用户名: 密码: 验证码:
凡纳滨对虾和中华绒螯蟹免疫相关因子功能及应用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲壳动物在水产养殖业中占据十分重要的地位,深入开展免疫防御机制的相关研究,探索免疫防治新途径,是实现其健康养殖的可靠保障。本研究通过RACE技术获得了凡纳滨对虾的整连因子LvIntegrin,C型凝集素LvLec,以及中华绒螯蟹的细胞因子抑制因子EsSOCS2和抗脂多糖因子EsALF-2的cDNA全长序列。通过RT-PCR法研究了它们对不同微生物刺激的响应,并对功能结构域原核重组蛋白进行了相关活性测定。同时检测了CpG ODNs注射处理后中华绒螯蟹的部分免疫指标和受WSSV感染的凡纳滨对虾的存活率、病毒拷贝数及抗病毒相关因子的变化,初步获得以下结果。
     凡纳滨对虾LvIntegrin和LvLec cDNA全长为2621和618 bp,分别具有典型的特征结构域β-integrin亚基和CRD。LvIntegrin在受到鳗弧菌侵染时,mRNA表达水平均显著提高。重组LvIntegrin具有Ca2+依赖的大肠杆菌、鳗弧菌、溶壁微球菌和毕赤酵母的凝集活性,同时具有促进人成纤维细胞增殖的作用。LvIntegrin基因干扰后感染鳗弧菌的对虾死亡率升高,抗体阻断LvIntegrin蛋白后,感染鳗弧菌的对虾中酚氧化物酶原基因的表达受到抑制。重组的LvLec具有Ca2+依赖的大肠杆菌凝集活性,该活性可被甘露糖抑制,提示该蛋白属于甘露糖结合型的C型凝集素。
     中华绒螯蟹EsSOCS2和EsALF-2 cDNA全长分别为2535和724 bp,EsSOCS2含有典型的ESS、SH2和SOCS box三个结构域。EsSOCS2和EsALF-2在各检测组织中呈组成型表达,且分别在鳗弧菌、藤黄微球菌和鳗弧菌、毕赤酵母的诱导下,表达量显著增加。重组的EsALF-2具有抑制鳗弧菌和毕赤酵母生长的作用,而对革兰氏阳性菌不起作用。
     合成CpG ODNs处理中华绒螯蟹和凡纳滨对虾,发现0.1μg的CpG ODNs可抑制ROS的产生,促进酚氧化物酶和溶菌酶活性增强,并诱导抗菌肽Crustin的mRNA表达。经CpG ODNs预处理的对虾感染WSSV后,存活率显著高于对照组,且对虾体内病毒拷贝数显著降低,同时对虾血淋巴细胞中ROS水平和Dicer、STAT的mRNA表达量显著增加,而Argonaute表达水平未发现显著变化。提示CpG ODNs通过间接抑制WSSV病毒的复制,诱导对虾防御WSSV的免疫保护作用。
     结果表明,LvIntegrin、LvLec、EsSOCS2和EsALF-2是虾蟹类重要的免疫防御因子,均参与了凡纳滨对虾和中华绒螯蟹的免疫防御反应。CpG ODNs能激活虾蟹类固有免疫防御体系,在抵御WSSV侵染过程中起重要保护作用,可作为免疫增强剂用于虾蟹类养殖动物的免疫防治。该研究结果对深入了解海洋无脊椎动物免疫防御机制,发展免疫防治方法和途径具有理论意义和应用价值。
Crustaceans in aquaculture occupy a very important position, and the knowledge of immune defense mechanisms as well as the development of novel immunostimulants is helpful for disease control in crustacean aquaculture. In the present study, the genes of LvIntegrin and LvLec from Litopenaeus vannamei, EsSOCS2 and EsALF-2 from Eriocheir sinensis were cloned by rapid amplification of cDNA ends (RACE) techniques. Their expression profiles in crustaceans challenged by several microorganisms were detected by RT-PCR technique, and their functions were examined by assaying their recombinant protein expressed in Escherichia coli BL21(DE3)-plysS. The immune protective effects of CpG ODNs for crustaceans against pathogenic microorganisms were also evaluated.
     The full-length cDNA of LvIntegrin and LvLec was 2621 and 618 bp, with typical domain ofβ-integrin subunit and CRD respectively. The mRNA expression of LvIntegrin was up-regulated in haemocytes of shrimps challenged by Listonella anguillarum. Recombinant LvIntegrin displayed agglutinative activities against E. coli, L. anguillarum, Micrococcus lysodeikticus and Pichia pastoris and promoted the proliferation of human fibroblasts. Recombinant LvLec represented agglutinative activity only aginst E. coli JM109. The agglutinative activities of LvIntegrin and LvLec were both of Ca2+ dependent. The mortality rates were significantly increased in LvIntegrin-RNAi-shrimps treated with L. anguillarum, and the EsproPO gene was inhibited in LvIntegrin-blocking-shrimps challenged by L. anguillarum.
     The full-length cDNA of EsSOCS2 and EsALF-2 was 2535 and 724 bp respectively, and EsSOCS2 contained three typical domains of ESS, SH2 and SOCS box. The mRNA expression of EsSOCS2 and EsALF-2 was both up-regulated in crabs challenged by the microorganisms. The recombinant EsALF-2 displayed antibacterial activity against L. anguillarum and P. pastoris, but no antibacterial activity against Gram-positive bacteria.
     The cellular and humoral immune responses were detected to evaluate the immune effects of CpG ODNs on innate immunity of crabs. The survival rates, WSSV copy numbers and several anti-virus factors were employed to evaluate the immune protective roles of CpG-C in shrimps against WSSV. 0.1μg of CpG-C could inhibit the ROS generation, enhance the activities of PO and lysozyme, up-regulate mRNA expression of Crustin. These results collectively suggested that CpG-C could activate innate immune responses of Chinese mitten crab, and might be used as a novel immunostimulant for disease control in E. sinensis. There were higher survival proportion, lower WSSV copy numbers, and higher mRNA expression of Dicer and STAT in CpG-ODNs-pretreatment shrimps than that in control shrimps after WSSV infection. The ROS levels in CpG-ODNs-pretreatment shrimps post secondary stimulation of PBS were significantly higher than those post WSSV infection. These results together demonstrated that CpG-ODNs induced partial protective immunity in shrimps against WSSV via intermediation of virus replication indirectly and could be used as a potential candidate in the development of therapeutic agents for disease control of WSSV in L. vannamei.
     The results together indicated that LvIntegrin, LvLec, EsSOCS2 and EsALF-2 were crucial immune factors in crustaceans and all involved in the immune defense responses. CpG ODNs could activate the innate immunity of crustaceans and played important roles in protecting the shrimps against WSSV. CpG ODNs as immunostimulants could be used for immune prevention and disease control in crustacean species. The results were helpful for better understanding immune defense mechanisms and developing novel immunostimulants for disease control in marine invertebrates.
