用户名: 密码: 验证码:
四唑类新型金属β-内酰胺酶抑制剂及含异噁唑环类异羟肟酸的合成和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包含两部分。第一部分研究了一类含四唑类新型金属β-内酰胺酶抑制剂;第二部分研究了一类新型含异(口恶)唑的异羟肟酸的PDF抑制剂。
     自上世纪30年代发现青霉素类抗生素以来,抗生素便成为人类抗病菌感染的主要前线药物。然而,随着抗生素(青霉素类与头孢类)的广泛应用,耐药菌也随之迅速产生并不断蔓延。病菌产生耐药性的途径之一,便是产生用于破坏β-内酰胺类抗生素的β-内酰胺酶,其中含金属离子的β-内酰胺酶就称为金属β-内酰胺酶。金属β-内酰胺酶能够严重破坏β-内酰胺类抗生素,使之失去抗菌活性而大大降低疗效。传统对付β-内酰胺酶的措施有:其一,寻找新的抗生素;其二,探索并用使细菌停止合成β-内酰胺酶的物质;其三,合并使用对β-内酰胺酶敏感和相对稳定的β-内酰胺酶抑制剂;其四,发展特异性的β-内酰胺酶抑制剂。几十年来,人们不断探索新的特异性金属酶抑制剂,取得了一定成果。到目前为止,已有的金属β-内酰胺酶抑制剂有:巯基乙酸衍生物、硫代吡啶二羧酸衍生物、青霉烷砜类等化合物、碳青霉烯类化合物、头孢烯类等。最近有文献报道包含3-n-丁基-1-苯并吡唑-5-羧酸盐联苯四唑或包含3-n-丁基-1-苯并吡唑-5-乙烷基酯联苯四唑对金属β-内酰胺酶具有抑制作用,而且对其生物活性进行了研究。
     四氮唑是一个有着广泛用途的官能团。它不仅在医药方面用作亲油性取代基和羧酸替代物;还作为炸药,照相和信息记录系统等,应用非常广泛。本文在文献工作基础上,对以上化合物进行结构改造,将其中一个苯环换成异(口恶)唑环,设计并合成了一系列化合物,并研究了其生物活性和对金属β-内酰胺酶的抑制作用。
     本文以对甲基苯甲醛为起始原料,通过包括锌盐催化的取代腈与叠氮环合反应合成四氮唑,以改进的偶极环加成反应合成了芳香环取代的异(口恶)唑,以及氧化、酯化、羟胺化等10-12步反应,合成了包含四氮唑与芳香环取代的异(口恶)唑的异羟肟酸衍生物。
     PDF抑制剂类抗生素是20世纪90年代末在国外新兴起的一个研究热点,因为PDF作为抑菌靶点的生化过程很明确,其晶体结构和活性部位也已经比较清楚,所以PDF抑制剂的研究具有较好的前景。我们选取PDF抑制剂作为研究课题,设计并合成新的化合物,希望能够发现新型结构的先导化合物。
     本文以含有苯并噻唑和吲哚的异羟肟酸类化合物为先导化合物,根据它们的构效关系和与PDF受体结合的原理,设计并合成了一类新型的含有异(口恶)唑类异羟肟酸衍生物。
     以取代的苯甲醛为起始原料,以改进的偶极环加成反应合成了芳香环取代的异(口恶)唑类中间体化合物,进而通过氧化、酯化、羟胺化等数个步骤得到最终目标产物。通过5步的反应,共合成含异(口恶)唑环异羟肟酸化合物15个,全部为新化合物。用~1HNMR、ESI-MS、IR和元素分析对这些化合物进行了分析,确定了这些化合物的结构。对其进行体外抑菌实验显示多数化合物有一定的抑菌作用。意外地发现这类化合物有很好的降糖效果。
This thesis consists of two parts. PartⅠ: Study on the synthesis of novel metallo-β-lactamase inhibitors in which tetrazole was contained; PartⅡ: Study on the synthesis of a novel class of isoxazole-based hydroxamate as PDF inhibitors.
     Withβ-lactam antibiotics by the wider use of the rapid spread of drug resistant. Metallo-β-lactamase type and number has been increasing serious impact on the merit of this kind of antibiotics. Traditional againstβ- lactamases measures are as follows: First, the search for new antibiotics and the other, and explore and make use of bacterialβstop - lactamase substances; Third, the combined use ofβ-lactamase sensitive and relatively stableβ-lactamase inhibitor; Fourth, the development of specificβ-lactamase inhibitors. For decades many experiments show that the development of specific inhibitors of metal has become a top priority. At present, with the characteristics of metallo-β- lactamase inhibitors are thioglycolic acid derivatives, thiosulfate pyridine carboxylic acid derivatives, such as Penicillium n-type oxide compounds, carbapenem compounds, cephalosporins ene and so on. Recently reported in the literature contains 3-n-butyl- 1-benzopyrazole-5-carboxylate diphenyl tetrazolium or contains 3-n-butyl-1-benzo pyrazole -5- ethane-ester diphenyl tetrazolium of metallo-β- lactamase inhibited, and its biological activity was studied, the findings showed that compounds containing tetrazole of metallo-β- lactamases have a certain effect.
     Tetrazole is a country with a wider use of functional groups. It is not only in Chinese medicine for lipophilic and carboxylic substituent substitute, but also as explosives, photographs and records information system, is widely used. In this paper, based on their improvement, where a benzene ring was replaced by an isoxazole ring, we synthesized a series of compounds to study their biological activity and the metallo-β- lactamase inhibitor.
     P-methylbenzaldehyde was used as the starting material, through 10-12 steps, including zinc catalytic 3+2 reaction of cyanobenzene and azide to form tetrazole, [3+2] cycloaddition of the aromatic cyano-oxide with alkyne to afford isoxazole, and followed by oxidation, esterification,hydroxylamination and finally got our target compounds..
     We also took benzothiazole hydroxamic acids as lead compounds, according to their structure-activity relationship as the PDF inhibitors, designed and synthesized a new type of hydroxamic acids in which isoxazole is contained.
     Benzaldehyde was used as the starting material, [3+2] cycloaddition was performed to afford isoxazole category,oxidation,esterification and hydroxyl amination were used to get final compounds. 15 new compounds were synthesized and their structures were conformed by NMR, ESI-MS, IR and elemental analysis. Vitro experiments showed that some of the compounds have antibiotic activity. And as a by-gaining, we find that these compound have good activity on hyperglycemic disease.
引文
[1]顾觉奋 药学进展专论[M].南京,南京大学出版社,1991
    
