用户名: 密码: 验证码:
对虾封闭循环水养殖系统中Cu~(2+)的生态效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以凡纳滨对虾封闭循环水养殖系统为研究对象,模拟养殖源水受Cu污染条件,研究Cu~(2+)对养殖对虾和生物滤器的影响;查明系统中Cu的收支、分布和代谢途径;并从养殖水环境、对虾体液免疫、消化功能、组织损伤、生理代谢、重金属富集等方面,比较Cu污染对凡纳滨对虾在封闭循环水养殖系统和静水养殖系统中的影响程度。主要研究结果如下:
     1.查明了Cu对凡纳滨对虾稚虾(体长4.0±0.4cm,体重0.94±0.02g)在24h、48h、72h和96h的半致死浓度(LC_(50))分别为54.81mg/L、42.92mg/L、23.91 mg/L和13.11mg/L。Cu~(2+)胁迫能破坏凡纳滨对虾鳃丝的组织结构和功能,抑制耗氧速率和鳃丝中Na~+-K~+-ATP酶活性,诱导肝胰腺中金属硫蛋白(MT)的合成和排氨率的增加,引起对虾死亡。
     2.凡纳滨对虾(体长8.5±0.76cm,体重7.6±0.5g)分别暴露于0.5mg/L和5mg/L Cu~(2+)浓度7天,耗氧率分别降低24.62%和44.03%,排氨率分别增加78.26%和175.69%;Cu能在凡纳滨对虾体内富集,各组织中富集量顺序依次为:肝胰腺>鳃>甲壳>肌肉,肝胰腺中富集量约为肌肉中富集量的100倍。
     3.质量浓度为0.3mg/L的Cu~(2+)浓度污染,对循环水养殖系统生物滤器中的异养细菌(HB)、氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)数量影响不显著,对生物滤器的COD、NH_4-N和NO2-N去除率影响不显著。养殖实验初期,填料表面HB、AOB和NOB数量级分别为103 CFU/g、102-103 MPN/g和100-101 MPN/g;养殖过程中,三类细菌数量均呈现逐渐增加的趋势;在生物滤器稳定运行阶段,HB数量级为106 CFU/g,AOB和NOB数量级为104-105 MPN/g。HB和AOB数量达到稳定约需30 d,NOB约需45 d。养殖过程中生物滤器对COD、NH_4-N和NO_2-N平均去除率分别为10%、18.5%和29%。
     4.质量浓度为0.3mg/L的Cu~(2+)污染对封闭循环水养殖系统的运行不造成显著影响。处理组和对照组相比,在对虾体重(11.08±0.76 mg vs 10.52±0.51 mg),产量(6.42±0.33 kg/m~3 vs 5.99±0.39 kg/m~3),存活率(67.78±5.29 % vs 66.39±1.93 %)和饵料转化率FCR(1.2±0.060 vs 1.29±0.082)方面差异不显著。养殖过程中对照组NH_4-N和NO_2-N的平均浓度分别为0.28±0.13mg/L和4.02±5.60mg/L,处理组中分别为0.26±+0.1 mg/L和4.42±6.09mg/L。封闭循环水养殖系统能够提供较好的水质条件,获得较高的产量和较低的FCR。
     5.在质量浓度为0.3mg/L的Cu~(2+)污染条件下,输入水体中的Cu是封闭循环水养殖系统中Cu的主要来源,占全部Cu来源的75.69%,其次是投喂饲料,占全部Cu来源的21.03%。在系统中,机械过滤和排污分别排出全部Cu总量的41.72%和15.05%,养殖水体中Cu~(2+)浓度在养殖结束时降为0.089±0.012 mg/L,对凡纳滨对虾体液免疫指标、消化酶活等影响不显著。所养对虾体内Cu富集含量为42.91±6.10 mg/Kg,显著增加,但仍在国家“无公害食品水产品中有毒有害物质限量”农业行业标准(NY 5073-2006)范围之内(≤50 mg/Kg)。
     6.在无Cu~(2+)污染的对虾封闭循环水养殖系统中,投喂饵料是系统中Cu的主要来源,占全部来源86.55%。系统中Cu主要通过机械过滤、排水和排污三大途径排放到系统外,分别排放Cu总量的22.33%、12.43%和11.83%。加强机械过滤单元的设计与管理,是减少Cu~(2+)对系统造成污染的关键。在98 d的对虾养殖实验中,通过过滤、排水和排污等方式分别排出14.7 mg、7.94 mg和7.56 mg的Cu。
     7.在质量浓度为0.8mg/L Cu~(2+)污染条件下,封闭循环水养殖系统与静水养殖系统相比,在对虾存活率(40.00±2.22 % vs 15.44±3.07 %)、体重(13.36±0.74 g vs 10.34±1.15 g)和FCR(2.03±0.12 vs 6.52±0.32)上差异显著,养殖过程中水体NH4-N(1.63±1.15 mg/L vs 6.48±8.41 mg/L)、NO2-N(1.03±0.39 mg/L vs 6.09±1.32 mg/L)和COD(10.93±4.80 mg/L vs 24.36±13.87 mg/L)平均浓度差异显著。相较于静水养殖系统,封闭循环水养殖系统能够提供更好的水质条件,获得更快的生长速度和更低的FCR。
     8.在质量浓度为0.8mg/L Cu~(2+)污染条件下,封闭循环水养殖系统和静水养殖系统中对虾血淋巴SOD、酚氧化酶活性和大颗粒细胞数量、血细胞总数和胃中淀粉酶活性均显著降低,但在静水系统中,酚氧化酶活性(0.008±0.003U/min/mg pr vs 0.011±0.007 U/min/mg pr)受抑制程度显著增加。在免疫基因表达层面,封闭循环水养殖系统中对虾SOD mRNA相对表达量为1.41±0.57,显著增加,通过基因表达量增加对蛋白水平酶活性丧失进行补偿;溶菌酶和酚氧化酶基因mRNA相对表达量增加为1.49±1.32和1.40±1.19,差异不显著。静水养殖系统中,SOD和溶菌酶基因mRNA相对表达量为0.71±0.42和0.64±0.53,受到显著抑制;酚氧化酶基因mRNA相对表达量为1.64±1.12,显著增加,通过基因表达量增加对蛋白水平酚氧化酶活性丧失进行补偿。可见,该浓度Cu~(2+)在两种养殖模式中均能降低凡纳滨对虾体液免疫水平,且在静水养殖系统中影响程度更大;Cu~(2+)胁迫下,凡纳滨对虾具有通过调节基因表达水平进而对蛋白酶活性损失进行补偿的能力;相较于酚氧化酶基因,SOD和溶菌酶基因对Cu~(2+)的胁迫更为敏感,且表达更易受到抑制。
     9.在质量浓度为0.8mg/L的Cu~(2+)污染条件下,在封闭循环水养殖系统和静水养值系统中,对虾生理代谢、鳃丝中Na+-K+- ATP酶活性均受到显著抑制,并致使鳃丝柱细胞和上皮细胞丢失,结构扭曲,甚至失去完整的组织结构;以及肝胰腺肌上皮层与上皮细胞的分离,储存细胞与分泌细胞部分丢失,组织间隙水肿等症状,对鳃丝和肝胰腺的组织结构和功能均造成显著破坏和影响。对虾肝胰腺中金属硫蛋白(MT)含量分别为2.27±0.62nmol/g和2.75±0.55nmol/g,具有显著差异;Cu的富集含量分别为834.52±267.41mg/kg干重和1398.31±263.90mg/kg干重,具有显著差异。MT含量对Cu~(2+)胁迫敏感,并与肝胰腺中Cu的富集含量呈现较好的剂量效应关系,可望在量化封闭循环水养殖系统和静水养殖系统中对虾受胁迫程度的比较研究中得以应用。
The purpose of present study was to investigate the performance of Litopenaeus. vannamei recirculating aquaculture system (RAS) under copper pollution , the effect of copper on bacteria community in biological aerated filter (BAF) and shrimp, and the copper budget, distribution and emission facters in the shrimp RAS. Furthermore, under the same copper concentration in both RAS and static aquaculture system, comparing the difference of shrimps’immunity, digestive tract, histological changes, physiological metabolism and heavy metal accumulation was also covered in the study. The main results include:
     1. The Medium Lethal Concentration (LC_(50)) of Cu to Litopenaeus. vannamei (body length was 4.0±0.4cm, weight was 0.94±0.02g) was evaluated and the study showed that 24h LC_(50), 48h LC_(50) , 72h LC_(50) and 96h LC_(50) of Cu was 54.81mg/L, 42.92mg/L, 23.91 mg/L and 13.11mg/L respectively. Acute toxicity of Cu~(2+) can cause death , MT production in hepatopancreatic, ammonium excretion increase, inhibition in oxygen consumption rate and activity of Na+-K+-ATPase within gills of shrimp, however, there was no evidence to illustrate that molting behavior was also result from it.