引文
1. Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science 1996;272(5258):50-3.
    2. Ezekowitz RAB, Hoffmann J. The blossoming of innate immunity. Current Opinion in Immunology 1998;10:9-11.
    3. Turner. 90 Years On: A Therapy to 'Stimulate the Phagocytes'? Scandinavian Journal of Immunology 1998;48(2):124-26.
    4. FAO. The state of world fisheries and aquaculture 2008. Rome:FAO 2009:16-22.
    5. Li F, Wang D, Li S, Yan H, Zhang J, Wang B, et al. A Dorsal homologue (FcDorsal) in the Chinese shrimp Fenneropenaeus chinensis is responsive to both bacteria and WSSV challenge. Developmental & Comparative Immunology 2010 (In press).
    6. Wang W, Chen J, Du K, Xu Z. Morphology of spiroplasmas in the Chinese mitten crab Eriocheir sinensis associated with tremor disease. Research in microbiology 2004;155(8):630-5.
    7. Xu WZ. Studies on milky disease in crab. Master Thesis, Ocean University of China 2005;pp:10-17.
    8. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science 1999;284(5418):1313-8.
    9. Roch P. Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture 1999;172(1-2):125-45.
    10. Song Y-L, Hsieh Y-T. Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: Analysis of reactive oxygen species. Developmental & Comparative Immunology 1994;18(3):201-09.
    11. Mu?oz M, Cede?o R, Rodríguez J, van der Knaap WPW, Mialhe E, Bachère E. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture 2000;191(1-3):89-107.
    12. Lanz-Mendoza H, Bettencourt R, Fabbri M, Faye I. Regulation of the Insect Immune Response: The effect of hemolin on cellular immune mechanisms. Cellular Immunology1996;169(1):47-54.
    13. Gillespie JP, Kanost MR, Trenczek T. Biological mediators of insect immunity Annual Review of Entomology 1997;42(1):611-43.
    14.杜欣军。中国明对虾先天免疫的模式识别与效应分子。山东大学博士学位论文2007:16-17.
    15. Johansson MW, S?derh?ll K. Isolation and purification of a cell adhesion factor from crayfish blood cells. Journal of cell biology 1988;106:1795-803.
    16. Johansson M, Holmblad T, Thornqvist P, Cammarata M, Parrinello N, S?derh?ll K. A cell-surface superoxide dismutase is a binding protein for peroxinectin, a cell-adhesive peroxidase in crayfish. Journal of Cell Science 1999;112(6):917-25.
    17. Schmidt O, S?derh?ll K, Theopold U, Faye I. Role of Adhesion in Arthropod Immune Recognition. Annual Review of Entomology 2010;55(1):485-504.
    18. Lin C-Y, Hu K-Y, Ho S-H, Song Y-L. Cloning and characterization of a shrimp clip domain serine protease homolog (c-SPH) as a cell adhesion molecule. Developmental & Comparative Immunology 2006;30(12):1132-44.
    19. Sritunyalucksana K, Wongsuebsantati K, Johansson MW, S?derh?ll K. Peroxinectin, a cell adhesive protein associated with the proPO system from the black tiger shrimp, Penaeus monodon. Developmental & Comparative Immunology 2001;25(5-6):353-63.
    20. Kanost MR, Jiang H, Yu X-Q. Innate immune responses of a lepidopteran insect, Manduca sexta. Immunological Reviews 2004;198(1):97-105.
    21. Lee KY, Horodyski FM, Valaitis AP, Denlinger DL. Molecular characterization of the insect immune protein hemolin and its high induction during embryonic diapause in the gypsy moth, Lymantria dispar. Insect Biochemistry and Molecular Biology 2002;32(11):1457-67.
    22. Bettencourt R, Assefaw-Redda Y, Faye I. The insect immune protein hemolin is expressed during oogenesis and embryogenesis. Mechanisms of Development 2000;95(1-2):301-04.
    23. Zhao L, Kanost MR. In search of a function for hemolin, a hemolymph protein from the immunoglobulin superfamily. Journal of Insect Physiology 1996;42(1):73-79.
    24. Theopold U, Samakovlis C, Erdjument-Bromage H, Dillon N, Axelsson B, Schmidt O, etal. Helix pomatia lectin, an inducer of Drosophila immune response, binds to hemomucin, a novel surface mucin. The Journal of Biological Chemistry 1996;271(22):12708-15.
    25. Theopold U, Dorian C, Schmidt O. Changes in glycosylation during Drosophila development. The influence of ecdysone on hemomucin isoforms. Insect Biochemistry and Molecular Biology 2001;31(2):189-97.
    26. Hagen HE, Kl?ger SL. Integrin-like RGD-dependent cell adhesion mechanism is involved in the rapid killing of Onchocerca microfilariae during early infection of Simulium damnosum s.l. Parasitology 2001;122(04):433-38.
    27. Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, et al. Crystal structure of the extracellular segment of integrin alphaVbeta3. Science 2001;294(5541):339-45.
    28. Mamali I, Lamprou I, Karagiannis F, Karakantza M, Lampropoulou M, Marmaras VJ. Aβintegrin subunit regulates bacterial phagocytosis in medfly haemocytes. Developmental & Comparative Immunology 2009;33(7):858-66.
    29. Nelsen-Salz B, Eggers HJ, Zimmermann H. Integrin alpha(v)beta3 (vitronectin receptor) is a candidate receptor for the virulent echovirus 9 strain Barty. Journal of General Virology 1999;80(9):2311-13.
    30. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993;73(2):309-19.
    31. Jackson T, Sheppard D, Denyer M, Blakemore W, King AMQ. The epithelial integrin alpha vbeta 6 is a receptor for foot-and-mouth disease virus. The Journal of Virology 2000;74(11):4949-56.
    32. Coulson BS, Londrigan SL, Lee DJ. Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in virus entry?into?cells. Proceedings of the National Academy of Sciences of the United States of America 1997;94(10):5389-94.
    33. Li D-F, Zhang M-C, Yang H-J, Zhu Y-B, Xu X.β-integrin mediates WSSV infection. Virology 2007;368(1):122-32.
    34.李义。中华绒螯蟹新型免疫调节剂及其酚氧化酶的纯化和性质研究。南京农业大学博士学位论文2007:6-7.
    35. Dubovskiy IM, Krukova NA, Glupov VV. Phagocytic activity and encapsulation rate ofGalleria mellonella larval haemocytes during bacterial infection by Bacillus thuringiensis. Journal of Invertebrate Pathology 2008;98(3):360-62.
    36. Johansson MW, S?derh?ll K. Cellular immunity in crustaceans and the proPO system. Parasitology Today 1989;5(6):171-76.
