用户名: 密码: 验证码:
米那度胺在套细胞淋巴瘤治疗中的价值及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
套细胞淋巴瘤(MCI)是一种临床治疗具有挑战性的B细胞恶性淋巴瘤,病程进展快,预后极差。MCL大约占所有非霍奇金淋巴瘤(NHI)的2.8-6%,具有独特的形态学、免疫表型和细胞遗传学特征,主要表现为染色体t(11;14)(q13;q32)易位导致cyclin D1过表达及细胞周期紊乱。尽管MCI患者通常对常规一线治疗有效,但最终极易复发和转移,中位生存期仅3-4年。因此,临床急需高效低毒的新靶向药物和免疫治疗来改善MCL患者的生存及预后。
     来那度胺(LEN)作为一种新型抗肿瘤药物已被FDA批准用于治疗复发或难治性多发性骨髓瘤。虽然LEN的确切作用机制尚不明确,但研究表明LEN可直接靶向肿瘤细胞及其微环境发挥抗肿瘤活性。LEN对多发性骨髓瘤的显著疗效推动了其在NHL中的扩大应用并显示出初步的抗肿瘤活性。因此,本研究探讨了LEN单药或联合治疗对MCL细胞的抗肿瘤作用,并试图阐明其可能的作用机制,为今后临床应用LEN为基础的联合治疗方案提供了有力的临床前数据。
     第一部分来那度胺与地塞米松体内外抑制套细胞淋巴瘤细胞增殖及
     诱导肿瘤细胞凋亡的机制研究
     目的评价LEN与DEX联合治疗MCI是否具有叠加或协同效应,并阐明其诱导肿瘤细胞凋亡的分子机制。
     方法LEN、DEX或两药联合(LEN/DEX)体外分别作用于MCL细胞系及从MCL患者骨髓或外周血中分离出的新鲜原代肿瘤细胞,通过分析细胞增殖、细胞周期分布和凋亡情况,判断LEN/DEX方案抗MCL细胞的叠加或协同效应。用Western blot方法探讨其诱导MCL细胞凋亡的机制。建立MCL异种移植物动物模型,用以评价LEN/DEX方案的体内抗MCL活性。
     结果IEN与DEX可有效抑制MCL细胞系MINO和来源于MCL患者的新鲜肿瘤细胞的增殖以及诱导其凋亡。细胞周期分析表明LEN本身对细胞周期分布无作用,但能够增强DEX介导的G_0/G_1细胞周期阻滞作用。LEN/DEX联合主要通过线粒体途径诱导肿瘤细胞凋亡,表现为促凋亡蛋白p-Bcl-2,Bax和Bad表达上调,进而导致caspase-9、caspase-3活化和PARP表达,且研究发现原代肿瘤细胞对药物的敏感性高于MCL细胞系。此外,LEN/DEX联合还可以明显减缓MCL-免疫缺陷(SCID)鼠体内肿瘤细胞的生长并改善荷瘤鼠的生存时间。结论LEN/DEX方案体内外可有效抑制MCL细胞增殖和诱导其凋亡。本研究结果表明LEN是一种很有前景的治疗MCL的靶向药物,并为LEN/DEX方案治疗复发和难治性MCL的临床试验提供了有利的理论依据。
     第二部分来那度胺增强美罗华介导的套细胞淋巴瘤细胞杀伤的双重作用机制
     目的抗CD20单克隆抗体美罗华(RTX)主要通过诱导凋亡和抗体依赖性细胞介导的细胞毒作用(ADCC)可有效治疗MCL,LEN作为一种新型免疫调节剂具有致敏肿瘤细胞及增强ADCC的作用。本研究旨在阐明LEN增强RTX杀伤MCL细胞的作用机制。
     方法分别用LEN、RTX或两药联合(IEN/RTX)作用于三种MCL细胞系SP53、MINO、Grant519和从3例复发或难治性MCL患者骨髓或外周血中分离出的新鲜肿瘤细胞,以及来源于正常人外周血的单个核细胞(PBMCs),测定肿瘤细胞增殖和凋亡的情况以及RTX诱导的ADCC效应,分析LEN/RTX方案的体外抗MCL的细胞毒作用。采用Western blot方法探讨药物诱导MCL细胞凋亡的信号途径,同时阐明LEN增强RTX诱导的ADCC效应的分子机制。建立MCL异种移植物动物模型,评价LEN/RTX方案的体内抗MCL作用。
     结果LEN和RTX在体外可有效抑制MCL细胞系和新鲜的原代MCL细胞的生长及诱导其凋亡。研究表明,LEN促进RTX诱导的细胞凋亡作用主要通过上调JNK、Bcl-2磷酸化;增加线粒体细胞色素c(cyto c)的释放;增强caspase-3,-8,-9活化和PARP裂解。同时,LEN能激活自然杀伤(NK)细胞,增加CD56~(low)CD16~+NK细胞的CD16表达,含有NK细胞的全PBMCs在LEN(1μM)作用下可使RTX介导的细胞毒作用提高30%,连续每日给予LEN治疗可导致SCID鼠体内的NK细胞数增加10倍。此外,在MCL-SCID鼠动物模型中,LEN与RTX联合可显著降低荷瘤鼠的肿瘤负荷并延长其生存期。
     结论LEN与RTX联合可显著促进MCL细胞凋亡,增强RTX依赖性NK细胞介导的细胞毒作用,进而发挥协同的体内外抗MCL效应。本研究表明LEN与RTX联合可作为治疗复发或难治性MCL的一个新的可行性临床试验治疗方案。
Mantle cell lymphoma (MCL) is a challenging B-cell lymphoma to treat,with anaggressive clinical course and extremely poor prognosis.It accounts forapproximately 2.8-6% of all non-Hodgkin's lymphomas (NHLs) and has distinctmorphologic,immunophenotypic,and cytogenetic features,characterized by thet(11;14) (q13;q32) translocation resulting in cyclin D1 overexpression and cell-cycledysregulation.Although MCL patients achieve a high rate of complete response fromfrontline therapies,but relapse almost always occurs with a median overall survival of3-4 years with less than 15% of patients alive at 5 years.Therefore,MCL remainsincurable and novel targeted agents and immunotherapies with improved efficacy andsafety are urgently required to improve the survival of patients with MCL.
     LEN,a novel anticancer drug,has emerged as a potent treatment with improvedsafety profile for multiple myeloma (MM) and received FDA approval for use incombination with DEX in relapsed or refractory MM patients.Although the exactmechanism of its action remains complicated and unclear,LEN has been shown invarious systems to have striking antitumor activities directly targeting tumor cells andtheir microenvironment.The success of LEN in the treatment of MM has led to itsexpanded use in treating other B-cell malignancies,with impressive results in someNHLs.These encouraging findings prompted us to investigate the therapeuticeffeicacy of LEN alone or in combination on MCL cells and attempt to elucidate itsantitumor mechanism.Our study could provide favorable preclinical data for thefuture use of LEN-containing regimens in clinical trials of MCL.
     PartⅠLenalidomide plus dexamethasone induces the growth arrestand apoptosis of mantle cell lymphoma cells in vitro and in vivo
     Objective Our study was undertaken to evaluate the effect of LEN combined withDEX on MCL cells and elucidate the mechanism by which it induces tumor cellapoptosis.