     2. After Litopenaeus. vannamei (body length was 8.5±0.76cm, weight was 7.6±0.5g) were exposed in 0.5mg/L and 5mg/L Cu~(2+) solution for 7 days, oxygen consumption rate decreased by 24.62% and 44.031% and ammonium excretion was elevated by 78.26% and 175.69%, respectively. The study showed that copper can be accumulated within hepatopancreas, gills, carapaces and muscles increasingly, and the amount of accumulated Cu in hepatopancreas was 100 times higher than it in muscles. So it was sufficient to conclude that Cu accumulation was most significant in hepatopancreas out of the four organs in the study for Litopenaeus. vannamei in the specific life conditions as we had.
     3. Three months’experiment was conducted for intensive culture of shrimp (L. vannamei) in RAS to study the effect of Cu polluted water (0.3mgL~(-1)) on the biofilm. The results indicated that there was no significant difference in COD, NH_4-N and NO_2-N removal rate between regular RAS system and the one worked with biofilm. Also the number of Heterotrophic Bacteria(HB), Ammonium-oxidation bacteria(AOB) and Nitrite-oxidizing bacteria(NOB) in the biofilm was not effected dramatically. The number of Heterotrophic Bacteria, Ammonium-oxidation bacteria and Nitrite-oxidizing bacteria were only 103, 102-103 and 100-101 per gram packing at the beginning, and it took 30 days for the number of Heterotrophic Bacteria and Ammonium-oxidation bacteria to reach the stable level, which were 106 and 104-105 per gram packing respectively. But for Nitrite-oxidizing bacteria, it took nearly 45 days to reach the stable number of 104-105 per gram packing.
     4. Harvesting was obtained after 98 days’culture, and it showed that there was no significant difference in mean body weight (11.08±0.76 mg vs 10.52±0.51 mg), yield (6.42±0.33 kg/m~3 vs 5.99±0.39 kg/m3), survival rate (67.78±5.29 % vs 66.39±1.93 %) and FCR (1.2±0.060 vs 1.29±0.082) between the Cu polluted systems and the control systems (P>0.05). Shrimp growth was not limited by any of the water quality parameters in the study. TAN and NO2-N concentrations were 0.28±0.13mg/L and 4.02±5.60mg/L in the control systems and the values were 0.26±+0.1 mg/L and 4.42±6.09mg/L respectively. Juveniles of the Pacific white shrimp, L. vannamei, can be raised in limited water exchange regime with healthy conditions, low feed conversion rate, fast growth, and high biomass loading in RAS.
     5. Cu concentration decreased from 0.3 mg/L to 0.089±0.012mg/L at the harvesting time and most of the Cu had been removed out from the water treatment processes. The major output of Cu was in the mechanical filter and the draining effluent in the capture, which accounted for 41.72% and 15.05% of the total inputs respectively. As a result, the cultured shrimp had not been effected on immunity, digestive tract with Cu accumulation in tissues. The molality of Cu in the shrmps was at last 42.91±6.10 mg/Kg, and it meet the requirment of the Green Food and Pollution-Free Agriculture Products Standard, which gave the molality limitation as≤50 mg/Kg.
     6. Cu budget in the shrimp RAS revealed that the most source of Cu to the systems was the aqua feeds, which accounted for 86.55% of the total inputs. The major output of Cu was in the mechanical filter, renewal waters and the draining effluent during the capture activity, which accounted for 22.33%, 12.43% and 11.83% of the total inputs respectively. Another, Cu loading releasing from the three ways was 14.7 mg /cycle, 7.94 mg/ cycle and 7.56 mg /cycle respectively.
     7. Harvesting was also obtained after 112 days culture, and there was significant difference in mean survival rate (40.00±2.22 % vs 15.44±3.07 %), body weight (13.36±0.74 g vs 10.34±1.15 g) and FCR (2.03±0.12 vs 6.52±0.32) between the RAS and the static aquaculture system under 0.8 mg/L of copper pollution (P>0.05). The mean concentrations of TAN (1.63±1.15 mg/L vs 6.48±8.41 mg/L), NO_2-N (1.03±0.39 mg/L vs 6.09±1.32 mg/L) and COD (10.93±4.80 mg/L vs 24.36±13.87 mg/L) were also significant to each other in the two systems. Juveniles of the Pacific white shrimp, L. vannamei, had good aqueouse environment achieved faster growth rate with lower feed conversion rate in RAS comparing to those in static aquaculture system.