    37.薛清刚,张学雷,王雷,张志峰.虾、贝类免疫反应基础及作用。相建海主编:海水养殖生物病害发生与控制。海洋出版社2001:74-84.
    38. Medzhitov R, Janeway CA. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997;91(3):295-98.
    39. Medzhitov R, Janeway CA. Innate immunity: impact on the adaptive immune response. Current Opinion in Immunology 1997;9(1):4-9.
    40. Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, Blass C, et al. Immunity-related genes and gene families in Anopheles gambiae. Science 2002;298(5591):159-65.
    41. Hultmark D. Drosophila immunity: paths and patterns. Current Opinion in Immunology 2003;15(1):12-19.
    42. Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 2002;416(6881):640-44.
    43. Werner T, Liu G, Kang D, Ekengren S, Steiner H, Hultmark D. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 2000;97(25):13772-77.
    44.王金星,赵小凡。无脊椎动物先天免疫模式识别受体研究进展。生物化学与生物物理进展2004;31:112-17.
    45. Hoffmann JA. The immune response of Drosophila. Nature 2003;426(6962):33-8.
    46. Werner T, Borge-Renberg K, Mellroth P, Steiner H, Hultmark D. Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. The Journal of Biology Chemistry 2003;278(29):26319-22.
    47. Takehana A, Yano T, Mita S, Kotani A, Oshima Y, Kurata S. Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. The EMBO Journal 2004;23(23):4690-700.
    48. Al-Sharif WZ, Sunyer JO, Lambris JD, Smith LC. Sea urchin coelomocytes specifically express a homologue of the complement component C3. The Journal of Immunology 1998;160(6):2983-97.
    49. Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 2001;104(5):709-18.
    50. Lagueux M, Perrodou E, Levashina EA, Capovilla M, Hoffmann JA. Constitutive expression of a complement-like protein in Toll and JAK gain-of-function mutants of Drosophila. Proceedings of the National Academy of Sciences of the United States of America 2000;97(21):11427-32.
    51. Blandin S, Levashina EA. Thioester-containing proteins and insect immunity. Molecular immunology 2004;40(12):903-8.
    52. Yu XQ, Zhu YF, Ma C, Fabrick JA, Kanost MR. Pattern recognition proteins in Manduca sexta plasma. Insect Biochemistry and Molecular Biology 2002;32(10):1287-93.
    53. Kim Y-S, Ryu J-H, Han S-J, Choi K-H, Nam K-B, Jang I-H, et al. Gram-negative bacteria-binding protein, a pattern recognition receptor for Lipopolysaccharide andβ-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. The Journal of Biological Chemistry 2000;275(42):32721-27.
    54. Vargas-Albores F, Yepiz-Plascencia G. Beta glucan binding protein and its role in shrimp immune response. Aquaculture 2000;191(1-3):13-21.
    55. Greenberg JW, Fischer W, Joiner KA. Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infection and Immunity 1996;64(8):3318-25.
    56. R?met M, Pearson A, Manfruelli P, Li X, Koziel H, G?bel V, et al. Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity 2001;15(6):1027-38.
    57. Drickamer K, Taylor ME. Biology of animal lectins. Annual Review of Cell Biology 2003;9(1):237-64.
    58. Drickamer K. Two distinct classes of carbohydrate-recognition domains in animal lectins. The journal of Biological Chemistry 1988;263(20):9557-60.
    59. Zelensky A, Gready J. The C-type lectin-like domain superfamily. The FEBS Journal 2005;272:6179-217.
    60. Drickamer K. Engineering galactose-binding activity into a C-type mannose-binding protein. Nature 1992;360(6400):183-86.
    61. Liu F-T, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochimica et Biophysica Acta (BBA) - General Subjects 2002;1572(2-3):263-73.
    62. Pace KE, Lebestky T, Hummel T, Arnoux P, Kwan K, Baum LG. Characterization of a novel Drosophila melanogaster galectin. The Journal of Biological Chemistry 2002;277(15):13091-98.
    63. Brightbill HD, Libraty DH, Krutzik SR, Yang R-B, Belisle JT, Bleharski JR, et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 1999;285(5428):732-36.
    64. Kimbrell DA, Beutler B. The evolution and genetics of innate immunity. Nature reviews Genetics 2001;2(4):256-67.
    65. Jiang H, Wang Y, Kanost MR. Pro-phenol oxidase activating proteinase from an insect, Manduca sexta: A bacteria-inducible protein similar to Drosophila easter. Proceedings of the National Academy of Sciences of the United States of America 1998;95(21):12220-25.
    66. Jiang H, Wang Y, Kanost MR. Four serine proteinases expressed in Manduca sexta haemocytes. Insect Molecular Biology 1999;8(1):39-53.
    67. Kanost MR. Serine proteinase inhibitors in arthropod immunity. Developmental & Comparative Immunology 1999;23(4-5):291-301.
    68. Sritunyalucksana K, S?derh?ll K. The proPO and clotting system in crustaceans. Aquaculture 2000;191(1-3):53-69.
    69. S?derh?ll K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Current Opinion in Immunology 1998;10(1):23-28.
    70. Cerenius L, Lee BL, S?derh?ll K. The proPO-system: pros and cons for its role in invertebrate immunity. Trends in Immunology 2008;29(6):263-71.
    71. Kambris Z, Hoffmann JA, Imler J-L, Capovilla M. Tissue and stage-specific expression of the Tolls in Drosophila embryos. Gene Expression Patterns 2002;2(3-4):311-17.
    72. Weber ANR, Tauszig-Delamasure S, Hoffmann JA, Lelièvre E, Gascan H, Ray KP, et al. Binding of the Drosophila cytokine Sp?tzle to Toll is direct and establishes signaling. Nature Immunology 2003;4:794 - 800.
    73. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124(4):783-801.
    74. Dushay MS, Asling B, Hultmark D. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proceedings of the National Academy of Sciences of the United States of America 1996;93(19):10343-47.
    75. Hedengren M, Bengt?sling, Dushay MS, Ando I, Ekengren S, Wihlborg M, et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Molecular Cell 1999;4(5):827-37.
    76. St?ven S, Ando I, Kadalayil L, Engstr?m Y, Hultmark D. Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Reports 2000 1:347-52.
    77. Jin H-J, Shao J-Z, Xiang L-X, Wang H, Sun L-L. Global identification and comparative analysis of SOCS genes in fish: Insights into the molecular evolution of SOCS family. Molecular Immunology 2008;45(5):1258-68.
    78. Rico-Bautista E, Flores-Morales A, Fernández-Pérez L. Suppressor of cytokine signaling (SOCS) 2, a protein with multiple functions. Cytokine & Growth Factor Reviews 2006;17(6):431-39.