    [2]孙长贵,陈汉美超广谱β-内酰胺酶研究进展[J].国外医药抗生素分册、2000, 21(3):111
    
    [3]金属β-内酰胺酶(IMP-1)的表达和纯化重庆医科大学学报,2005(4)
    
    [4]金属β-内酰胺酶(IMP-1)的荧光分析临床检验杂志,2005
    
    [5] Ambler R P. The structure of beta-lactmases. Philos Trans R Soe London B BiolSci, 1980,289(10): 321
    
    [6] Bush K, Jacoby G A, Medeiros A A. A functional classification scheme forbeta-lactamases and its correlation with molecular structure. Antimicrob AgentsChemother, 1995,39(6): 1211
    
    [7] Philippon A, Dusatt J, Joris B, et al. The diversity structure and regulation ofbeta-lactamases. Cell Mol Life Sci, 1998,54(6): 341
    
    [8] Rasmusse B.A,Bush K.Carbapenem-hydrolyzingbeta-lactamaseas.AntimicrobAgents Chemother, 1997,41 (2): 2 2 3
    
    [9] Rossolini GM, Franceschini N,Riccio M L , et al .Characterization and sequenceof the Chryseobacterium (Flawvobacterium) meningosepticum carbapenemase : anew molecular class B beta-lactamase showing a broad substrate profile.BiochemJ 1998,332(Pt 1):145
    
    [10] Osano E , Arakawa Y, Wacharotayankun R, et al. Molecular characterization ofan enterobacterial metallo-beta-lactamase found in a clinical isolate of Serratiamarcescens that shows imipenem Tesistance.AntimicrobAgents Chemother, 1994 ,38(1): 71
    