     8. PO activity, SOD activity, quantity of large granular cells and total haemocyte count of Litopenaeus vannamei had significantly decreased after shrimps been cultured for 112 days with 0.8mg/L copper molality in both RAS and static aquaculture system. The result showed that PO activity (0.008±0.003U/min/mg pr) of shrimp in static aquaculture system was significantly lower compared to in RAS (0.011±0.007 U/min/mg pr). In RAS, SOD gene expression levels of shrimp was 1.41±0.57, and it had been elevated very much; mRNA levels of Lys and ProPO increased to 1.49±1.32 and.40±1.19 respectively but no significant differences were detected. In static aquaculture system, SOD and Lys gene expression levels of shrimp were dramatically decreased to 0.71±0.42 and 0.64±0.53, however, the mRNA level of ProPO significantly increased to 1.64±1.12. The upregulation of proPO mRNA by the shrimp may be resulted in decreased PO activity. The present study documented that the concentration of Cu~(2+) at 0.8mg/L decreased the humoral immunity of Litopenaeus vannamei both in RAS and static aquaculture system, the Litopenaeus vannamei can regulate the expression levels of gens to banlance the decreased enzyme activity as immune modulation to enhance the immune ability. In addition, the mRNA transcription of SOD and Lys gen in shrimp is sensitivity to the copper pollution compared to proPO gen.
     9. The toxicity of Cu~(2+) at 0.8mg/L inhibited oxygen consumption, Na~+-K~+- ATPase activity and elevated in ammonium excretion in Litopenaeus vannamei both in RAS and static aquaculture system. The gills of shrimps collected in static aquaculture system after been cultured in 0.8 mg/L copper pollution water for 112 days showed a high disorder and a high degree of melanization. Absence of pillar cells, loss of regular structure of epithelium and multifocal necrosis on gills of shrimp were observed in the RAS. To the histological changes of hepatopancreas, atrophy and irregular tubular structure were observed in shrimps collected in static aquaculture system at the harvest. In the RAS, there was an absence of storage and secretory cells, as well as multifocal necrosis and loss of tissue in some zones of the tubules, separation between myoepithelium and epithelium.The amount of MT induced in the hepatopancreas was 2.27±0.62nmol/g and 2.75±0.55nmol/g respectively in RAS and static aquaculture system, and the Cu concentration accumulated in hepatopancreas was 834.52±267.41mg/kg dry weight and 1398.31±263.90mg/kg dry weight respectively, which showed a significant difference with each other. There was significant linear correlation between the Cu concentration and MT, Which may be used as a valid biomarkers to compared the RAS and static aquaculture system under heavy metal pollution.
引文
Adachi K, Hirata T, Nishioka T, et al. 2003. Hemocyte components in crustaceans convert hemocyanin into a phenoloxidase-like enzyme. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology [J], 134: 135-141.
    Allen H E, Hall R H, Brisbin T D 1980. Metal speciation. Effects on aquatic toxicity. Environmental Science & Technology [J], 14: 441-443.
    Anon 1992. Distribution of bacteria in a biofilter-equipped, semi-closed intensive fish culture unit. Spec. Publ. Eur. Aquacult. Soc [J], 17: 57-78.
    Arnold S J, Coman F E, Jackson C J, et al. 2009. High-intensity, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: An evaluation of artificial substrates and stocking density. Aquaculture [J], In Press, Corrected Proof.
    Arnold S J, Sellars M J, Crocos P J, et al. 2006a. An evaluation of stocking density on the intensive production of juvenile brown tiger shrimp (Penaeus esculentus). Aquaculture [J], 256: 174-179.
    Arnold S J, Sellars M J, Crocos P J, et al. 2006b. Intensive production of juvenile tiger shrimp Penaeus monodon: An evaluation of stocking density and artificial substrates. Aquaculture [J], 261: 890-896.
    Ashley P J 2007. Fish welfare: Current issues in aquaculture. Applied Animal Behaviour Science [J], 104: 199-235.
    Azim M E, Little D C 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture [J], 283: 29-35.
    Bachère E, Mialhe E, Rodriguez J 1995. Identification of defence effectors in the haemolymph of Crustaceans with particular reference to the shrimp Penaeus japonicus (Bate): prospects and applications. Fish & Shellfish Immunology [J], 5: 597-612.
    Bainy A C D 2000. Biochemical responses in penaeids caused by contaminants. Aquaculture [J], 191: 163-168.
    Bambang Y, Thuet P, Charmantier-Daures M, et al. 1995. Effect of copper on survival and osmoregulation of various developmental stages of the shrimp Penaeus japonicus bate (Crustacea, Decapoda). Aquatic Toxicology [J], 33: 125-139.
    Barbieri E 2009. Effects of zinc and cadmium on oxygen consumption and ammonium excretion in pink shrimp ( Farfantepenaeus paulensis , Pérez-Farfante, 1967, Crustacea). Ecotoxicology [J], 18: 312-318.
    Barbieri E, Passos E A, Garcia C A B 2005. Use of metabolism to evaluate the sublethal toxicity of mercury on Farfantepaneus brasiliensis larvae (Latreille 1817, Crustacean). Journal of Shellfish Research [J], 24: 1229-1233.
    Beadle L C 1957. Comparative Physiology: Osmotic and Ionic Regulation in Aquatic Animals. Annual Review of Physiology [J], 19: 329-358.
    Bradford M M 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem [J], 72: 248-254.
    Brooks S J, Mills C L 2003. The effect of copper on osmoregulation in the freshwater arnphipod Gammarus pulex. Comparative Biochemistry and Physiology a-Molecular & IntegrativePhysiology [J], 135: 527-537.
    Brouwer M, Syring R, Brouwer T H 2002. Role of a copper-specific metallothionein of the blue crab, Callinectes sapidus, in copper metabolism associated with degradation and synthesis of hemocyanin. Journal of Inorganic Biochemistry [J], 88: 228-239.
    Burford M A, Sellars M J, Arnold S J, et al. 2004. Contribution of the natural biota associated with substrates to the nutritional requirements of the post-larval shrimp, Penaeus esculentus (Haswell), inhigh-density rearing systems. Aquaculture Research [J], 35: 508-515.
    Burge E J, Madigan D J, Burnett L E, et al. 2007. Lysozyme gene expression by hemocytes of Pacific white shrimp, Litopenaeus vannamei, after injection with Vibrio. Fish & Shellfish Immunology [J], 22: 327-339.
    Cabrero A, Fernandez S, Mirada F, et al. 1998. Effects of copper and zinc on the activated sludge bacteria growth kinetics. Water Research [J], 32: 1355-1362.
    Chan S-m, Rankin S M, Keeley L L 1988. Characterization of the Molt Stages in Penaeus vannamei: Setogenesis and Hemolymph Levels of Total Protein, Ecdysteroids, and Glucose. Biol Bull [J], 175: 185-192.
