J].地质论评,1996,42(2):144-152
    [63]田伟,魏春景.北秦岭加里东期低Al-TTD系列:岩石特征,成因模拟及地质意义[J].中国科学D辑,地球科学,2005,35(3):215-224
    64]王德滋,谢磊.岩浆混合作用:来自岩石包体的证据[J].高校地质学报,2008,14(1):6-21
    [65]王涛,张国伟,裴先治,等.北秦岭新元古代北北西向碰撞造山带存在的可能性及两侧陆块的汇聚与裂解[J].地质通报,2002,21(8-9):516-522
    [66]王涛,王晓霞,田伟,等.北秦岭古生代花岗岩组合,岩浆时空演变及其对造山作用的启示[J].中国科学D辑:地球科学,2009,39(7):949-971
    [67]王涛.花岗岩混合成因研究及大陆动力学意义[J].岩石学报,2000,16(2):161-168
    [68]王强,赵振华,熊小林,等.底侵玄武质下地壳的熔融:来自安徽沙溪adakite质富钠 石英闪长玢岩的证据[J].地球化学,2001,30(4):353-362
    [69]王晓霞,王涛,卢欣祥,等.北秦岭老君山,秦岭梁环斑结构花岗岩岩浆混合的岩相学证据及其意义[J].地质通报,2002,21(8-9):523-529
    [70]汪相,Griffin W L,王志成,等.湖南丫江桥花岗岩中锆石的Hf同位素地球化学[J].科学通报,2003,48(4):379-382
    [71]王宗起,闫全人,闫臻,等.秦岭造山带结构与造山作用过程[R].地质调进查项目研究报告.中国地质科学院地质研究所,2006
    [72]温志亮.西秦岭教场坝岩体岩浆混合成因的新认识[J].矿物岩石,2008,28(3):29-36
    [73]肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].地质出版社,北京:2002,53-70
    [74]谢磊,王德滋,王汝成,等.浙江普陀花岗杂岩体中的石英闪长质包体:斜长石内部复杂环带研究与岩浆混合史记录[J].岩石学报,2004,20(6):1397-1408
    [75]徐夕生,周新民,王德滋.壳幔作用与花岗岩成因—以中国东南沿海为例[J].高校地质学报,1999,5(3):1-10
    [76]徐夕生,范钦成,S.Y.O'Reilly,等.安徽铜官山石英闪长岩及其包体锆石U-Pb定年与成因探讨[J].科学通报,2004,49(18):1882-1891
    [77]许志琴,卢一伦,汤耀庆,等.东秦岭复合山链的形成-变形、演化及板块动力学[M].北京:中国环境科学出版社,1988,1-185
    [78]闫全人,王宗起,陈隽璐,等.北秦岭斜峪关群和草滩沟群火山岩成因的地球化学和同位素约束、SHRIMP年代及其意义[J].地质学报,2007,81(4):488-500
    [79]杨森楠.东秦岭古生代陆间裂谷系的演化[J].地球科学,1985,(4):53-62
    [80]杨巍然,简平.造山带结构与演化的现代理论和研究方法-东秦岭造山带剖析[M].北京:地质出版社,1991,1-113
    [81]袁洪林,吴福元,高山,等.东北地区新生代侵入岩体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1555-1520
    [82]张本仁,骆庭川,高山,等.秦巴岩石圈构造及成矿规律地球化学研究[M].武汉:中国地质大学出版社,1994
    [83]张本仁,韩吟文,许继锋,等.北秦岭新元古代前属扬子板块的地球化学证据[J].高校地质学报,1998,4(4):369-382
    [84]张成立,罗静兰,李淼,等.东秦岭西坝花岗岩体及其脉岩的地球化学特征[J].西北大 学学报(自然科学版),2002,32(4):384-388
    [85]张成立,王晓霞,王涛,等.东秦岭沙河湾岩体成因-来自锆石U-Pb定年及其Hf同位素的证据[J].西北大学学报(自然科学版),2009,39(3):453-465
    [86]张国伟.秦岭造山带的形成演化[M].西安:西北大学出版社,1988,1-192
    [87]张国伟,张本仁,袁学城,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001,421-581
    [88]张宏飞,张本仁,骆庭川.北秦岭新元古代花岗岩类成因与构造环境的地球化学研究[J].地球科学—中国地质大学学报,1993,18(2):194-202
    [89]张宏飞,骆庭川,张本仁.北秦岭漂池岩体的源区特征及其形成的构造环境[J].地质论评,1996,42(3):209-214
    [90]张旗,王焰,王元龙.燕山期中国东部高原下地壳组成初探:埃达克质岩Sr、Nd同位素制约[J].岩石学报,2001,17(4):505-513
    [91]张旗,金维俊,熊小林,等.中国不同时代0型埃达克岩的特征及其意义[J].大地构造与成矿学,2008,33(3):432-447
    [92]张宗清,刘敦一,付国民.北秦岭变质地层同位素年代研究[M].北京:地质出版社,1994,1-161
    [93]张宗清,张国伟,刘敦一,等.秦岭造山带蛇绿岩、花岗岩和碎屑沉积岩同位素年代学和地球化学[M].北京:地质出版社,2006,70-72
    [94]周新民.对华南花岗岩研究的若干思考[J].高校地质学报,2003,9(4):556-565
    [95]周殉若.花岗岩混合作用[J].地学前缘,1994,1(1-2):87-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700