    79. Tannahill GM, Elliott J, Barry AC, Hibbert L, Cacalano NA, Johnston JA. SOCS2 can enhance interleukin-2 (IL-2) and IL-3 signaling by accelerating SOCS3 degradation. Molecular and Cellular Biology 2005;25(20):9115-26.
    80. Alexander WS. Suppressors of cytokine signalling (SOCS) in the immune system. Nature Reviews: Immunology 2002;2(6):410-16.
    81. Yasukawa H, Sasaki A, Yoshimura A. Negative regulation of cytokine signaling pathways. Annual Review of Immunology 2003;18(1):143-64.
    82. Wang T, Secombes CJ. Rainbow trout suppressor of cytokine signalling (SOCS)-1, 2 and
    3: Molecular identification, expression and modulation. Molecular Immunology 2008;45(5):1449-57.
    83. Bullock AN, Debreczeni Jé, Edwards AM, Sundstr?m M, Knapp S. Crystal structure ofthe SOCS2–elongin C–elongin B complex defines a prototypical SOCS box ubiquitin ligase. Proceedings of the National Academy of Sciences of the United States of America 2006;103(20):7637-42.
    84. Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J, Bachère E. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). Journal of Biological Chemistry 1997;272(45):28398-406.
    85. Relf JM, Chisholm JRS, Kemp GD, Smith VJ. Purification and characterization of a cysteine-rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, Carcinus maenas. European Journal of Biochemistry 1999;264(2):350-57.
    86. Li C, Zhao J, Song L, Mu C, Zhang H, Gai Y, et al. Molecular cloning, genomic organization and functional analysis of an anti-lipopolysaccharide factor from Chinese mitten crab Eriocheir sinensis. Developmental & Comparative Immunology 2008;32(7):784-94.
    87. Destoumieux D, Munoz M, Cosseau C, Rodriguez J, Bulet P, Comps M, et al. Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. Journal of Cell Science 2000;113(3):461-69.
    88. Cuthbertson BJ, Büllesbach EE, Gross PS. Discovery of synthetic Penaeidin activity against antibiotic-resistant fungi. Chemical Biology & Drug Design 2006;68(2):120-27.
    89. Cuthbertson BJ, BüLLESBACH EE, Fievet J, BACHèRE E, Gross PS. A new class (penaeidin class 4) of antimicrobial peptides from the Atlantic white shrimp (Litopenaeus setiferus) exhibits target specificity and an independent proline-rich-domain function. The Biochemical Journal 2004;381:79-86.
    90. Smith VJ, Fernandes JMO, Kemp GD, Hauton C. Crustins: Enigmatic WAP domain-containing antibacterial proteins from crustaceans. Developmental & Comparative Immunology 2008;32(7):758-72.
    91. Morita T, Ohtsubo S, Nakamura T, Tanaka S, Iwanaga S, Ohashi K, et al. Isolation and biological activities of Limulus anticoagulant (anti-LPS factor) which interacts with Lipopolysaccharide (LPS). Journal of Biochemistry 1985;97(6):1611-20.
    92. Ried C, Wahl C, Miethke T, Wellnhofer G, Landgraf C, Schneider-Mergener J, et al. Highaffinity endotoxin-binding and neutralizing peptides based on the crystal structure of recombinant Limulus anti-lipopolysaccharide factor. The Journal of Biological Chemistry 1996;271(45):28120-27.
    93. Vallespi MG, Alvarez-Obregon JC, Rodriguez-Alonso I, Montero T, Garay H, Reyes O, et al. A Limulus anti-LPS factor-derived peptide modulates cytokine gene expression and promotes resolution of bacterial acute infection in mice. Int Immunopharmacol 2003;3(2):247-56.
    94. Somboonwiwat K, Marcos M, Tassanakajon A, Klinbunga S, Aumelas A, Romestand B, et al. Recombinant expression and anti-microbial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp Penaeus monodon. Developmental & Comparative Immunology 2005;29(10):841-51.
    95. de la Vega E, O'Leary NA, Shockey JE, Robalino J, Payne C, Browdy CL, et al. Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF): a broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection. Molecular Immunology 2008;45(7):1916-25.
    96. Liu F, Liu Y, Li F, Dong B, Xiang J. Molecular cloning and expression profile of putative antilipopolysaccharide factor in Chinese shrimp(Fenneropenaeus chinensis). Marine Biotechnology (New York, N.Y.) 2005;7(6):600-8.
    97. Beale KM, Towle DW, Jayasundara N, Smith CM, Shields JD, Small HJ, et al. Anti-lipopolysaccharide factors in the American lobster Homarus americanus: Molecular characterization and transcriptional response to Vibrio fluvialis challenge. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 2008;3(4):263-69.
    98. Blake C, Koening D. Structure of hen egg white lysozyme. Nature 1965;206:757-58.
    99. Sotelo-Mundo RR, Islas-Osuna MA, de-la-Re-Vega E, Hernández-López J, Vargas-Albores F, Yepiz-Plascencia G. cDNA cloning of the lysozyme of the white shrimp Penaeus vannamei. Fish & Shellfish Immunology 2003;15(4):325-31.
    100.张成松。重要水产养殖虾蟹类的多倍体诱导及性别控制研究。中国科学院海洋研究所博士学位论文2009:1-2.
    101.闫冬春。对虾白斑综合征病毒(WSSV)宿主研究进展。海洋湖沼通报2007;1:136-40.
    102. van Hulten MC, Witteveldt J, Peters S, Kloosterboer N, Tarchini R, Fiers M, et al. Thewhite spot syndrome virus DNA genome sequence. Virology 2001;286(1):7-22.
    103.黄倢,于佳,王秀华,宋晓玲,麻次松,赵法箴等。单克隆抗体酶联免疫技术检测对虾皮下及造血组织坏死病的病原及其传播途径。海洋水产研究1995;16:40-50.
    104. Lo C-F, Ho C-H, peng S-E, Chen C-H, Hsu H-C, Chiu Y-L, et al. White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Diseases of Aquatic Organisms 1996;27:215-25.
    105. Chou H-Y, Huang C-Y, Wang C-H, Chiang H-C, Lo C-F. Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Diseases of Aquatic Organisms 1995;23:165-73.
    106.卢亚楠。抗对虾白斑综合症病毒特异性卵黄抗体的制备及其保护作用的研究。大连理工大学博士学位论文2009:8-10.
    107.李奎,沈坚,姜永红,郑祝英。对虾白斑综合症(WSSV)的诊断与防治。水产博览2004;4:48-49.
    108.涂小林,钟江。中国对虾一种杆状病毒的ELISA检测方法。水产学报1995;19:315-21.
    109. Jang I-K, Meng X-H, Seo H-C, Cho Y-R, Kim B-R, Ayyaru G, et al. A TaqMan real-time PCR assay for quantifying white spot syndrome virus (WSSV) infections in wild broodstock and hatchery-reared postlarvae of fleshy shrimp, Fenneropenaeus chinensis. Aquaculture 2009;287(1-2):40-45.