     Methods Established MCL cells and freshly isolated MCL cells from three relapsedpatients were treated with LEN,DEX individually or in combination of two drugs (LEN/DEX).Cell proliferation,cell cycle distribution and apoptosis were evaluatedto determine if there was additive or synergistic effect of LEN/DEX regimen.Westernblot analysis was used to elucidate the molecular mechanism by which different druginduced apoptosis in MCL cells.In addition,a MCL-bearing xenograft model insevere combined immune deficiency (SCID) mice was established to examine the invivo efficacy of the regimen to eradicate MCL cells.
     Results The results showed that LEN and DEX induced growth inhibition andapoptosis of MCL cell lines and freshly isolated patient MCL cells in adose-dependent manner.Cell cycle analysis showed that LEN was able to enhanceDEX-induced G_0/G_1 arrest despite no effect using LEN alone.Apoptosis induced byLEN/DEX was revealed mainly through mitochondrial pathways,as demonstrated byup-regulation of proapoptotic proteins phosphor-Bcl-2,Bax,and Bad,and thesubsequent cleavage of caspase-9,caspase-3,and PARP;This effect was moresignificant in primary MCL cells than established MCL cells.Importantly,LEN/DEXwas also effective to delay tumor growth and improve survival of MCL-bearing SCIDmice inoculated subcutaneously with 1×10~7 MCL cells.
     Conclusions LEN/DEX inhibits growth and induces apoptosis of MCL cells invitro and in vivo.Cell apoptosis was induced mainly through mitochondrial pathway.Our results provide favorable preclinical data for the future use of LEN/DEX regimenin clinical trials of MCL.
     PartⅡDual mechanisms for lenalidomide-enhanced rituximab-mediated killing of mantle cell lymphoma
     Objective Rituximab (RTX),a chimeric anti-CD20 antibody,is associated withdirect induction of apoptosis and antibody-dependent cell-mediated cytotoxicity(ADCC) with clinical efficacy in mantle cell lymphoma (MCL).Lenalidomide (LEN),a novel immunomodulatory agent,sensitizes tumor cells and enhances ADCC.Ourstudy attempted to elucidate the mechanism of LEN-enhanced RTX-mediated killingof MCL cells.
     Methods Three human MCL cell lines:SP53,MINO,Grant519;freshly isolated primary MCL cells from three relaped or refractory MCL patients;and normalperipheral blood mononuclear cells (PBMCs) from healthy donors were treated withLEN and RTX,either alone or in combination.Cell proliferation,apoptosis andRTX-induced ADCC were examined to analyse the in vitro cytotoxicity of LEN plusRTX against MCL.Western blot analysis was used to investigate the signal pathwayby which different drug induced apoptosis in MCL cells.Meanwhile,we attempted toelucidate the molecular mechanism by which LEN enhanced RTX-dependent NKcell-mediated cytotoxicity.In addition,MCL-bearing xenograft models using withSCID mice were established to evaluate the in vivo anti-MCL capacity of the LENand RTX combination.
     Results The results showed that LEN and RTX induced growth inhibition andapoptosis of both cultured and fresh primary MCL cells.LEN enhanced RTX-inducedapoptosis via upregulating phosphorylation of c-Jun N-terminal protein kinases (JNK),Bcl-2;increasing release of cytochrome-c;enhancing activation of caspase-3,-8,-9and cleavage of PARP.Meanwhile,LEN activated NK cells and increased CD16expression on CD56~(low)CD16~+ NK cells.Whole PBMCs but not NK cell-depletedPBMCs treated with 1 1μM of LEN augmented 30% of RTX-dependent cytotoxicity.Daily treatment with LEN increased NK cells by 10 folds in SCID mice.Moreover,the combination of LEN and RTX decreased tumor burden and prolonged survival ofMCL-bearing SCID mice.
     Conclusions LEN plus RTX provides a synergistically therapeutic effect on MCLcells by enhancement of apoptosis and RTX-dependent NK cell-mediated cytotoxicityand may be an optimal combination in clinical trial of relapsed or refractory MCL.
引文
[1] A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma . The Non-Hodgkin's Lymphoma Classification Project[J]. Blood, 1997, 89(11): 3909-3918.
    