    [11] Jeffrey H.Toney,Kelly A.Cleary,Gail G Hammond,XilingYuan,Walter J.May,Steven M.Hutchins.Wallace T.Ashton and Dana E.Vanderwall.Bioorganic &Medicinal Chemistry Letters ,1999 (9) :2741-2746
    
    [12] Butler R. N. In Comprehensive Heterocyclic Chemistry; Katrizky A. R.; Rees C. W.; Scriven E. F. V; Eds.;Pergammon: Oxford, U.K., 1996; Vol. 4
    
    [13] Yano H, Kuga A,Okamoto R, et al. Plawnid-encoded metal -lo-[actamase (IMP-6) conferring resistance to carbapenetr, especially mempenem. Antimicrob Agents Chemothe.2001,45:1343
    
    [14] Gibb A. P, Tribuddharat C, Richard A, etal. Nosoos mialout break of carbapenem- resistant P.-donnonas aeruginosawith a new bla:W allele, blatw-r . Aativricrab AgentsChenother, 2002,46: 255
    
    [15] Yan J J, Ko W C, Tsai 5H. Outbreak of infection withmultidmg-resistant Klebsiellu (nteunroni aecarrying hlaiw scenterin Taiwan. J Olin Micro university medico, 1999,39: 4433
    
    [16] P.Friedlander and R.Henriques,Ber.15 2105(1881)
    
    [17] Butler R. N. In Comprehensive Heterocyclic Chemistry; Katrizky A. R.; Rees C.W.; Scriven E. F. V; Eds.;Pergammon: Oxford, U.K., 1996; Vol. 4
    
    [18] A simple search of the MDDR database (6101) provided 173 1-alkylated and 1512-alkylated 5-C-tetrazoles and 1-alkylated and 2-alkylated 5-heterotetrazoles
    
    [19] Singh H.; Chawla A. S.; Kapoor VK;et al. Prog. Med. Chem. 1980,17, 151
    
    [20] 1) Ostrovskii V A;Pevzncr M. S.; Kofinna T P.; et al. Targets Heterocycl. Syst. 1999, 3, 467; 2) Hiskey M.; Chavez D. E.; Naud D. L.; et al. Proc.Int. rotech. Semin. 2000,27,3
    
    [21] Koldobskii G I.; OstrovskiiVA. Usp. Khim. 1994,63, 847.
    
    [22] 1) Huisgen R.; Sauer J;Sturm H. J.; et al. Chem. Ber. 1960,932106;2)ModerhackD. J. Prakt. Chem./Chem. -Ztg. 1988, 340,687.
    
    [23] Flnisgen R..J. Org. Chem. 1968,33(6),2291.
    
    [24] Carpenter W. R. J. Org Chem. 1962,27 (6), 2085.
    
    [25] 1) Quast H.; Bieber L. Tetrahedron. Lett. 1976, (18), 1485; 2) KrayushinM M.; Beskopylnyi A. M.; Zlotin SG;et al. Izv Akad Nauk SSSR, Ser. Khim 1980, 11, 2668; 3) Zavarzin l.V;ZhulinVM.; Yarovenko V. N.;"at. Izv.Akad Nauk SSSR, Ser. Aim. 1988, 5, 1168; 4) Klaubert D. H.; Sellstedt 7. H.;Guinosso C. J.; ei at. J Med Chem. 1981,24 (6), 748; 5) Demko Z. I';SharpIess K. B. Angew Chem, Int. Ed. 2002,12, 2110; 6) Demko Z. P.; Sharpless K. B.Angew Chem., Int. Ed. 2002,12,2113
    
    [26] 1) Dimroth O.; FesterGBerichte, 1910,43, 2219; 2) WibergVE;Michaud H. Z. Naturforsch, B.Anorg. Chem., Org. Chem., Riochem, Biophys., Bioi. 1954,9,497; 3) Grzonka Z.; Liberek B. Rocz Chem. 1971,45,967; 4) Huff B. E.; Staszak M. A. Tetrahedron. Lett. 1993, 34 (50), 8011; 5) Kumar A;Narayanan R.; Shechter H. J. Org. Chem. 1996,61(13), 4462; 6) Curran D. P.;Hadida S;Kim S. -Y Tetrahedron 1999, 55 (29), 8997.
    