    Chang E S 1995. Physiological and biochemical changes during the molt cycle in decapod crustaceans: an overview. Journal of Experimental Marine Biology and Ecology [J], 193: 1-14.
    Chen J-C, Cheng S-y 1993. Studies on haemocyanin and haemolymph protein levels of Penaeus japonicus based on sex, size and moulting cycle. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology [J], 106: 293-296.
    Chen J-C, Lin J-N, Chen C-T, et al. 1996. Survival, growth and intermolt period of juvenile Penaeus chinensis (Osbeck) reared at different combinations of salinity and temperature. Journal of Experimental Marine Biology and Ecology [J], 204: 169-178.
    Chen J-C, Liu P-C, Lei S-C 1990. Toxicities of ammonia and nitrite to Penaeus monodon adolescents. Aquaculture [J], 89: 127-137.
    Chen J C, Lin C H 2001. Toxicity of copper sulfate for survival, growth, molting and feeding of juveniles of the tiger shrimp, Penaeus monodon. Aquaculture [J], 192: 55-65.
    Chen S, Ling J, Blancheton J-P 2006. Nitrification kinetics of biofilm as affected by water quality factors. Aquacultural Engineering [J], 34: 179-197.
    Chen W, Wang C H 2001. The susceptibility of the giant freshwater prawn Macrobrachium rosenbergii to Lactococcus garvieae and its resistance under copper sulfate stress. Dis Aquat Organ [J], 47: 137-144.
    Cheng W, Chen J-C 2001. Effects of intrinsic and extrinsic factors on the haemocyte profile of the prawn, Macrobrachium rosenbergii. Fish & Shellfish Immunology [J], 11: 53-63.
    Cheng W, Juang F-M, Li J-T, et al. 2003. The immune response of the giant freshwater prawn Macrobrachium rosenbergii and its susceptibility to Lactococcus garvieae in relation to the moult stage. Aquaculture [J], 218: 33-45.
    Chinni S, Khan R N, Yallapragada P R 2000. Oxygen Consumption, Ammonia-N Excretion, and Metal Accumulation in Penaeus indicus Postlarvae Exposed to Lead. Bulletin of Environmental Contamination and Toxicology [J], 64: 144-151.
    Chinni S, Khan R N, Yallapragada P R 2002. Acute toxicity of lead on tolerance, oxygen consumption, ammonia-N excretion, and metal accumulation in Penaeus indicus postlarvae. Ecotoxicology and Environmental Safety [J], 51: 79-84.
    Chiu C-H, Guu Y-K, Liu C-H, et al. 2007. Immune responses and gene expression in white shrimp,Litopenaeus vannamei, induced by Lactobacillus plantarum. Fish & Shellfish Immunology [J], 23: 364-377.
    Choe S 1971. Body increases during molt and molting cycle of the oriental brown shrimp Penaeus japonicus. Marine Biology [J], 9: 31-37.
    Cohen J M, Samocha T M, Fox J M, et al. 2005. Characterization of water quality factors during intensive raceway production of juvenile Litopenaeus vannamei using limited discharge and biosecure management tools. Aquacultural Engineering [J], 32: 425-442.
    Correia A D, Costa M H, Ryan K P, et al. 2002. Studies on biomarkers of copper exposure and toxicity in the marine amphipod Gammarus locusta (Crustacea): I. Copper-containing granules within the midgut gland. Journal of the Marine Biological Association of the UK [J], 82: 827-834.
    Crecelius E A, Hardy J T, Gibson C I, et al. 1982. Copper bioavailability to marine bivalves and shrimp: Relationship to cupric ion activity. Marine Environmental Research [J], 6: 13-26.
    d'orbcastel E R, Blancheton J-P, Belaud A 2009. Water quality and rainbow trout performance in a Danish Model Farm recirculating system: Comparison with a flow through system. Aquacultural Engineering [J], 40: 135-143.
    Dalzell D J B, Alte S, Aspichueta E, et al. 2002. A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge. Chemosphere [J], 47: 535-545.
    Davis D A, Arnold C R 1998. The design, management and production of a recirculating raceway system for the production of marine shrimp. Aquacultural Engineering [J], 17: 193-211.
    Davis D A, Gatlin D M 1996. Dietary mineral requirements of fish and marine crustaceans. Reviews in Fisheries Science [J], 4: 75 - 99.
    Davis L E, Schreck C B 1997. The Energetic Response to Handling Stress in Juvenile Coho Salmon. Transactions of the American Fisheries Society [J], 126: 248-258.
    De la Fuente M, Victor V M 2000. Anti-oxidants as modulators of immune function. Immunol Cell Biol [J], 78: 49-54.
    Depledge M H 1989. Re-evaluation of metabolic requirements for copper and zinc in decapod crustaceans. Marine Environmental Research [J], 27: 115-126.
    Dilek F B, Gokcay C F, Yetis U 1991. Effects of Cu (II) on a chemostat containing activated sludge. Environmental Technology [J], 12: 1007 - 1016.
    Engel D W, Brouwer M, McKenna S 1993. Hemocyanin concentrations in marine crustaceans as a function of environmental conditions. Marine ecology progress series [J], 93: 235-244.
    FAO 2006. The state of world fisheries and aquaculture. 17-20.
    FAO 2008. The state of world fisheries and aquaculture. 17-20.
    Frías-Espericueta M G, Castro-Longoria R, Barrón-Gallardo G J, et al. 2008. Histological changes and survival of Litopenaeus vannamei juveniles with different copper concentrations. Aquaculture [J], 278: 97-100.
    Frías-Espericueta M G, Voltolina D, Osuna-López I, et al. 2009. Toxicity of metal mixtures to the Pacific white shrimp Litopenaeus vannamei postlarvae. Marine Environmental Research [J], 68: 223-226.
    Funge-Smith S J, Briggs M R P 1998. Nutrient budgets in intensive shrimp ponds: implications for sustainability. Aquaculture [J], 164: 117-133.
    Greco L S L, Bolanos J, Rodriguez E M, et al. 2001a. Survival and molting of the pea crab larvae Tunicotheres moseri Rathbun 1918 (Brachyura, Pinnotheridae) exposed to copper. Archives of Environmental Contamination and Toxicology [J], 40: 505-510.
    Greco L S L, Sanchez M V, Nicoloso G L, et al. 2001b. Toxicity of cadmium and copper on larval and juvenile stages of the estuarine crab Chasmagnathus granulata (Brachyura, Grapsidae). Archives of Environmental Contamination and Toxicology [J], 41: 333-338.