    [2] Bosch F, Lopez-Guillermo A, Campo E, et al. Mantle cell lymphoma: presenting features, response to therapy, and prognostic factors[J]. Cancer, 1998, 82(3):567-575.
    
    [3] Campo E, Raffeld M, Jaffe ES. Mantle-cell lymphoma[J]. Semin Hematol,1999, 36(2): 115-127.
    
    [4] Zhou Y, Wang H, Fang W, et al. Incidence trends of mantle cell lymphoma in the United States between 1992 and 2004[J]. Cancer, 2008, 113(4): 791-798.
    
    [5] Jaffe ES, Harris NL, Stein H, Vardiman JW, editors. World health organization classification of tumours. pathology and genetics of tumours of haematopoietic and lymphoid tissues[A]. Lyom I ARC Press. 2001, 189-230.
    
    [6] Jares P, Colomer D, Campo E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics[J]. Nat Rev Cancer, 2007,7(10): 750-762.
    
    [7] Romaguera JE, Fayad L, Rodriguez MA, et al. High rate of durable remissions after treatment of newly diagnosed aggressive mantle-cell lymphoma with rituximab plus hyper-CVAD alternating with rituximab plus high-dose methotrexate and cytarabine[J]. J Clin Oncol, 2005, 23(28): 7013-7023.
    
    [8] Lenz G, Dreyling M, Hoster E, et al. Immunochemotherapy with rituximab and cyclophosphamide, doxorubicin, vincristine, and prednisone significantly improves response and time to treatment failure, but not long-term outcome in patients with previously untreated mantle cell lymphoma: results of a prospective randomized trial of the German Low Grade Lymphoma Study Group (GLSG)[J]. J Clin Oncol, 2005,23(9): 1984-1992.
    
    [9] Khouri IF, Saliba RM, Okoroji GJ, Acholonu SA, Champlin RE. Long-term follow-up of autologous stem cell transplantation in patients with diffuse mantle cell lymphoma in first disease remission: the prognostic value of beta2-microglobulin and the tumor score[J]. Cancer, 2003, 98(12): 2630-2635.
    
    [10] Hideshima T, Chauhan D, Shima Y, et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy [J]. Blood,2000, 96(9): 2943-2950.
    
    [11]Richardson PG, Schlossman RL, Weller E, et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma[J]. Blood, 2002, 100(9): 3063-3067.
    
    [12]CraneE, List A. Immunomodulatory drugs[J]. Cancer Invest, 2005, 23(7):625-634.
    
    [13]Mitsiades N, Mitsiades CS, Poulaki V, et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells:therapeutic implications[J]. Blood, 2002, 99(12): 4525-4530.
    
    [14]Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma[J]. Blood,2001, 98(1): 210-216.
    
    [15]Lentzsch S, LeBlanc R, Podar K, et al. Immunomodulatory analogs of thalidomide inhibit growth of Hs Sultan cells and angiogenesis in vivo[J]. Leukemia,2003, 17(1): 41-44.
    
    [16]Chanan-Khan AA, Cheson BD. Lenalidomide for the treatment of B-cell malignancies[J]. J Clin Oncol, 2008, 26(9): 1544-1552.
    
    [17]Rajkumar SV, Hayman SR, Lacy MQ, et al. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma[J].Blood, 2005, 106(13): 4050-4053.
    
    [18]Dimopoulos M, Spencer A, Attal M, et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma[J]. N Engl J Med, 2007, 357(21):2123-2132.
    
    [19] Weber DM, Chen C, Niesvizky R, et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America[J]. N Engl J Med, 2007, 357(21):2133-2142.
    
    [20] Richardson PG, Blood E, Mitsiades CS, et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma[J]. Blood, 2006, 108(10): 3458-3464.
    
    [21]Wang M, Dimopoulos MA, Chen C, et al. Lenalidomide plus dexamethasone is more effective than dexamethasone alone in patients with relapsed or refractory multiple myeloma regardless of prior thalidomide exposure[J]. Blood, 2008,112(12): 4445-4451.
    
    [22]Wiernik PH, Lossos IS, Tuscano JM, et al. Lenalidomide Monotherapy in Relapsed or Refractory Aggressive Non-Hodgkin's Lymphoma[J]. J Clin Oncol,2008, 26(30): 4952-4957.
    
    [23]Damaj G, LefrereF, Delarue R, etal. Thalidomide therapy induces response in relapsed mantle cell lymphoma[J]. Leukemia, 2003, 17(9): 1914-1915.
    