    [27] Zdravkovski Z. THEOCHEM 1994,118,11.
    
    [28] 1)Titova I. E.; Poplvaskii V. S;Koldobskii Cx L; et at. Khim,, Geterotrikt.Soedin. 1986, 8, 1086.2) Ostrovskii V A;Poplvaskii V S.; KoldobskiiGL; et al. Khim. Geterotsikl. Soedin. 1992,9.1214.
    
    [29] 1)HimoF.;Demko Z. P.; NoodlemanL;et at. I. Am. Chem. Soc. 2002, 124(15),12210; 2) Himo R; Demko Z. P; Noodleman L.; et al J. Am. Chem. Soc.2003,125 (33),9983.
    
    [30] Tokuhara Cx; Yamaguchi T.; Iwasaki T WO Patent 1996-37481,1996
    
    [31] Galante R. J. U.S. Patent. 5502191,1995.
    
    [32] Finnegan,W.G:HenryR.A.:LorquistR.J.Am.Chem.Soc.1958,80(15),3908
    
    [33]LunnW.H.;SchoeppD.D.;CalligroD.O.;et al.J.Med.Chem.1992,35(24),4608
    
    [34] Orita R.; Tanaka H.; Miyashige Y; et al. Jpn. Patent. 0753489,1995
    
    [35] Kees K. L; CheesemanRS.; Prozialeak D. H.; et al. J. Med Chem.1989, 32 (1),11
    
    [36] Ried W.; TsiotisGChem. -Ztg. 1988,112,385.
    
    [37] Herbest R. M.; Wilson K. R. J. Org. Chem. 1957,22 (10), 1142
    
    [38] Duncia J. V; Pierce M. E;Santella J. B. III. i. 1991, 56 (7), 2395.
    
    [39] Wittenberger S. J.; Donner BGJ. Org. Chem. 1993, 58 (15), 4139.
    
    [40] Galante R. J. U.S. Patent. 5502191,1995.
    
    [41] Koguro K.; Oga T.; Mitsui S;et al. SYNTHESIS, 1998,910.
    
    [1]张致平.抗菌药物研究进展.中国抗生素杂志,2002,27(2),67-79.
    
    [2] (a) Adams, J. M. On the release of the formyl group from nascent protein. J. Mol.Biol, 1968, 33, 571-589. (b) Livingston, D. M.; Leder, P. Deformylation andprotein synthesis. Biochemistry, 1969, 8,435-443.
    
    [3] Meinnel, T.; Blanquet, S. Evidence that Peptide deformylase and methionyl-tRNA(fMet) formyltransferase are encoded within the same operon in Escherichiacoli. J. Bacterial, 1993,175,7737-7740.
    
    [4] Chan, M. K.; Gong, W. M; Rajagopalan, P. T. R., et al. Crystal Structure of theEscherichia coli Peptide Deformylase. Biochemistry, 1997, 36,13904-13909.
    
    [5] Rajagopalan, P. T. R.; Yu, X. C; Pei, D. H. Peptide Deformylase: A New Type ofMononuclear Iron Protein. J. Am. Chem. Soc, 1997,119,12418-12419.
    
    [6] Groche, D.; Becker, A.; Schlichting, I.; et al. Isolation and crystallization offunctionally competent ecolipeptide deformylase forms containing either iron ornickel in the active site. Biochem. Biophys. Res. Commun., 1998,246,342-346.
    
    [7] Ragusa, S.; Mouchet, P.; Lazennec, C; et al. Substrate recognition and selectivityof peptide deformylase: Similarities and differences with metzincins andthmolysin. J. Mol. Biol., 1999,289, 1445-1457.
    
    [8] Rajagopalan, P.T.; Grimme, S.; Pei, D. Characterization of cobalt (II )-substitutedpeptide deformylase: Function of the metalion and the catalytic residue Glu-133.Biochemistry, 2000,39, 779-790.
    