    110. Rand TA, Petersen S, Du F, Wang X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 2005;123(4):621-9.
    111. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001;409(6818):363-6.
    112. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000;404(6775):293-6.
    113. Baulcombe D. RNA silencing in plants. Nature 2004;431(7006):356-63.
    114. Schott DH, Cureton DK, Whelan SP, Hunter CP. An antiviral role for the RNA interference machinery in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 2005;102(51):18420-24.
    115. Novina CD, Sharp PA. The RNAi revolution. Nature 2004;430(6996):161-4.
    116. Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silencegene expression. Nature reviews. Molecular Cell Biology 2003;4(6):457-67.
    117. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Molecular Cell 2004;15(2):185-97.
    118. Chen Y, Cheng G, Mahato RI. RNAi for treating hepatitis B viral infection. Pharmaceutical Research 2008;25(1):72-86.
    119. Tan FL, Yin JQ. RNAi, a new therapeutic strategy against viral infection. Cell Research 2004;14(6):460-6.
    120. Bumcrot D, Manoharan M, Koteliansky V, Sah DWY. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chemical Biology 2006;2(12):711-19.
    121. Aliyari R, Ding S-W. RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunological Reviews 2009;227(1):176-88.
    122. Tsai YC, Sun YH. Long-range effect of upd, a ligand for Jak/STAT pathway, on cell cycle in Drosophila eye development. Genesis 2004;39(2):141-53.
    123. Hombria JC, Brown S, Hader S, Zeidler MP. Characterisation of Upd2, a Drosophila JAK/STAT pathway ligand. Developmental Biology 2005;288(2):420-33.
    124. Agaisse H, Perrimon N. The roles of JAK/STAT signaling in Drosophila immune responses. Immunological Reviews 2004;198:72-82.
    125. Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, et al. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nature Immunology 2005;6(9):946-53.
    126. Mahalingam R, Fedoroff N. Stress response, cell death and signalling: the many faces of reactive oxygen species. Physiologia Plantarum 2003;119:56-68.
    127. Evans C, Malin G, Mills GP, Wilson WH. Viral infection of Emiliania huxleyi (Prymnesiophyceae) leads to elevated production of reactive oxygen species. Journal of Phycology 2006;42(5):1040-47.
    128. Lee J-G, Lee S-H, Park D-W, Lee S-H, Yoon H-S, Chin B-R, et al. Toll-like receptor 9-stimulated monocyte chemoattractant protein-1 is mediated via JNK-cytosolic phospholipase A2-ROS signaling. Cellular Signalling 2008;20(1):105-11.
    129. Gong G, Waris G, Tanveer R, Siddiqui A. Human hepatitis C virus NS5A protein altersintracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-κB. Proceedings of the National Academy of Sciences of the United States of America 2001;98(17):9599-604.
    130. Perl A, Banki K. Genetic and metabolic control of the mitochondrial transmembrane potential and reactive oxygen intermediate production in HIV disease. Antioxidants & Redox Signaling 2004;2(3):551-73.
    131. Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annual review of immunology 2007;25:697-743.
    132.王永胜。免疫制剂、抗生素和有益微生物对凡纳滨对虾非特异性免疫效应的研究.。国家海洋局第三海洋研究所硕士毕业论文2006:11-16.
    133. Anderson DP. Immunostimulants, adjuvants, and vaccine carriers in fish: Applications to aquaculture. Annual Review of Fish Diseases 1992;2:281-307.
    134.孔伟丽。免疫增强剂及疫苗对刺参免疫酶活性及抗病力影响的初步研究。中国海洋大学硕士学位毕业论文2008:14-15.
    135.孟凡伦,马桂荣,孔健。乳链球菌SB900肽聚糖对中国对虾免疫功能的影响。山东大学学报1999;34:88-93.
    136. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annual Review of Immunology 2003;20(1):709-60.
    137. Mutwiri GK, Nichani AK, Babiuk S, Babiuk LA. Strategies for enhancing the immunostimulatory effects of CpG oligodeoxynucleotides. Journal of Controlled Release 2004;97(1):1-17.
    138. Jorgensen JB, Johansen LH, Steiro K, Johansen A. CpG DNA induces protective antiviral immune responses in Atlantic salmon (Salmo salar L.). The Journal of Virology 2003;77(21):11471-9.
    139. Jorgensen JB, Zou J, Johansen A, Secombes CJ. Immunostimulatory CpG oligodeoxynucleotides stimulate expression of IL-1βand interferon-like cytokines in rainbow trout macrophages via a chloroquine-sensitive mechanism. Fish & Shellfish Immunology 2001;11(8):673-82.
    140. Moseman EA, Liang X, Dawson AJ, Panoskaltsis-Mortari A, Krieg AM, Liu YJ, et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce thegeneration of CD4+CD25+ regulatory T cells. Journal of Immunology 2004;173(7):4433-42.
    141. Strandskog G, Ellingsen T, Jorgensen JB. Characterization of three distinct CpG oligonucleotide classes which differ in ability to induce IFN alpha/beta activity and cell proliferation in Atlantic salmon (Salmo salar L.) leukocytes. Development & Comparative Immunology 2007;31(1):39-51.
    142. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annual review of immunology 2002;20:709-60.
    143. Teleshova N, Kenney J, Jones J, Marshall J, Van Nest G, Dufour J, et al. CpG-C immunostimulatory oligodeoxyribonucleotide activation of plasmacytoid dendritic cells in rhesus macaques to augment the activation of IFN-γ-secreting simian immunodeficiency virus-specific T cells. Journal of Immunology 2004;173(3):1647-57.
    144. Tassakka AC, Savan R, Watanuki H, Sakai M. The in vitro effects of CpG oligodeoxynucleotides on the expression of cytokine genes in the common carp (Cyprinus carpio L.) head kidney cells. Veterinary Immunology and Immunopathology 2006;110(1-2):79-85.
    145. Vollmer J, Weeratna R, Payette P, Jurk M, Schetter C, Laucht M, et al. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. European Journal of Immunology 2004;34(1):251-62.
    146. Nakatani M, Iwasaki T, Watarai S, Kodama H. In vitro enhancement by CpG ODN of phagocytic activity of rainbow trout head kidney phagocytes against fish pathogen Vibrio ordalii, but not against polystyrene particles. The Journal of Veterinary Medical Science / the Japanese Society of Veterinary Science 2007;69(12):1287-90.
    147. Caipang CM, Gallage S, Lazado CC, Brinchmann MF, Kiron V. Unmethylated CpG oligodeoxynucleotides activate head kidney leukocytes of Atlantic cod, Gadus morhua. Fish Physiology and Biochemistry 2010.