    [24]Dredge K, Horsfall R, Robinson SP, et al. Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro[J]. Microvasc Res, 2005, 69(1-2): 56-63.
    
    [25]Dredge K, Marriott JB, Macdonald CD, et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects[J]. Br J Cancer, 2002, 87(10): 1166-1172.
    
    [26]Hernandez-Ilizaliturri FJ, Reddy N, Holkova B, et al. Immunomodulatory drug CC-5013 or CC-4047 and rituximab enhance antitumor activity in a severe combined immunodeficient mouse lymphoma model[J]. Clin Cancer Res, 2005, 11(16):5984-5992.
    
    [27]Chanan-Khan A, Porter CW. Immunomodulating drugs for chronic lymphocytic leukaemia[J]. Lancet Oncol, 2006, 7(6), 480-488.
    
    [28] Gandhi AK, Kang J, Naziruddin S, et al. Lenalidomide inhibits proliferation of Namalwa CSN.70 cells and interferes with Gab1 phosphorylation and adaptor protein complex assembly[J]. Leuk Res, 2006, 30(7): 849-858.
    
    [29]Verhelle D, Corral LG, Wong K, et al. Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+ progenitor cells[J]. Cancer Res, 2007, 67(2): 746-755.
    [1] Romaguera JE, Fayad L, Rodriguez MA, et al. High rate of durable remissions after treatment of newly diagnosed aggressive mantle-cell lymphoma with rituximab plus hyper-CVAD alternating with rituximab plus high-dose methotrexate and cytarabine[J]. J Clin Oncol, 2005, 23(28): 7013-7023.
    
    [2] Zhou Y, Zhang L, Romaguera J, et al. Immunotherapy in mantle cell lymphoma: Anti-CD20-based therapy and beyond[J]. Am J Hematol, 2008, 83(2): 144-149.
    
    [3] Tai YT, Li XF, Catley L, et al. Immunomodulatory drug lenalidomide (CC-5013,IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications [J]. Cancer Res, 2005, 65(24): 11712-11720.
    
    [4] Anderson KC. Lenalidomide and thalidomide: mechanisms of action--similarities and differences[J]. Semin Hematol, 2005, 42(4 Suppl 4): S3-8.
    
    [5] Hernandez-Ilizaliturri FJ, Reddy N, HoIkova B, et al. Immunomodulatory drug CC-5013 or CC-4047 and rituximab enhance antitumor activity in a severe combined immunodeficient mouse lymphoma model. Clin Cancer Res[J]. 2005, 11(16):5984-5992.
    
    [6] Verhelle D, Corral LG, Wong K, et al. Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+ progenitor cells[J]. Cancer Res, 2007, 67(2): 746-755.
    
    [7] Raje N, Kumar S, Hideshima T, et al. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma[J]. Blood,2004, 104(13): 4188-4193.
    
    [8] Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma[J]. Blood,2001, 98(1): 210-216.
    
    [9] Geitz H, Handt S, Zwingenberger K. Thalidomide selectively modulates the density of cell surface molecules involved in the adhesion cascade[J].Immunopharmacology, 1996, 31(2-3): 213-221.
    
    [10]Zeldis JB, Schafer PH, Bennett BL, et al. Potential new therapeutics for Waldenstrom's macroglobulinemia[J]. Semin Oncol, 2003, 30(2): 275-281.
    [11] Dredge K, Horsfall R, Robinson SP, et al. Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro[J]. Microvasc Res, 2005, 69(1-2): 56-63.
    
    [12]Corral LG, Haslett PA, Muller GW, et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha[J]. J Immunol, 1999, 163(1): 380-386.
    
    [13]Chanan-Khan AA, Cheson BD. Lenalidomide for the treatment of B-cell malignancies[J]. J Clin Oncol, 2008, 26(29): 1544-1552.
    
    [14]Ferrajoli A, Lee BN, Schlette EJ, et al. Lenalidomide induces complete and partial remissions in patients with relapsed and refractory chronic lymphocytic leukemia[J]. Blood, 2008, 111(11): 5291-5297.
    
    [15]Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets[J]. Nat Med, 2000, 6(4): 443-446.
    
    [16] Van der Kolk LE, Evers LM, Omene C, et al. CD20-induced B cell death can bypass mitochondria and caspase activation[J]. Leukemia, 2002, 16(9): 1735-1744.
    
    [17]Stel AJ, Ten Cate B, Jacobs S, et al. Fas receptor clustering and involvement of the death receptor pathway in rituximab-mediated apoptosis with concomitant sensitization of lymphoma B cells to fas-induced apoptosis[J]. J Immunol, 2007,178(4): 2287-2295.
    
    [18]Lenz G, Dreyling M, Hoster E, et al. Immunochemotherapy with rituximab and cyclophosphamide, doxorubicin, vincristine, and prednisone significantly improves response and time to treatment failure, but not long-term outcome in patients with previously untreated mantle cell lymphoma: results of a prospective randomized trial of the German Low Grade Lymphoma Study Group (GLSG) [J]. J Clin Oncol, 2005,23(9): 1984-1992.
    
    [19] Howard OM, Gribben JG, Neuberg DS, et al. Rituximab and CHOP induction therapy for newly diagnosed mantle-cell lymphoma: molecular complete responses are not predictive of progression-free survival[J]. J Clin Oncol, 2002, 20(5):1288-1294.
    