    [9] Adams, J. M; Capecchi, M. R. N-formylmethionyl-~sRNA as the initiator of proteinynthesis. Proc. Natl. Acad. Sci. USA, 1966,55,147-155.
    
    [10] Meinnel, T. Methionine as translation start signal: a review of the enzymes of thepathway in Escherichia coli. Biochimie, 1993, 75,1061-1075.
    
    [11]Yoshida, A.; Lin, M. NH_2-terminal formylmethionine- and NH_2-terminalmethionine cleaving enzymes in rabbits. J. Biol. Chem., 1972,247, 952-957.
    
    [12] Giglone, G; Serero, A.; Pierre, M.; et al. Identification of eukaryotic peptidedeformylases reveals universality of N-terminal protein processing mechanism.??EMBO. J., 2000, 19, 5916-5929.
    
    [13] Apfel, C. W.; Locher, H.; Evers, S.; et al. Peptide deformylase as an antibacterial drug target: Target validation and resistance development. Antimicrob. Agents. Chemother. 2001,45(4), 1058-1064.
    
    [14] Giglione, C; Pierre, M.; Meinnel, T. Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents. Mol. Microbiol, 2001, 36, 1197-1205.
    
    [15] Chen, D. Z.; Patel, D. V.; Hackbarth, C. J., et al. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry, 2000, 39(6), 1256-1262.
    
    [16] Apfel, C. M.; Banner, D. W.; Bur, D., et al. Hydroxamic acid derivatives as potent peptide deformylase inhibitors and antibacterial reagents. J. Med. Chem., 2000,43 (12), 2324-2331.
    
    [17] Jain, R.; Sundram, A.; Lopez, S., et al. a-Sunstituted Hydroxamic acids as novel bacterial deformylase inhibitor-based antibacterial agents. Bioorg Med Chem lett, 2003,13(23), 4223-4228.
    
    [18]Hackbarth, C. J.; Chen, D. Z.; Lewis, J. G, et al. N-Alkyl Urea Hydroxamic Acids as a New Class of Peptide Deformylase Inhibitors with Antibacterial Activity. Antimicrob. Agents. Chemother, 2002,46 (2), 2752-2764.
    
    [19] Boularot, A.; Giglione, C; Petit, S.; Duroc, Y.; Alves, R.; Larue, V.; Cresteil, T.; Dardel, F.; Artaud, I. and Meinnel, T. Discovery and Refinement of a New Structural Class of Potent Peptide Deformylase Inhibitors. J. Med. Chem., 2007, 50,10-20.
    
    [20]Clements, J. M.; Beckett, R. P.; Brown, A., et al. Antibiotic activity and characterization of BB3497-a novel peptide deformylase inhibitor. Antimicrob Agents Chemother., 2001,45 (2), 563-570.
    
    [21] Huntington, K. M.; Yi, T.; Wei, Y; et al. Synthesis and Antibacterial Activity ofPeptide Deformylase Inhibitors. Biochemistry, 2000,39 (15), 4543-4551.
    
    [22] Apfel, C; Banner, D.; Bur, D. et al. 2-(2-oxo-l,4-dihydro-2H-quinazolin-3-yl)-and 2-(2,2-dioxo-1, 4-dihydro-2H-2γ-benzo [1,2,6]thiadiazin-3-yl)-N-hydroxy-??acetamides as potent and selective peptide deformylase inhibitors. J. Med. Chem., 2001,44,1847-1852.
    
    [23]Chu, M.; Mierzwa, R.; He, L. et al. Isolation and structure elucidation of two novel defonnylase inhibitors produced by strep tomycesp. Tetrahedron Lett, 2001,42 (21), 3549-3551.
    
    [24]Ayasekera, M.; Kendall, A.; Shammas, R. et al. Novel nonpeptidic inhibitors ofpeptide deformylase. Arch. Biochem. Biophys., 2000, 381 (2), 313-316.
    
    [25]British, B.; Gene, S. Announce the start of human trials for the first-in-classantibiotic BB-83698 [N]. British Biotech News Release, 2002-10-1.
    