    Green B W, Boyd C E 1995. Chemical Budgets for Organically Fertilized Fish Ponds in the Dry Tropics. Journal of the World Aquaculture Society [J], 26: 284-296.
    Hansen J I, Mustafa T, Depledge M 1992. Mechanisms of copper toxicity in the shore crab, carcinus-maenas .1. effects on na,k-atpase activity, hemolymph electrolyte concentrations and tissue water contents Marine Biology [J], 114: 253-257.
    Hernández-López J, Gollas-Galván T, Vargas-Albores F 1996. Activation of the prophenoloxidase system of the brown shrimp Penaeus californiensis Holmes. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology [J], 113: 61-66.
    Hogstrand C, Haux C 1991. Binding and detoxification of heavy metals in lower vertebrates with reference to metallothionein. Comp Biochem Physiol C [J], 100: 137-141.
    Holmblad T, S?derh?ll K 1999. Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture [J], 172: 111-123.
    Huberman A 2000. Shrimp endocrinology. A review. Aquaculture [J], 191: 191-208.
    Hultmark D, Steiner H, Rasmuson T, et al. 1980. Insect Immunity. Purification and Properties of Three Inducible Bactericidal Proteins from Hemolymph of Immunized Pupae of Hyalophora cecropia. European Journal of Biochemistry [J], 106: 7-16.
    Jackson C, Preston N, Thompson P J, et al. 2003. Nitrogen budget and effluent nitrogen components at an intensive shrimp farm. Aquaculture [J], 218: 397-411.
    Jefferson B, Burgess J E, Pichon A, et al. 2001. Nutrient addition to enhance biological treatment of greywater. Water Research [J], 35: 2702-2710.
    Johansson M W, Soderhall K 1989. Cellular immunity in crustaceans and the proPO system. Parasitol Today [J], 5: 171-176.
    Kamunde C, Wood C M 2003. The influence of ration size on copper homeostasis during sublethal dietary copper exposure in juvenile rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology [J], 62: 235-254.
    Kim K-Y, Lee S Y, Cho Y S, et al. 2007. Molecular characterization and mRNA expression during metal exposure and thermal stress of copper/zinc- and manganese-superoxide dismutases in disk abalone, Haliotis discus discus. Fish & Shellfish Immunology [J], 23: 1043-1059.
    Kir M 2009. Nitrification Performance of a Submerged Biofilter in a Laboratory Scale Size of the Recirculating Shrimp System. Turkish Journal of Fisheries and Aquatic Sciences [J]: 209-214.
    Komarey R. K. Moss S M M 2004. Effects of Artificial Substrate and Stocking Density on the Nursery Production of Pacific White Shrimp Litopenaeus vannamei. Journal of the World Aquaculture Society [J], 35: 536-542.
    Kone B C, Brenner R M, Gullans S R 1990. Sulfhydryl-reactive heavy metals increase cell membrane K+ and Ca2+ transport in renal proximal tubule. Journal of Membrane Biology [J], 113: 1-12.
    Lacerda L D, Santos J A, Madrid R M 2006. Copper emission factors from intensive shrimp aquaculture. Marine Pollution Bulletin [J], 52: 1823-1826.
    Le Moullac G, Haffner P 2000. Environmental factors affecting immune responses in Crustacea. Aquaculture [J], 191: 121-131.
    Lee P G, Smith L L, Lawrence A L 1984. Digestive proteases of Penaeus vannamei Boone: Relationshipbetween enzyme activity, size and diet. Aquaculture [J], 42: 225-239.
    Lee S Y, Lee B L, Soderhall K 2003. Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J Biol Chem [J], 278: 7927-7933.
    Leonard N, Blancheton J P, Guiraud J P 2000. Populations of heterotrophic bacteria in an experimental recirculating aquaculture system. Aquacultural Engineering [J], 22: 109-120.
    Li J, Lock R A C, Klaren P H M, et al. 1996. Kinetics of Cu2+ inhibition of Na+/K+-ATPase. Toxicology Letters [J], 87: 31-38.
    Li N, Zhao Y L, Yang J 2005a. Accumulation, Distribution, and Toxicology of Copper Sulfate in Juvenile Giant Freshwater Prawns, Macrobrachium rosenbergii. Bulletin of Environmental Contamination and Toxicology [J], 75: 497-504.
    Li N, Zhao Y L, Yang J 2005b. Accumulation, distribution, and toxicology of copper sulfate in juvenile giant freshwater prawns, Macrobrachium rosenbergii. Bull Environ Contam Toxicol [J], 75: 497-504.
    Lin Y-F, Jing S-R, Lee D-Y 2003. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture. Environmental Pollution [J], 123: 107-113.
    Liu C-H, Yeh S-T, Cheng S-Y, et al. 2004. The immune response of the white shrimp Litopenaeus vannamei and its susceptibility to Vibrio infection in relation with the moult cycle. Fish & Shellfish Immunology [J], 16: 151-161.
    Lorenzon S, Francese M, Ferrero E A 2000. Heavy metal toxicity and differential effects on the hyperglycemic stress response in the shrimp Palaemon elegans. Archives of Environmental Contamination and Toxicology [J], 39: 167-176.
    Lucu C, Towle D W 2003. Na+-K+-ATPase in gills of aquatic crustacea. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology [J], 135: 195-214.
    Méndez L, Racotta I S, Acosta B, et al. 2001. Mineral concentration in tissues during ovarian development of the white shrimp Penaeus vannamei (Decapoda: Penaeidae). Marine Biology [J], 138: 687-692.
    Madoni P, Davoli D, Gorbi G, et al. 1996. Toxic effect of heavy metals on the activated sludge protozoan community. Water Research [J], 30: 135-141.
    Martínez M, Torreblanca A, Del Ramo J, et al. 1993. Cadmium induced metallothionein in hepatopancreas of Procambarus clarkii: Quantification by a silver-saturation method. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology [J], 105: 263-267.
    Martin G G, Graves B L 1985. Fine structure and classification of shrimp hemocytes. Journal of Morphology [J], 185: 339-348.
    Mayzaud P, Conover R 1988. O:N atomic ratio as a tool to describe zooplankton metabolism. Marine ecology progress series [J], 45: 289-302.
    McCord J M, Fridovich I 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem [J], 244: 6049-6055.
    McGeer J C, Szebedinszky C, McDonald D G, et al. 2000. Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout. 1: Iono-regulatory disturbance and metabolic costs. Aquatic Toxicology [J], 50: 231-243.
    McMahon B R 2001. Respiratory and circulatory compensation to hypoxia in crustaceans. Respiration Physiology [J], 128: 349-364.
    Mevel G, Chamroux S 1981. A study on nitrification in the presence of prawns (Penaeus japonicus) in marine closed systems. Aquaculture [J], 23: 29-43.