    [20]Kaufmann H, Raderer M, Wohrer S, et al. Antitumor activity of rituximab plus thalidomide in patients with relapsed/refractory mantle cell lymphoma[J]. Blood, 2004, 104(8): 2269-2271.
    
    [21]Maloney DG, Smith B, Rose A. Rituximab: mechanism of action and resistance[J]. Semin Oncol, 2002, 29(1 Suppl 2): 2-9.
    
    [22] Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma[J]. J Clin Oncol, 2003, 21(21): 3940-3947.
    
    [23] Wilson WH, Dunleavy K, Pittaluga S, et al. Phase II study of dose-adjusted EPOCH and rituximab in untreated diffuse large B-cell lymphoma with analysis of germinal center and post-germinal center biomarkers[J]. J Clin Oncol, 2008, 26(16):2717-2724.
    
    [24] Davis RJ. Signal transduction by the JNK group of MAP kinases[J]. Cell, 2000,103(2): 239-252.
    
    [25] Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M[J]. Mol Cell Biol, 1999, 19(12): 8469-8478.
    
    [26]Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer[J]. Nat Rev Immunol, 2007, 7(5): 329-339.
    
    [27]Vivier E, Nunes JA, Vely F. Natural killer cell signaling pathways[J]. Science,2004, 306(5701): 1517-1519.
    
    [28]Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells[J]. Nat Immunol, 2008, 9(5): 503-510.
    
    [29] Steplewski Z, Sun LK, Shearman CW, et al. Biological activity of human-mouse IgG1, IgG2, IgG3, and IgG4 chimeric monoclonal antibodies with antitumor specificity[J]. Proc Natl Acad Sci U S A, 1988, 85(13): 4852-4856.
    
    [30]Macor P, Tripodo C, Zorzet S, et al. In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab[J]. Cancer Res, 2007, 67(21): 10556-10563.
    [1] Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma[J]. N Engl J Med, 1999, 341:1565-1571.
    
    [2] Weber D, Rankin K, Gavino M, et al. Thalidomide alone or with dexamethasone for previously untreated multiple myeloma[J]. J Clin Oncol, 2003,21:16-19.
    
    [3] Rajkumar SV, Blood E, Vesole D, et al. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: A clinical trial coordinated by the Eastern Cooperative Oncology Group[J].J Clin Oncol,2006,24:431-436.
    
    [4] Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents[J]. Nat Rev Cancer,2004,4:314-322.
    
    [5] Marriott JB, Muller G, Stirling D, et al.Immunotherapeutic and antitumour potential of thalidomide analogues[J]. Expert Opin Biol Ther, 2001,1:675-682.
    
    [6] Dredge K, Horsfall R, Robinson SP, et al.Orally administered lenalidomide (CC-5013) is antiangiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro[J]. Microvasc Res, 2005,69:56-63.
    
    [7] Dredge K, Marriott JB, Macdonald CD, et al.Novel thalidomide analogues display antiangiogenic activity independently of immunomodulatory effects[J]. Br J Cancer,2002,87:1166-1172.
    
    [8] Lentzsch S, LeBlanc R, Podar K, et al. Immunomodulatory analogs of thalidomide inhibit growth of Hs Sultan cells and angiogenesis in vivo[J]. Leukemia,2003,17:41-44.
    
    [9] Chanan-Khan A, Porter CW. Immunomodulating drugs for chronic lymphocytic leukaemia[J]. Lancet Oncol, 2006,7:480-488.
    
    [10] Marriott JB, Dredge K, Dalgleish AG.Thalidomide derived immunomodulatory drugs (IMiDs) as potential therapeutic agents[J]. Curr Drug Targets Immune Endocr Metabol Disord,2003,3:181-186.
    
    [11] Anderson KC. Lenalidomide and thalidomide: Mechanisms of action-similarities and differences[J].Semin Hematol,2005,42:S3-8.
    
    [12] Chanan-Khan A, Padmanabhan S, Miller K, et al. In vivo evaluation of immunomodulating effects of lenalidomide on tumor cell microenvironment as a possible underlying mechanism of the antitumor effects observed in patients with chronic lymphocytic leukemia (CLL)[J]. Blood, 2005,106 (abstr 2975a).
    
    [13] Gandhi AK, Kang J, Naziruddin S, et al. Lenalidomide inhibits proliferation of Namalwa CSN. 70 cells and interferes with Gab1 phosphorylation and adaptor protein complex assembly[J]. Leuk Res, 2006, 30:849-858.
    
    [14] Chanan-Khan A, Ersing N, Krammer D, et al. Pro-apoptotic effect of lenalidomide in patients with chronic lymphocytic leukemia is possibly mediated through interruption of the phosphatidylinositol pathway[J]. Blood, 2006, 108 (abstr 2102a).
    
    [15] Corral LG, Haslett PA, Muller GW, et al.Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha[J]. J Immunol, 1999,163:380-386.
    
    [16] Chang DH, Liu N, Klimek V, et al. Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: Therapeutic implications[J]. Blood,2006, 108:618-621.
    
    [17] Schafer PH, Gandhi AK, Loveland MA, et al.Enhancement of cytokine production and AP-1 transcriptional activity in T cells by thalidomide-related immunomodulatory drugs[J]. J Pharmacol Exp Ther, 2003, 305:1222-1232.
    