    148. Chen Y, Xiang L-X, Shao J-Z. Construction of a recombinant plasmid containing multi-copy CpG motifs and its effects on the innate immune responses of aquatic animals. Fish & Shellfish Immunology 2007;23(3):589-600.
    149. Witteveldt J, Vlak JM, van Hulten MC. Protection of Penaeus monodon against whitespot syndrome virus using a WSSV subunit vaccine. Fish & Shellfish Immunology 2004;16(5):571-9.
    150. Roda JM, Parihar R, Carson WE, 3rd. CpG-containing oligodeoxynucleotides act through TLR9 to enhance the NK cell cytokine response to antibody-coated tumor cells. Journal of Immunology 2005;175(3):1619-27.
    151. Martinson JA, Tenorio AR, Montoya CJ, Al-Harthi L, Gichinga CN, Krieg AM, et al. Impact of class A, B and C CpG-oligodeoxynucleotides on in vitro activation of innate immune cells in human immunodeficiency virus-1 infected individuals. Immunology 2007;120(4):526-35.
    152. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 2004;5(2):150-63.
    153. Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic acids research 2003;31(13):3381-5.
    154. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 1997;18(15):2714-23.
    155. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT Method. Methods 2001;25(4):402-08.
    156. Liu H, Jiravanichpaisal P, Cerenius L, Lee BL, S?derh?ll I, S?derh?ll K. Phenoloxidase is an important component of the defense against Aeromonas hydrophila infection in a crustacean, Pacifastacus leniusculus. The Journal of Biological Chemistry 2007;282(46):33593-98.
    157. Liu H, Jiravanichpaisal P, S?derh?ll I, Cerenius L, S?derh?ll K. Antilipopolysaccharide factor interferes with White Spot Syndrome Virus replication In vitro and In vivo in the crayfish Pacifastacus leniusculus. The Journal of Virology 2006;80(21):10365-71.
    158.蒋昊。中国明对虾在胁迫条件下肝胰脏的差异蛋白质组学研究。中国科学院海洋研究所博士学位论文2009:25-26.
    159. Wang H, Song L, Li C, Zhao J, Zhang H, Ni D, et al. Cloning and characterization of a novel C-type lectin from Zhikong scallop Chlamys farreri. Molecular Immunology 2007;44(5):722-31.
    160. Sun J, Wang L, Wang B, Guo Z, Liu M, Jiang K, et al. Purification and characterisationof a natural lectin from the serum of the shrimp Litopenaeus vannamei. Fish & Shellfish Immunology 2007;23(2):292-99.
    161. Rathinakumar R, Walkenhorst WF, Wimley WC. Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity. Journal of the American Chemical Society 2009;131(22):7609-17.
    162.郑兰红。鲨鱼软骨抗血管生成多肽的分离纯化及其生物活性。中国科学院海洋研究所博士学位论文2007:63-64.
    163. Hahn UK, Bender RC, Bayne CJ. Production of reactive oxygen species by hemocytes of Biomphalaria glabrata: carbohydrate-specific stimulation. Developmental & Comparative Immunology 2000;24(6-7):531-41.
    164. Greene EL, Velarde V, Jaffa AA. Role of reactive oxygen species in bradykinin-induced mitogen-activated protein kinase and c-fos induction in vascular cells. Hypertension 2000;35(4):942-47.
    165. Chen XL, Yu ZQ, Qu LB, Yuan JW, Lu JS, Zhao YF. Phosphorylated modification of genistein and their interaction with lysozyme. Yao Xue Xue Bao 2007;42(4):396-400.
    166. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69(1):11-25.
    167. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110(6):673-87.
    168. Wilcox M, DiAntonio A, Leptin M. The function of PS integrins in Drosophila wing morphogenesis. Development 1989;107(4):891-97.
    169. Gettner SN, Kenyon C, Reichardt LF. Characterization of beta pat-3 heterodimers, a family of essential integrin receptors in C. elegans. The Journal of Cell Biology 1995;129(4):1127-41.
    170. Moita LF, Vriend G, Mahairaki V, Louis C, Kafatos FC. Integrins of Anopheles gambiae and a putative role of a new beta integrin, BINT2, in phagocytosis of E. coli. Insect Biochemistry and Molecular Biology 2006;36(4):282-90.
    171. Ballarin L, Scanferla M, Cima F, Sabbadin A. Phagocyte spreading and phagocytosis in the compound ascidian Botryllus schlosseri: evidence for an integrin-like, RGD-dependent recognition mechanism. Development & Comparative Immunology2002;26(4):345-54.
    172. Schlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase. Progress in Biophysics and Molecular Biology 1999;71(3-4):435-78.
    173. Zhuang S, Kelo L, Nardi JB, Kanost MR. An integrin-tetraspanin interaction required for cellular innate immune responses of an insect, Manduca sexta. The Journal of Biological Chemistry 2007;282(31):22563-72.
    174. Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 2002;296(5565):151-5.
    175. Lin YC, Vaseeharan B, Chen JC. Identification and phylogenetic analysis on lipopolysaccharide and beta-1,3-glucan binding protein (LGBP) of kuruma shrimp Marsupenaeus japonicus. Development & Comparative Immunology 2008;32(11):1260-9.
    176. Liu F, Li F, Dong B, Wang X, Xiang J. Molecular cloning and characterisation of a pattern recognition protein, lipopolysaccharide and beta-1,3-glucan binding protein (LGBP) from Chinese shrimp Fenneropenaeus chinensis. Molecular Biology Reports 2009;36(3):471-7.
    177. Cheng W, Liu CH, Tsai CH, Chen JC. Molecular cloning and characterisation of a pattern recognition molecule, lipopolysaccharide- and beta-1,3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology 2005;18(4):297-310.
    178. Luo T, Yang H, Li F, Zhang X, Xu X. Purification, characterization and cDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimp Penaeus monodon. Developmental & Comparative Immunology 2006;30(7):607-17.
    179. Medzhitov R, Janeway C. Decoding the patterns of self and nonself by the innate immune system. Science 2002;12:298-300.
    180. Taylor ME, Bezouska K, Drickamer K. Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. The Journal of Biological Chemistry 1992;267(3):1719-26.
    181. Giga Y, Ikai A, Takahashi K. The complete amino acid sequence of echinoidin, a lectinfrom the coelomic fluid of the sea urchin Anthocidaris crassispina. Homologies with mammalian and insect lectins. The Journal of Biological Chemistry 1987;262(13):6197-203.
    182. Suzuki T, Takagi T, Furukohri T, Kawamura K, Nakauchi M. A calcium-dependent galactose-binding lectin from the tunicate Polyandrocarpa misakiensis. Isolation, characterization, and amino acid sequence. The Journal of Biological Chemistry 1990;265(3):1274-81.