    Mishra J K, Samocha T M, Patnaik S, et al. 2008. Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquacultural Engineering [J], 38: 2-15.
    Mouneyrac C, Amiard-Triquet C, Amaird J C, et al. 2001. Comparison of metallothionein concentrations and tissue distribution of trace metals in crabs (Pachygrapsus marmoratus) from a metal-rich estuary, in and out of the reproductive season. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology [J], 129: 193-209.
    Nagai T, Osaki T, Kawabata S 2001. Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides. J Biol Chem [J], 276: 27166-27170.
    Nicolau A, Martins M J, Mota M, et al. 2005. Effect of copper in the protistan community of activated sludge. Chemosphere [J], 58: 605-614.
    Nijhof M, Bovendeur J 1990. Fixed film nitrification characteristics in sea-water recirculation fish culture systems. Aquaculture [J], 87: 133-143.
    Páez-Osuna F, Ruiz-Fernández C 1995. Trace metals in the Mexican shrimp Penaeus vannamei from estuarine and marine environments. Environmental Pollution [J], 87: 243-247.
    Páez-Osuna F, Tron-Mayen L 1996. Concentration and distribution of heavy metals in tissues of wild and farmed shrimp Penaeus vannamei from the northwest coast of Mexico. Environment International [J], 22: 443-450.
    Pamukoglu M Y, Kargi F 2007. Copper(II) ion toxicity in activated sludge processes as function of operating parameters. Enzyme and Microbial Technology [J], 40: 1228-1233.
    Persson M, Cerenius. L, S?derh?ll 1987. The influence of haemocyte number on the resistance of the freshwater crayfish, Pacifastacus leniusculus Dana, to the parasitic fungus Aphanomyces astac. Journal of Fish Diseases [J], 10: 471-477.
    Principi P, Villa F, Bernasconi M, et al. 2006. Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization. Water Research [J], 40: 99-106.
    Rainbow P S 2007. Trace metal bioaccumulation: Models, metabolic availability and toxicity. Environment International [J], 33: 576-582.
    Riggle P J, Kumamoto C A 2000. Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol [J], 182: 4899-4905.
    Roesijadi G 1992. Metallothioneins in metal regulation and toxicity in aquatic animals. Aquatic Toxicology [J], 22: 81-114.
    S?derh?ll K, Smith V J, Johansson M W 1986. Exocytosis and uptake of bacteria by isolated haemocyte populations of two crustaceans: evidence for cellular co-operation in the defence reactions of arthropods. Cell and Tissue Research [J], 245: 43-49.
    Samocha T M, Lawrence A L, Collins C R, et al. 2001. Development of integrated, environmentally sound, inland shrimp production technologies for Litopenaeus vannamei. New Wave Proceedings of the Special Session on Sustainable Shrimp Farming [J]: 64-75.
    Samocha T M, Lawrence A L, Pooser D 1998. Growth and survival of juvenile Penaeus vannamei in low salinity water in a semi-closed recirculating system. Israeli Journal of Aquaculture-Bamidgeh [J], 50: 55-59.
    Sandifer P A, Hopkins J S, Stokes A D, et al. 1991. Technological advances in intensive pond culture of shrimp in the United States. Developments in aquaculture and fisheries science [J], 22: 241-256.
    Scheuhammer A M, Cherian M G 1986. Quantification of metallothioneins by a silver-saturation method. Toxicol Appl Pharmacol [J], 82: 417-425.
    Schreck C B, Solazzi M F, Johnson S L, et al. 1989. Transportation stress affects performance of coho salmon, Oncorhynchus kisutch. Aquaculture [J], 82: 15-20.
    Shihabi Z K, Bishop C 1971. Simplified Turbidimetric Assay for Lipase Activity. Clin Chem [J], 17: 1150-1153.
    Skidmore J F, Tovell P W A 1972. Toxic effects of zinc sulphate on the gills of rainbow trout. Water Research [J], 6: 217-228, IN211-IN212, 229-230, IN213-IN214.
    Smith D M, Burford M A, Tabrett S J, et al. 2002. The effect of feeding frequency on water quality and growth of the black tiger shrimp (Penaeus monodon). Aquaculture [J], 207: 125-136.
    Soegianto A, Charmantier-Daures1 M, Trilles1 J-P, et al. 1999a. Impact of cadmium on the structure of gills and epipodites of the shrimp Penaeus japonicus (Crustacea: Decapoda). Aquat. Living Resour. [J], 12: 57-70.
    Soegianto A, Charmantier-Daures M, Trilles J P, et al. 1999b. Impact of copper on the structure of gills and epipodites of the shrimp Penaeus japonicus (Decapoda). Journal of Crustacean Biology [J], 19: 209-223.
    Spicer J I, Weber R E 1991. Respiratory impairment in crustaceans and molluscs due to exposure to heavy metals. Comp Biochem Physiol C [J], 100: 339-342.
    Sprague J B 1971. Measurement of pollutant toxicity to fish--III: Sublethal effects and "safe" concentrations. Water Research [J], 5: 245-266.
    Strotmann U, Zaremba S, Bias W R 1992. Rapid toxicity tests for the determination of substance toxicity to activated sludge. Acta Hydrochim. Hydrobiol [J], 20: 136.
    Sugita H, Nakamura H, Shimada T 2005. Microbial communities associated with filter materials in recirculating aquaculture systems of freshwater fish. Aquaculture [J], 243: 403-409.
    Sunda W G, Lewis J M 1978. Effect of Complexation by Natural Organic Ligands on the Toxicity of Copper to a Unicellular Alga, Monochrysis Lutheri Limnology and Oceanography [J], 23: 870-876.
    Sung H-H, Ye Y-Z 2009. Effect of nonylphenol on giant freshwater prawn (Macrobrachium rosenbergii) via oral treatment: Toxicity and messenger RNA expression of hemocyte genes. Aquatic Toxicology [J], 91: 270-277.
    Talaro K P 2005. Foundations in Microbiology: Basic Principles, Fifth edition. McGraw Hill Higher Education [J]: 210-211.
    Thakur D P, Lin C K 2003. Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems. Aquacultural Engineering [J], 27: 159-176.
    Trepanier C, Parent S, Comeau Y, et al. 2002. Phosphorus budget as a water quality management tool for closed aquatic mesocosms. Water Research [J], 36: 1007-1017.
    Tseng I T, Chen J-C 2004. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish & Shellfish Immunology [J], 17: 325-333.
    Tsing A, Arcier J-M, Brehélin M 1989. Hemocytes of Penaeid and Palaemonid shrimps: Morphology, cytochemistry, and hemograms. Journal of Invertebrate Pathology [J], 53: 64-77.
    van Rijn J, Tal Y, Schreier H J 2006. Denitrification in recirculating systems: Theory and applications. Aquacultural Engineering [J], 34: 364-376.