    [18] Hayashi T, Hideshima T, Akiyama M, et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: Clinical application[J]. Br J Haematol, 2005,128:192-203.
    
    [19] Padmanabhan S, Ersing N, Wallace P, et al. First clinical evidence of in vivo Natural Killer (NK) cell modulation in chronic lymphocytic leukemia (CLL) patients treated with lenalidomide[J]. Blood, 2006, 108 (abstr 2109a).
    
    [20] Mitsiades CS, Mitsiades N. CC-5013 (Celgene)[J]. Curr Opin Investig Drugs,2004, 5:635-647.
    
    [21] Richardson PG, Schlossman RL, Weller E, et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma[J]. Blood,2002,100:3063-3067.
    [22] Richardson PG, Blood E,Mitsiades CS, et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma[J]. Blood, 2006, 108:3458-3464.
    
    [23] Weber D, Chen C, Niesvizky R, et al. Lenalidomide plus high-dose dexamethasone provides improved overall survival compared to high-dose dexamethasone alone for relapsed or refractory multiple myeloma (MM): Results of a North American phase III study (MM-009)[J]. J Clin Oncol, 2006, 24: 427s (suppl;abstr 7521).
    
    [24] Dimopoulos MA, Spenser A, Attal M, et al. Study of lenalidomide plus dexamethasone versus dexamethasone alone in relapsed or refractory multiple myeloma (MM): Results of a phase 3 study (MM-010)[J]. Proc Am Soc Hematol,2005,106: 6.
    
    [25] Wang M, Knight R, Dimopoulos M, et al.Comparison of lenalidomide in combination with dexamethasone to dexamethasone alone in patients who have received prior thalidomide in relapsed or refractory multiple myeloma[J]. J Clin Oncol, 2007, 25:390s (suppl; abstr 7522).
    
    [26] Stadtmauer E, Weber D, Dimopolous M, et al. Lenalidomide in combination with dexamethasone is more effective than dexamethasone at first relapse in relapsed multiple myeloma[J]. Proc Am Soc Hematol, 2005, (abstr 3522).
    
    [27] Rajkumar SV, Hayman SR, Lacy MQ, et al. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma[J]. Blood,2005,106:4050-4053.
    
    [28] Rajkumar S, Jacobus S, Callander N, et al. Phase III trial of lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone in newly diagnosed multiple myeloma (E4A03): a trial coordinated by the Eastern Cooperative Oncology Group[J]. J Clin Oncol, 2007, 25:447s (suppl; abstr LBA 8025).
    
    [29] Palumbo A, Falco P, Corradini P, et al. Melphalan, prednisone, and lenalidomide treatment for newly diagnosed myeloma: A report from the GIMEMA-Italian Multiple Myeloma Network[J]. J Clin Oncol,2007,25: 4459-4465.
    
    [30] Baz R, Walker E, Karam MA, et al. Lenalidomide and pegylated liposomal doxorubicin-based chemotherapy for relapsed or refractory multiple myeloma: Safety and efficacy[J]. Ann Oncol, 2006, 17:1766-1771.
    
    [31] Morgan GJ, Schey SA, Wu P, et al. Lenalidomide (Revlimid), in combination with cyclophosphamide and dexamethasone (RCD), is an effective and tolerated regimen for myeloma patients[J]. Br J Haematol, 2007,137:268-269.
    
    [32] Richardson P, Jagannath S, Avigan D, et al. Lenalidomide plus bortezomib (Rev-Vel) in relapsed and/or refractory multiple myeloma (MM): Final results of a multicenter phase 1 trial[J]. Proc Am Soc Hematol, 2006 (abstr 405).
    
    [33] Richardson PG, Jagannath S, Raje N, et al. Phase 2 study of Rev/Vel/Dex in relapsed /refractory multiple myeloma[J]. Haematologica, 2007 (abstr PO-660).
    
    [34] Byrd JC, Rai K, Peterson BL, et al. The addition of rituximab to fludarabine may prolong progression-free survival and overall survival in patients with previously untreated chronic lymphocytic leukemia: An updated retrospective comparative analysis of CALGB 9712 and CALGB 9011[J]. Blood,2005,105:49-53.
    
    [35] Byrd JC, Peterson BL, Morrison VA, et al. Randomized phase 2 study of fludarabine with concurrent versus sequential treatment with rituximab in symptomatic, untreated patients with B-cell chronic lymphocytic leukemia: Results from Cancer and Leukemia Group B 9712 (CALGB 9712)[J]. Blood, 2003,101:6-14.
    
    [36] Keating MJ, O'Brien S, Albitar M, et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia[J]. J Clin Oncol, 2005, 23:4079-4088.
    
    [37] Schena M, Gottardi D, Ghia P, et al. The role of Bcl-2 in the pathogenesis of B chronic lymphocytic leukemia[J]. Leuk Lymphoma, 1993,11:173-179.
    
    [38] Reed JC. Bcl-2 family proteins: Regulators of apoptosis and chemoresistance in hematologic malignancies[J]. Semin Hematol, 1997, 34:9-19.
    
    [39] Thomas A, El Rouby S, Reed JC, et al. Drug-induced apoptosis in B-cell chronic lymphocytic leukemia: Relationship between p53 gene mutation and bcl-2/bax proteins in drug resistance[J]. Oncogene, 1996, 12:1055-1062.
    