    [26] Vicuron Receives Milestone Payment for Novel Peptide Deformylase InhibitorDrug Candidate [N] .Vicuron Company News, 2003-12-4.
    
    [27]Jones, R. N.; Rhomberg, P. R. Comparative spectrum and activity of NVP -PDF386 (VRC4887), a new peptide deformylase inhibitor. J. Antimicrobial Chemother, 2002, 51 (1), 157-161.
    
    [28]Roblin, P. M.; Hammerschlag, M. R. In vitro activity of a new antibiotic NVP-PDF386 (VRC4887) against chlamydia pneumoniae. Antimicrob agents chemother, 2003,47 (4), 1447-1448.
    
    [29]Vicuron Updates on Novartis Peptide Deformylase Inhibitor Program [N].Vicuron Company News, 2005-4-3.
    
    [30] David, O. W. Studies Concerning the Amtibiotic Actinonin Part V. Synthesis of Structural Analogues of Actinonin by the Anhydride-Ester Method. Chem. Sci. Perkin Trans. 1,1975, 846-848.
    
    [31] Mladen, B.; Suzana, L; Nikola, K, et al. Corrosion Effects of Stabilized Backfill on Steel Detection of the Byproducts. Croa. Chem. Acta., 1998, 71(3), 807-816.
    
    [32]王喜梅,施开良。丙二酰二异羟肟酸稀土配合物的结构与性质。中山大学学 报(自然科学版),2000,39(2),51-55.
    
    [33]梁兴龙,曾伟,李鸿波等。烷基醚桥连的二异羟肟酸核钴(Ⅱ)配合物的合成 及其氧加合性能研究。四川大学学报(自然科学版),2001,38(2),290-294.
    
    [34]凌青,沈广霞,宇海银等。苯二酰异羟肟酸及癸二酰异羟肟酸的合成和抑??菌活性。合成化学,2002,10(3),263-266.
    
    [35]钟琳,周先礼,李建章等。异羟肟酸钻(Ⅱ)配合物的合成及表征。四川大 学学报(自然科学版),2002,39(1),92-95.
    
    [36]钟祥,梁娟秋,喻庆华。苯异羟肟酸衍生物抑制胃癌细胞活力的体外实验。 金属学报,1982,18,221-227.
    
    [37]崔美芳,顾翼东,黄永明等。几种异羟肟酸的酸解离常数的测定和W(Ⅳ)- 异羟肟酸配合物的合成及表征。无机化学学报,1991,7,394-396.
    
    [38]杨颍,李青山。芳香异羟肟酸二烃基锡配合物的合成、结构及其抗癌活性 的研究。结构化学,1996,15,163-169.
    
    [39]张为革,刘百里。β-芳胺酮类化合物的设计、合成及抗炎活性研究。沈阳 药科大学学报,2000,17,70-74.
    
    [40] Lautens, M.; Roy, A. Synthetic studies of the formation of oxazoles and soxazoles from N-acetoacetyl derivatives: scope and limitations. Org. Lett. 2000, 2(4), 555-557.
    
    [41] Farina, F.; Fraile, T. M; Martin, M. R. et al. Synthesis of isoxazoles bearing methoxycarbonyl and formyl groups by 1,3-dipolar cycloaddition of nitrile oxides to olefinic and acetylenic dipolarophiles. Heterocycles, 1995, 40, 285-293.
    
    [42] Easton, C. J.; Merricc, C; Hughus, M., et al. Cycloaddition reactions of nitrile oxides with alkenes. Adv. Heterocyl. Chem., 1994, 60,261-327.
    
    [43] Mukaiyama, T.; Hoshino, T. The reaction of primary nitroparaffins with isocyanates. J. Am. Chem. Soc, 1960, 82,5339-5342.
    
    [44] Molteni V.; He X.; Nabakka J.; Yang K.; Kreusch A.; Gordon P.; Bursulaya B.; Biorac T., et al. Identification of novel potent bicyclic peptide deformylase inhibitors. Bioorg. & Medici. Chem. Lett, 2004,1477-1481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700