    Van Wyk P, Davis-Hodgkins M, Laramore R, et al. 1999. Farming Marine Shrimp in Recirculating Freshwater Systems [M].Harbor Branch Oceanographic Institution. . 1-9.
    Vankov S, Kupec J, Hoffmann J 1999. Toxicity of Chromium to Activated Sludge. Ecotoxicology andEnvironmental Safety [J], 42: 16-21.
    Vijayavel K, Balasubramanian M P 2006. Changes in oxygen consumption and respiratory enzymes as stress indicators in an estuarine edible crab Scylla serrata exposed to naphthalene. Chemosphere [J], 63: 1523-1531.
    Wagemann R, Barica J 1979. Speciation and rate of loss of copper from lakewater with implications to toxicity. Water Research [J], 13: 515-523.
    Walliamson D I 1982. Larval morphology and diversity. In―The biology of crustacean‖(L.G. Abele): Embryology, Morphology and Genetics . Academic Press, New York and London. 2: 43-110.
    Wang J-K 2003. Conceptual design of a microalgae-based recirculating oyster and shrimp system. Aquacultural Engineering [J], 28: 37-46.
    Wang L-U, Chen J-C 2005. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels. Fish & Shellfish Immunology [J], 18: 269-278.
    Wang Y-C, Chang P-S, Chen H-Y 2008. Differential time-series expression of immune-related genes of Pacific white shrimp Litopenaeus vannamei in response to dietary inclusion of [beta]-1,3-glucan. Fish & Shellfish Immunology [J], 24: 113-121.
    Wood D K, Tchobanoglous. G 1975. Trace Elements in Biological Waste Treatment. Water Pollution Control Federation [J], 47: 1933-1945
    Worthington V 1993. Worthington Enzyme Manual.Enzymes and Related Biochemicals Worthington Chemical,New Jersey,USA.
    Wu J P, Chen H-C 2004a. Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei). Chemosphere [J], 57: 1591-1598.
    Wu J P, Chen H C 2004b. Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei). Chemosphere [J], 57: 1591-1598.
    Wu J P, Chen H C 2005. Metallothionein induction and heavy metal accumulation in white shrimp Litopenaeus vannamei exposed to cadmium and zinc. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology [J], 140: 383-394.
    Yamuna A, Saravana Bhavan P, Geraldine P 2002. Effects of Hg and Cu on hemocytes-mediated functions in the prawn, Macrobrachium malcolmsonii. J Environ Biol [J], 23: 7-13.
    Yang Z-b, Zhao Y-l, Li N, et al. 2008. Effects of Water-borne Copper on the Y-organ and Content of 20-hydroxyecdysone in Eriocheir sinensis. Archives of Environmental Contamination and Toxicology [J], 54: 69-74.
    Yang Z B, Zhao Y L, Li N, et al. 2007. Effect of Waterborne Copper on the Microstructures of Gill and Hepatopancreas in Eriocheir sinensis and Its Induction of Metallothionein Synthesis. Archives of Environmental Contamination and Toxicology [J], 52: 222-228.
    Yeh S-T, Liu C-H, Chen J-C 2004. Effect of copper sulfate on the immune response and susceptibility to Vibrio alginolyticus in the white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology [J], 17: 437-446.
    Zapata V, Greco L L, Rodriguez E M 2001. Effect of copper on hatching and development of larvae of the estuarine crab Chasmagnathus granulata (Decapoda, Brachyura). Environmental Toxicology and Chemistry [J], 20: 1579-1583.
    Zare S, Greenaway P 1998. The Effect of Moulting and Sodium Depletion on Sodium Transport and the Activities of Na+K+-ATPase, and V-ATPase in the Freshwater Crayfish Cherax destructor (Crustacea: Parastacidae). Comparative Biochemistry and Physiology - Part A: Molecular &Integrative Physiology [J], 119: 739-745.
    Zhu G, Peng Y, Li B, et al. 2008. Biological Removal of Nitrogen from Wastewater [M], Reviews of Environmental Contamination and Toxicology: 159-195.
    艾春香,王晓娟,李少菁,等. 2008.几种环境因子对虾蟹类非特异性免疫的影响.海洋通报:英文版[J], 10: 54-63.
    白东清,郭永军,董少杰,等. 2009. Cu2+、Zn2+、SDS和DBS对凡纳滨对虾仔虾的毒性试验.安徽农业科学[J], 37: 15074-15076.
    曹剑香,简纪常,吴灶和2006.虾类体液免疫研究进展.湛江海洋大学学报[J], 26: 89-93.
    柴社立,蔡晶,芮尊元2006.微量金属对废水厌氧处理效果的影响.环境污染与防治[J], 28: 580-584.
    陈国炜,席鹏鸽,陈慧2005. Cu2+和Zn2+对活性污泥生长动力学的影响.合肥工业大学学报:自然科学版[J], 28: 150-154.
    陈军,徐皓,倪琦,等. 2009.我国工厂化循环水养殖发展研究报告.渔业现代化[J], 4: 1-7. 陈楠生译1992.对虾生物学[M].青岛:青岛海洋大学出版社. 229-271.
    陈献,梁荣元,赖国兴,等. 2002.室内自动化循环水养虾系统之研发及示范、推广.中国水产学会两岸养殖渔业交流研讨会[A].
    戴家银,郑微云1998.铜和锌离子对真鲷幼鱼组织酶活性的影响.环境科学[J], 19: 60-62.
    董晓慧,杨原志,郑石轩,等. 2007.饲料中不同铜源和水平对凡纳滨对虾生长、免疫和组织铜含量的影响.大连水产学院学报[J], 22: 377-383.
    黄国强,董双林,王芳,等. 2004.饵料种类和摄食水平对中国对虾蜕皮的影响.中国海洋大学学报:自然科学版[J], 34: 942-948.
    李爱杰1996.水产动物营养与饲料学.北京:中国农业出版社[J].
    李婧2004.金属硫蛋白检测方法的研究进展.现代检验医学杂志[J], 19: 64-65.
    李玉全,李健,王清印,等. 2007.养殖密度对工厂化对虾养殖池氮磷收支的影响.中国水产科学[J], 6: 926-931.
    刘发义,李荷芳1995.中国对虾矿物物质营养的研究.海洋科学[J], 4: 32-37.
    刘发义,梁德海1990.饵料中的铜对中国对虾的影响.海洋与湖沼[J], 21: 404-410.
    刘发义,吴玉霖,赵鸿儒,等. 1988.铜在中国对虾体内的积累和致毒效应.洋与湖沼[J], 19: 134-139.