    [40] Tangye SG, Raison RL. Human cytokines suppress apoptosis of leukaemic CD5+ B cells and preserve expression of bcl-2 [J]. Immunol Cell Biol, 1997, 75:127-135.
    
    [41] Shetty V, Mundle S, Sanoy A, et al. A multivariate study of non Hodgkin's lymphoma involving proliferation, apoptosis, bcl-2 and the microenvironment[J].Leuk Lymphoma, 1995, 18:273-279.
    
    [42] Orsini E, Fao R. Cytokines and soluble molecules in CLL, in Fauget G (ed):Chronic Lymphocytic Leukemia[A]. Totowa, NJ, Humana Press, 2005, 123-142.
    
    [43] Kay NE, Bone ND, Tschumper RC, et al. B-CLL cells are capable of synthesis and secretion of both pro- and anti-angiogenic molecules[J]. Leukemia, 2002,16:911-919.
    
    [44] Hoffbrand AV, Panayiotidis P, Reittie J, et al. Autocrine and paracrine growth loops in chronic lymphocytic leukemia[J]. Semin Hematol, 1993, 30:306-317.
    
    [45] Reittie JE, Yong KL, Panayiotidis P, et al. Interleukin-6 inhibits apoptosis and tumour necrosis factor induced proliferation of B-chronic lymphocytic leukaemia[J].Leuk Lymphoma, 1996, 22:83-90.
    
    [46] Zaninoni A, Imperiali FG, Pasquini C, et al. Cytokine modulation of nuclear factor-kappaB activity in B-chronic lymphocytic leukemia[J]. Exp Hematol, 2003,31:185-190.
    
    [47] Kiaii S, Choudhury A, Mozaffari F, et al. Signaling molecules and cytokine production in T cells of patients with B-cell chronic lymphocytic leukemia (B-CLL):Comparison of indolent and progressive Disease[J]. Med Oncol, 2005, 22:291-302.
    
    [48] Burton JD, Weitz CH, Kay NE. Malignant chronic lymphocytic leukemia B cells elaborate soluble factors that down-regulate T cell and NK function[J]. Am J Hematol,1989,30:61-67.
    
    [49] Kay NE, Zarling JM. Impaired natural killer activity in patients with chronic lymphocytic leukemia is associated with a deficiency of azurophilic cytoplasmic granules in putative NK cells[J]. Blood, 1984,63:305-309.
    
    [50] Mellstedt H, Choudhury A. T and B cells in B-chronic lymphocytic leukaemia:Faust, Mephistopheles and the pact with the devil[J]. Cancer Immunol Immunother,2006,55:210-220.
    
    [51] Johnston PB, Kay N. Pathogenesis of impaired cellular immune fucntion in CLL,in Faguet G(ed): Chronic Lymphocytic Leukemia: Molecular Genetics, Biology,Diagnosis, and Management[A]. Totowa, NJ, Humana Press, 2004.
    [52] Gorgun G, Holderried TA, Zahrieh D, et al. Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells[J]. J Clin Invest, 2005,115:1797-1805.
    
    [53] Cantwell M, Hua T, Pappas J, et al. Acquired CD40-ligand deficiency in chronic lymphocytic leukemia[J]. Nat Med, 1997, 3:984-989.
    
    [54] Dorfman DM, Schultze JL, Shahsafaei A, et al. In vivo expression of B7-1 and B7-2 by follicular lymphoma cells can prevent induction of T-cell anergy but is insufficient to induce significant T-cell proliferation[J]. Blood, 1997, 90:4297-4306.
    
    [55] Chanan-Khan A, Miller KC, Takeshita K, et al. Results of a phase 1 clinical trial of thalidomide in combination with fludarabine as initial therapy for patients with treatment-requiring chronic lymphocytic leukemia (CLL)[J]. Blood, 2005,106:3348-3352.
    
    [56] Kay N, Geyer S, Yaqoob I, et al. Thalidomide treatment in chronic lymphocytic leukemia (CLL): A north central cancer treatment group (NCCTG) study[J]. Blood,2003,102:5162.
    
    [57] Furman R, Leonard J, Allen S, et al. Thalidomide alone or in combination with fludarbabine are effective treatments for patients with fludarabine-relapsed and refractory CLL[J]. J Clin Oncol, 2005, 23:595s (suppl; abstr 6640).
    
    [58] Chanan-Khan A, Miller KC, Musial L, et al. Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: Results of a phase II study[J]. J Clin Oncol, 2006,24:5343- 5349.
    
    [59] Ferrajoli A, O'Brien S, Faderl SH, et al. Therapy with lenalidomide in patients with relapsed chronic lymphocytic leukemia[J]. Leuk Lymph, 2007,48: S160.
    
    [60] DiMiceli L, Miller K, Rickert M, et al. Characterization of IMiDs (immunomodulating agents) induced "flare reaction" in patients with chronic lymphocytic leukemia (CLL) and correlation with changes in serum cytokine levels[J]. Blood, 2005,106 (abstr 5049).
    