    183. Liu YC, Li FH, Dong B, Wang B, Luan W, Zhang XJ, et al. Molecular cloning, characterization and expression analysis of a putative C-type lectin (Fclectin) gene in Chinese shrimp Fenneropenaeus chinensis. Molecular Immunology 2007;44(4):598-607.
    184. Yu XQ, Gan H, Kanost MR. Immulectin, an inducible C-type lectin from an insect, Manduca sexta, stimulates activation of plasma prophenol oxidase. Insect Biochemistry and Molecular Biology 1999;29(7):585-97.
    185. Yu XQ, Kanost MR. Immulectin-2, a lipopolysaccharide-specific lectin from an insect, Manduca sexta, is induced in response to gram-negative bacteria. The Journal of Biological Chemistry 2000;275(48):37373-81.
    186. Yu XQ, Tracy ME, Ling E, Scholz FR, Trenczek T. A novel C-type immulectin-3 from Manduca sexta is translocated from hemolymph into the cytoplasm of hemocytes. Insect Biochemistry and Molecular Biology 2005;35(4):285-95.
    187. Zhang H, Wang H, Wang L, Song L, Song X, Zhao J, et al. Cflec-4, a multidomain C-type lectin involved in immune defense of Zhikong scallop Chlamys farreri. Developmental & Comparative Immunology 2009;33(6):780-88.
    188. Zhang H, Wang H, Wang L, Song X, Zhao J, Qiu L, et al. A novel C-type lectin (Cflec-3) from Chlamys farreri with three carbohydrate-recognition domains. Fish & Shellfish Immunology 2009;26(5):707-15.
    189. Chang MX, Nie P. Intelectin gene from the grass carp Ctenopharyngodon idella: cDNA cloning, tissue expression, and immunohistochemical localization. Fish & Shellfish Immunology 2007;23(1):128-40.
    190. Zipris D, Gilboa-Garber N, Susswein AJ. Interaction of lectins from gonads and haemolymph of the sea hare Aplysia with bacteria. Microbios 1986;46:193-98.
    191. Tsutsui S, Iwamoto K, Nakamura O, Watanabe T. Yeast-binding C-type lectin with opsonic activity from conger eel (Conger myriaster) skin mucus. Molecular Immunology 2007;44(5):691-702.
    192. Yu X-Q, Kanost MR. Immulectin-2, a pattern recognition receptor that stimulates hemocyte encapsulation and melanization in the tobacco hornworm, Manduca sexta. Developmental & Comparative Immunology 2004;28(9):891-900.
    193. Sun Y-D, Fu L-D, Jia Y-P, Du X-J, Wang Q, Wang Y-H, et al. A hepatopancreas-specific C-type lectin from the Chinese shrimp Fenneropenaeus chinensis exhibits antimicrobial activity. Molecular Immunology 2008;45(2):348-61.
    194. Luo T, Zhang X, Shao Z, Xu X. PmAV, a novel gene involved in virus resistance of shrimp Penaeus monodon. FEBS Letters 2003;551(1-3):53-57.
    195. Wang H, Song L, Li C, Zhao J, Zhang H, Ni D, et al. Cloning and characterization of a novel C-type lectin from Zhikong scallop Chlamys farreri. Molecular Immunology 2007;44(5):722-31.
    196. Dalpke AH, Opper S, Zimmermann S, Heeg K. Suppressors of cytokine signaling (SOCS)-1 and SOCS-3 are induced by CpG-DNA and modulate cytokine responses in APCs. The Journal of Immunology 2001;166(12):7082-89.
    197. Stoiber D, Kovarik P, Cohney S, Johnston JA, Steinlein P, Decker T. Lipopolysaccharide induces in macrophages the synthesis of the suppressor of cytokine signaling 3 and suppresses signal transduction in response to the activating factor IFN-γ. The Journal of Immunology 1999;163(5):2640-47.
    198. De Zoysa M, Lee J. Suppressor of cytokine signaling 2 (SOCS-2) homologue in disk abalone: Cloning, sequence characterization and expression analysis. Fish & Shellfish Immunology 2009;26(3):500-08.
    199. Machado FS, Johndrow JE, Esper L, Dias A, Bafica A, Serhan CN, et al. Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nature medicine 2006;12(3):330-34.
    200. Scott HJ, Stebbing MJ, Walters CE, McLenachan S, Ransome MI, Nichols NR, et al. Differential effects of SOCS2 on neuronal differentiation and morphology. Brain Research 2006;1067(1):138-45.
    201. Greenhalgh CJ, Bertolino P, Asa SL, Metcalf D, Corbin JE, Adams TE, et al. Growth enhancement in suppressor of cytokine signaling 2 (SOCS-2)-deficient mice is dependent on signal transducer and activator of transcription 5b (STAT5b). Molecular Endocrinology 2002;16(6):1394-406.
    202. Dalpke A, Heeg K, Bartz H, Baetz A. Regulation of innate immunity by suppressor of cytokine signaling (SOCS) proteins. Immunobiology 2008;213(3-4):225-35.
    203. Jin H-J, Xiang L-X, Shao J-Z. Identification and characterization of suppressor of cytokine signaling 1 (SOCS-1) homologues in teleost fish Immunogenetics 2007;59:673-86.
    204. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006;22(2):195-201.
    205. Tanaka S, Nakamura T, Morita T, Iwanaga S. anti-LPS factor: An anticoagulant which inhibits the endotoxin-mediated activation of coagulation system. Biochemical and Biophysical Research Communications 1982;105(2):717-23.
    206. Aketagawa J, Miyata T, Ohtsubo S, Nakamura T, Morita T, Hayashida H, et al. Primary structure of limulus anticoagulant anti-lipopolysaccharide factor. Journal of Biological Chemistry 1986;261(16):7357-65.
    207. Nagoshi H, Inagawa H, Morii K, Harada H, Kohchi C, Nishizawa T, et al. Cloning and characterization of a LPS-regulatory gene having an LPS binding domain in kuruma prawn Marsupenaeus japonicus. Molecular Immunology 2006;43(13):2061-69.
    208. Yedery RD, Reddy KVR. Identification, cloning, characterization and recombinant expression of an anti-lipopolysaccharide factor from the hemocytes of Indian mud crab, Scylla serrata. Fish & Shellfish Immunology 2009;27(2):275-84.
    209. Somboonwiwat K, Bachère E, Rimphanitchayakit V, Tassanakajon A. Localization of anti-lipopolysaccharide factor (ALFPm3) in tissues of the black tiger shrimp, Penaeus monodon, and characterization of its binding properties. Developmental & Comparative Immunology 2008;32(10):1170-76.
    210. Yang Y, Boze H, Chemardin P, Padilla A, Moulin G, Tassanakajon Aea. NMR structure of of rALF-Pm3, an anti-lipopolysaccharide factor from shrimp: Model of the possible lipidA-binding site. Biopolymers 2009;91:207-20.