    刘国才,李德尚,等2002.对虾综合养殖生态系统有机碳的平衡.海洋学报[J], 24: 84-91.
    刘清,王子健1998.铜的形态分布与Daphnia magna急性毒性关系.环境化学[J], 17: 14-18.
    刘瑞玉,胡超群,曹登宫2004.我国对虾养殖的现状、研究进展与存在的若干问题.第四届世界华人虾类养殖研讨会,论文摘要汇编[A].中国甲壳动物学会.青岛. [J]: 2-4.
    刘嗣华,李凤超,穆淑梅,等. 2006. Cu2+对南美蓝对虾无节幼体的急性致毒研究.河北渔业[J], 7: 7-9.
    刘鹰,杨红生,刘石林,等. 2005.封闭循环系统对虾合理养殖密度的试验研究.农业工程学报[J], 21: 122-125.
    刘鹰,杨红生,张福绥2004.封闭循环水工厂化养鱼系统的基础设计.水产科学[J], 23: 36-38.
    刘鹰,袁桂良2001.工厂化养殖——水产养殖业发展的动力与潜力.内陆水产[J], 26: 42-43.
    苗晶晶,潘鲁青,刘志2005.铜、锌对褐牙鲆鳃丝Na+-K+-ATPase活力的影响.中国水产科学[J], 12: 340-343.
    穆迎春,王芳,董双林,等. 2005.不同盐度波动幅度对中国明对虾稚虾蜕皮和生长的影响.海洋学报[J], 27: 122-126.
    农业部2006a.国家环境保护总局.中国渔业生态环境状况公报[M]. 4.
    农业部2006b.无公害食品水产品中有毒有害物质限量标准NY 5073-2006‖.农业行业标准.[S]. 2.
    潘鲁青,刘泓宇,肖国强2006.甲壳动物幼体消化酶研究进展.中国水产科学[J], 13: 492-501.
    潘鲁青,刘志,姜令绪2004.盐度、pH变化对凡纳滨对虾鳃丝Na+-K+-ATPase活力的影响.中国海洋大学学报:自然科学版[J], 34: 787-790.
    祁真,杨京平,刘鹰2004.封闭循环水养殖南美白对虾的水质动态研究.水利渔业[J], 24: 37-39.
    齐振雄1998.对虾综合养殖生态系氮磷收支及沉积物在其中作用的研究[A].青岛海洋大学博士学位论文.
    沈文英,胡洪国,潘雅娟2004.温度和pH值对南美白对虾(Penaeus vannmei)消化酶活性的影响. 海洋与湖沼[J], 35: 543-548.
    汪晋三,黄新华,程国佩1989.水化学与水污染.中山大学出版社[J]: 274-361.
    王法东,黄勇,高宏2003.重金属对A/O生物脱氮系统的毒性影响.沈阳建筑工程学院学报:自然科学版[J], 19: 154-156.
    王芳,董双林,董少帅,等. 2004.光照周期对中国对虾稚虾蜕皮和生长的影响.中国水产科学[J], 11: 354-359.
    王克行1997.虾蟹类增养殖学[M].北京:中国农业出版社. 20-34.
    王雷,李光友1995.中国对虾血淋巴中的抗菌,溶菌活力与酚氧化酶活力的测定及其特性研究.海洋与湖沼[J], 26: 179-185.
    王清印,杨丛海2005.中国对虾健康养殖的发展现状及展望.中国水产[J], 1: 21-24.
    王晓春,胡晓磐2007.水环境Cu2+对鲫鱼组织Na+-K+-ATPase酶活力的影响.水利渔业[J], 27: 64-65.
    王志铮,吕敢堂,许俊,等. 2005. Cr6+、Zn2+、Hg2+对凡纳滨对虾幼虾急性毒性和联合毒性研究.海洋水产研究[J], 26: 6-12.
    吴立新,刘瑜,王欣,等. 2007.饥饿和再投喂对日本囊对虾代谢率的影响.大连水产学院学报[J], 22: 109-112.
    吴垠,孙建明1997.温度对中国对虾,日本对虾主要消化酶活性的影响.大连水产学院学报[J], 12: 15-22.
    吴众望,潘鲁青2005.重金属离子对凡纳滨对虾肝胰脏MT含量的影响.水产学报[J], 29: 715-718.
    吴众望,潘鲁青,张红霞2005.重金属离子对凡纳滨对虾肝胰脏,鳃丝和血液SOD活力的影响. 应用生态学报[J], 16: 1962-1966.
    吴众望,潘鲁青,张红霞,等. 2004.重金属离子对凡纳滨对虾鳃丝Na+-K+-ATPase活力的影响.海洋环境科学[J], 23: 27-29.
    徐海圣,徐步进2001.甲壳动物细胞及体液免疫机理的研究进展.大连水产学院学报[J], 16: 49-56.
    许金生,冯泳兰,等2002.大源渡库区表层沉积物中重金属污染状况.环境化学[J], 21: 100-102.
    闫茂仓,单乐州,邵鑫斌,等. 2007.温度及体重对娩鱼幼鱼耗氧率和排氨率的影响.热带海洋学报[J], 26: 44-49.
    杨红生2001.清洁生产:海水养殖业持续发展的新模式.世界科技研究与发展[J], 23: 62-65.
    姚庆祯,臧维玲,戴习林,等. 2003.铜、镉、敌敌畏和甲胺磷对南美白对虾幼虾的急性致毒及相互关系.上海水产大学学报[J], 12: 117-122.
    叶玫,吴成业2000.鳗鲡消化道蛋白酶的初步分离提取及某些性质的研究.海洋学报[J], 22: 132-136.
    游奎2005.对虾工程化养殖系统重要元素及能量收支[A].中国科学院海洋研究所博士学位论文.
    游奎,马牲2002.对虾养殖生态系中有机碳的初步研究.青岛海洋大学学报:自然科学版[J], 32:51-55.
    臧维玲,戴习林,徐嘉波,等. 2008.室内凡纳滨对虾工厂化养殖循环水调控技术与模式.水产学报[J], 32: 749-757.
    张恩仁,张正斌,等2003.南沙群岛海域海水中胶体铜、锌、铅.海洋学报[J], 25: 136-140.
    张伟权1994.南美白对虾(penaeus vannamei Boone,1931)半精养生产技术指南.海洋科学编辑部出版[J].
    赵素达1999.海洋重金属污染及其对海藻的毒害作用.青岛教育学院学报[J]: 40-42.
    赵卫红,杨登峰,王江涛2004.中国对虾养殖系统中溶解有机碳和胶体有机碳的动态变化.海洋环境科学[J], 23: 16-20.
    周洪琪,顾功超1992.中国对虾幼体的能量代谢.水产学报[J], 16: 167-170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700