    [61] Musial L, Miller K, Tonelli A, et al. Low-dose prednisone decreases the severity but not the frequency of lenalidomide associated tumor flare feaction (TFR) in chronic lymphocytic leukemia (CLL) patients[R]. Orlando, FL, Presented at the 48th Annual Meeting of the American Society of Hematology, 2006.
    [62] Moutouh-de Parseval LA, Weiss L, DeLap RJ, et al. Tumor lysis syndrome/tumor flare reaction in lenalidomide-treated chronic lymphocytic leukemia[J]. J Clin Oncol, 2007, 25:246s (suppl; abstr 5047).
    
    [63] Chanan-Khan MK, Whitworth A, Lawrence D, et al. Clinical activity of lenalidomide in relapsed or refractory chronic lymphocytic leukemia (CLL) patients:Updated results of a phase II clinical trial[J]. Leuk Lymph, 2007,48: S166.
    
    [64] Ferrajoli A, Keating M, Wierda W, et al. Lenalidomide is active in patients with relapsed/refractory chronic lymphocytic leukemia carrying unfavorable chromosomal abnormalities[J]. Blood, 2007,110: 754.
    
    [65] Chanan-Khan A, Czuczman M, Padmanabhan S, et al. Clinical efficacy of lenalidomide in fludarabine-refractory chronic lymphocytic leukemia Patients[J]. Blood, 2006,24:5343-5349.
    
    [66] Chen C, Paul H, Mariela P, et al. A phase II study of lenalidomide in previously untreated, symptomatic chronic lymphocytic leukemia[J]. Blood, 2007, 110:2042.
    
    [67] Corral L, Zhu D, Wang Y, et al. The ImiDs immunomodulatory drugs Revlimid (lenalidomide) and CC-4047 induce growth arrest and apoptosis in NHL tumor cells in vitro[J]. Blood, 2006 (abstr 2388).
    
    [68] Wu L, Schafer P,Muller G, et al. Lenalidomide strongly enhances natural killer (NK) cell mediated antibody-dependent cellular cytotoxicity (ADCC) of rituximab treated non-Hodgkins lymphoma cell lines in vitro[J]. Blood, 2006,108:3714 (abstr).
    
    [69] Hernandez-Ilizaliturri FJ, Reddy N, Holkova B, et al. Immunomodulatory drug CC-5013 or CC-4047 and rituximab enhance antitumor activity in a severe combined immunodeficient mouse lymphoma model[J]. Clin Cancer Res, 2005, 11:5984-5992.
    
    [70] Witzig TE, Vose J, Pietronigro D, et al. Preliminary results from a phase II study of lenalidomide oral monotherapy in relapsed/refractory indolent non-Hodgkin lymphoma[J]. J Clin Oncol,2007,25:4285-4292.
    
    [71] Kaufmann H, Raderer M, Wohrer S, et al. Antitumor activity of rituximab plus thalidomide in patients with relapsed/refractory mantle cell lymphoma[J]. Blood,2004, 104:2269-2271.
    
    [72] Wang M, Fayad L, Hagemeister F, et al. A phase I/II study of lenalidomide (Len) in combination with rituximab (R) in relapsed/refractory mantle cell lymphoma (MCL) with early evidence of efficacy[J]. J Clin Oncol, 2007, 25:18s (suppl; abstr 7522).
    
    [73] O'Connor OA, Wright J, Moskowitz C, et al. Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin's lymphoma and mantle cell lymphoma[J]. J Clin Oncol, 2005, 23:676-684.
    
    [74] Goy A, Younes A, McLaughlin P, et al. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin's lymphoma[J]. J Clin Oncol, 2005, 23:667-675.
    
    [75] Dimopoulos MA, Zomas A, Viniou NA, et al. Treatment of Waldenstrom's macroglobulinemia with thalidomide[J]. J Clin Oncol, 2001, 19:3596-3601.
    
    [76] Coleman M, Leonard J, Lyons L, et al. BLT-D (clarithromycin [Biaxin],low-dose thalidomide, and dexamethasone) for the treatment of myeloma and Waldenstrom's macroglobulinemia[J]. Leuk Lymphoma, 2002,43:1777-1782.
    
    [77] Treon SP, Patterson CJ, Hunter ZR, et al. Phase II Study of CC-5013 (Revlimid) and Rituximab in Waldenstro ¨m's macroglobulinemia: Preliminary Safety and Efficacy Results[J]. Blood, 2006, (abstr 2443).
    
    [78] Sanchorawala V, Wright DG, Rosenzweig M, et al. Durable responses to lenalidomide in patients with AL amyloidosis: Follow up of a phase II trial[J]. Blood,2007,109:492-496.
    
    [79] Rajkumar SV, Blood E. Lenalidomide and venous thrombosis in multiple myeloma[J]. N Engl JMed, 2006, 354:2079-2080.
    
    [80] Miller KC, Padmanabhan S, Dimicelli L, et al.Prospective evaluation of low-dose warfarin for prevention of thalidomide associated venous thromboembolism[J]. Leuk Lymphoma,2006, 47:2339-2343.
    
    [81] Niesvizky R, Naib T, Christos PJ, et al. Lenalidomide-induced myelosuppression is associated with renal dysfunction: Adverse events evaluation of treatment-naive patients undergoing front-line lenalidomide and dexamethasone therapy[J]. Br J Haematol, 2007, 138: 640-643.
    
    [82] Chen N, Lau H, Kong L, et al Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis[J]. J Clin Pharmacol, 2007,47:1466-1475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700