    211. Lu K-Y, Huang Y-T, Lee H-H, Sung H-H. Cloning the prophenoloxidase cDNA and monitoring the expression of proPO mRNA in prawns (Macrobrachium rosenbergii) stimulated in vivo by CpG oligodeoxynucleotides. Fish & Shellfish Immunology 2006;20(3):274-84.
    212. Carrington AC, Secombes CJ. CpG oligodeoxynucleotides up-regulate antibacterial systems and induce protection against bacterial challenge in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology 2007;23(4):781-92.
    213. Strandskog G, Ellingsen T, J?rgensen JB. Characterization of three distinct CpG oligonucleotide classes which differ in ability to induce IFN [alpha]/[beta] activity and cell proliferation in Atlantic salmon (Salmo salar L.) leukocytes. Developmental & Comparative Immunology 2007;31(1):39-51.
    214. Meng Z, Shao J, Xiang L. CpG oligodeoxynucleotides activate grass carp (Ctenopharyngodon idellus) macrophages. Developmental & Comparative Immunology 2003;27(4):313-21.
    215. Navrot N, Rouhier N, Gelhaye E, Jacquot J-P. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiologia Plantarum 2007;129(1):185-95.
    216. Nagai T, Osaki T, Kawabata S. Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides. The Journal of Biological Chemistry 2001;276:27166-70.
    217. Okumura T. Effects of lipopolysaccharide on gene expression of antimicrobial peptides (penaeidins and crustin), serine proteinase and prophenoloxidase in haemocytes of the Pacific white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology;22(1-2):68-76.
    218. Cuesta A, Salinas I, Esteban Má, Meseguer J. Unmethylated CpG motifs mimicking bacterial DNA triggers the local and systemic innate immune parameters and expression of immune-relevant genes in gilthead seabream. Fish & Shellfish Immunology 2008;25(5):617-24.
    219. Sajeevan TP, Philip R, Bright Singh IS. Dose/frequency: A critical factor in the administration of glucan as immunostimulant to Indian white shrimp Fenneropenaeusindicus. Aquaculture 2009;287(3-4):248-52.
    220. Zhao J, Song L, Li C, Zou H, Ni D, Wang W, et al. Molecular cloning of an invertebrate goose-type lysozyme gene from Chlamys farreri, and lytic activity of the recombinant protein. Molecular Immunology 2007;44(6):1198-208.
    221. GrunclováL, Fouquier H, Hypsa V, Kopácek P. Lysozyme from the gut of the soft tick Ornithodoros moubata: the sequence, phylogeny and post-feeding regulation. Developmental & Comparative Immunology 2003;27(8):651-60.
    222. Brivio FM, Moro M, Mastore M. Down-regulation of antibacterial peptide synthesis in an insect model induced by the body-surface of an entomoparasite (Steinernema feltiae). Developmental & Comparative Immunology 2006;30(7):627-38.
    223. Sung H-H, Chen P-H, Liu C-L. Initiation of signal transduction of the respiratory burst of prawn haemocytes triggered by CpG oligodeoxynucleotides. Fish & Shellfish Immunology 2008;24(6):693-700.
    224. Chuo C-P, Liang S-M, Sung H-H. Signal transduction of the prophenoloxidase activating system of prawn haemocytes triggered by CpG oligodeoxynucleotides. Fish & Shellfish Immunology 2005;18(2):149-62.
    225. Steiner H. Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunological Reviews 2004;198(1):83-96.
    226. Khoo L, Robinette DW, Noga EJ. Callinectin, an Antibacterial Peptide from Blue Crab, Callinectes sapidus, Hemocytes. Marine Biotechnology (New York, N.Y.) 1999;1(1):44-51.
    227. Rosa RD, Stoco PH, Barracco MA. Cloning and characterisation of cDNA sequences encoding for anti-lipopolysaccharide factors (ALFs) in Brazilian palaemonid and penaeid shrimps. Fish & Shellfish Immunology 2008;25(5):693-96.
    228. Klinman DM, Verthelyi D, Takeshita F, Ishii KJ. Immune recognition of foreign DNA: a cure for bioterrorism? Immunity 1999;11:123-29.
    229. Vincent IE, Lucifora J, Durantel D, Hantz O, Chemin I, Zoulim F, et al. Inhibitory effect of the combination of CpG-induced cytokines with lamivudine against hepatitis B virus replication in vitro. Antiviral therapy 2009;14:131-35.
    230. Pichlmair A, Reis e Sousa C. Innate Recognition of Viruses. Immunity2007;27(3):370-83.
    231. Müller S, Imler J-L. Dicing with viruses: microRNAs as antiviral factors. Immunity 2007;27(1):1-3.
    232. Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets KE, Pfeffer S, et al. Cellular cofactors affecting hepatitis C virus infection and replication. Proceedings of the National Academy of Sciences 2007;104(31):12884-89.
    233. H?ck J, Meister G. The argonaute protein family. Genome biology 2008;9:1-8.
    234. Aliyari R, Ding S-W. RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunological Reviews 2009;227:176-88.
    235. Zhu H, Shang X, Terada N, Liu C. STAT3 induces anti-hepatitis C viral activity in liver cells. Biochemical and Biophysical Research Communications 2004;324(2):518-28.
    236. Kato A, Kiyotani K, Kubota T, Yoshida T, Tashiro M, Nagai Y. Importance of the anti-interferon capacity of sendai virus C protein for pathogenicity in mice. The Journal of Virology 2007;81(7):3264-71.
    237. Durbin JE, Hackenmiller R, Simon MC, Levy DE. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 1996;84:443-50.
    238. Crotti A, Lusic M, Lupo R, Lievens PMJ, Liboi E, Chiara GD, et al. Naturally occurring C-terminally truncated STAT5 is a negative regulator of HIV-1 expression. Blood 2007;109(12):5380-89.
    239. Burdeinick-Kerr R, Griffin DE. Gamma interferon-dependent, noncytolytic clearance of sindbis virus infection from neurons in vitro. The Journal of Virology 2005;79(9):5374-85.
    240. Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, et al. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nature Immunology 2005;6:946–53.
    241. Waris G, Turkson J, Hassanein T, Siddiqui A. Hepatitis C Virus (HCV) constitutively activates STAT-3 via oxidative stress: role of STAT-3 in HCV replication. The Journal of Virology 2005;79(3):1569-80.
    242. Yi A-K, Tuetken R, Redford T, Waldschmidt M, Kirsch J, Krieg AM. CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactiveoxygen species. The Journal of Immunology 1998;160(10):4755-61.
    243. Choi J, Lee KJ, Zheng Y, Yamaga AK, Lai MMC, Ou J-h. Reactive oxygen species suppress hepatitis C virus RNA replication in human hepatoma cells. Hepatology 2004;39:81-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700