用户名: 密码: 验证码:
从线型到笼型分子的结构、相互作用和性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Theoretical Studies of the Structures, Interactions, and Properties of Molecules from Linelike to Cagelike Shapes
  • 作者:王芳芳
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2008
  • 导师:唐敖庆 ; 李志儒
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-04-01
摘要
本论文中对若干具有代表性的特殊相互作用体系进行了理论研究。主要包括以下四个方面:
     (1)首次建议了“superomolecule”(超原子间形成的分子)的新概念。设计并研究了含有Li3和N3两个超原子的皇冠形分子Li3-N3-Be,得到了超原子–超原子及超原子–原子间的成键模式。Li3-N3-Be是新型的金属-非金属-金属型夹心化合物,位于中间的N33–膨胀了两边金属子单元的价电子云从而导致了电子化物的特性。Li3-N3-Be是第一个超原子分子电子化物。此外,首次报道了子体系间相互作用产生芳香性的现象。提供了关于芳香性的新见解,建议了超原子间化学的新领域。
     (2)对于三角面相互作用体系,首次得到了超碱金属–超卤素化合物(Li_3)+(SH)– (SH = LiF_2, BeF_3, BF_4)的稳定结构。提出了新的五种超原子间成键模式。并发现Li3–SH具有碱金属化物或电子化物特征。丰富了超原子间化学的新知识。
     (3)对于线型相互作用体系,首次预言了由带正电荷原子直接相互作用并形成的特殊的卤键复合物FBrδ+…δ+BrF和氢键复合物FBrδ+…δ+HF可在气相中稳定存在,给出了新的分子间相互作用知识。
     (4)在新的非线性光学性质领域的研究中,设计并首次系统地研究了一系列笼型配体碱金属化物(M+@n6adz)M′– (M, M′= Li, Na, K; n = 2, 3)的静态第一超极化率(β0),得到了非线性光学分子的β0值最高纪录。为实验工作者设计新型高性能NLO材料提供了新思想。
Discovering novel species with unusual properties and revealing nature of new intermolecular interactions is always an exciting part of chemistry. In this thesis, theoretical studies were performed on the unusual structures and properies of various representative systems containing special interactions.
     (1) Superatoms have become basic units in chemistry and have recently attracted more and more attention. Research has shown that superatoms have synthetic utility, and represent potential building blocks for the assembly of novel, nanostructured materials. We proposed a new term“superomolecule”to define a cluster containing two or more superatom subunits connected to each other through chemical bonds (such as ionic bond and covalent bond).
     Using the CCSD(T)/aug-cc-pVDZ method, we designed and studied the characteristics of structure, aromaticity, superatom, stability, and interactions between subunits of a royal-crown shaped electride superomolecule Li3-N3-Be. This molecule is a charge-separated system and can be denoted as Li_3~(2+)N_3~3–Be+. As the MP2 energy for Li3++Be2+ is much higher by 181 kcal/mol than that for Li32++Be+, the Li32+ and Be+ are formed in the Li3-N3-Be. Like isolated N33–, the N33– in Li3-N3-Be has triple-fold aromaticity. Isolated Li32+ is nonaromatic because it has only one valence electron dissatisfying the 4n + 2 electron counting rule, whereas the Li32+ subunit of Li3-N3-Be has the aromaticity similar to Li3+, because it could share theπ-electron clouds of the neighboring triple-fold aromatic N33–. Therefore, a possible aromatic ring can be destroyed by the redox interaction between subunits, and a nonaromatic ring can also exhibit aromaticity by the electron sharing interactions. This is new knowledge on aromaticity.
     The Li3-N3-Be molecule with two aromatic subunits can be considered as a“superomolecule”containing two superatoms (N3 and Li3) and one atom (Be). The superomolecule is defined as a cluster containing two ro more superatom subunits connected to each other through chemical bonds (such as ionic bond and covalent bond), distinguishing from the known supermolecule and supramolecule.
     Li3-N3-Be is an ionic superomolecule, in which the superatom-superatom bond Li3-N3 and superatom-atom bond N3-Be are both typical ionic bonds with large bond energies of 147 and 88 kcal/mol, respectively. The bonding modes are staggered face to face between superatoms Li3 and N3, and face to point between superatom N3 and atom Be. As Li3-N3-Be has a metal-nonmetal-metal structure, the nonmetal anion in the middle repulses the electron clouds of metal parts and produces an excess electron. This phenomenon of the repulsion results in: (a) the HOMO energy level increased, (b) the electron cloud in HOMO distended, (c) the area of the negative NICS value extended, and (d) the VIE value lowered. So the superomolecule Li3-N3-Be is not only a new metal-nonmetal-metal type sandwich complex but also a new type electride, which comes from the interaction between the alkali superatom (Li3) and the nonmetal superatom (N3).
     This study on the structure, bonding modes, natures of interactions of the superomolecule enriches the knowledge of inter-superatom chemistry and provides a new means for experimentalists to design new molecular devices and nanomaterials.
     (2) For the interaction containing triangle-plane subunits, we chose Li3 as the superalkali, and LiF2, BeF3, and BF4 as the superhalogens to assemble a new class of superalkali-superhalogen compound. How will the two types of superatoms bond together? What will the interaction between the two superatoms be? Will there be any unexpected characteristics in these novel compounds? Studying and answering these questions makes good sense for superatom chemistry.
     Optimized structures, with all real frequencies, of superalkali superhalides (Li3)+(SH)– (SH = LiF2, BeF3, and BF4), are obtained, for the first time at the B3LYP/aug-cc-pVDZ and MP2/aug-cc-pVDZ computational levels. We found superalkali superhalides (Li3)+(SH)– have a variety of structures, based on which we proposed five new inter-superatom bonding modes: edge–face, edge–edge, face–face, face–edge, and staggered face–edge types. We found that Li3–SH bond energy is closely correlated to the superatomic bonding mode type: for isomers with different bonding modes, bond energy order is a > b > c > d > e. In addition, the large superatomic bond energies (121.72 - 170.61 kcal/mol) indicate the strong interaction between superalkali (Li3) and superhalogen (LiF2, BeF3, or BF4) and prove the stability of these Li3–SH species.
     The HOMO of each Li3–SH species is a doubly occupied, delocalizedσbonding orbital on a Li3 ring, that is, (Li3)+(SH)– compounds are aromatic. The electron clouds in these delocalized HOMOs are pushed out and distended by the (SH)– anions which results in the following properties: 1) The maximum negative NICS value (about–10 ppm) for Li3 subunit moves out from the center of Li3 ring, 2) The VIE values of these (Li3)+(SH)– compounds are low (4.604 - 6.052 eV), 3) Excess electrons are generated by the repulsion effect of (SH)–, so that these superalkali superhalides exhibit alkalide or electride characteristics.
     These results on structure, chemical bonding, and interaction between superatoms enriches knowledge on superatom chemistry, and is valuable for creating new research fields of chemistry and material science. (3) For linetype interaction system, using ab initio calculations, we predicted for the first time that the unusual halogen-bonded complex FBrδ+···δ+BrF and hydrogen-bonded complex FBrδ+···δ+HF formed by the directly interactions between two positively charged atoms of different polar molecules have negative interaction energies (respectively -2.73 and -1.36 kcal/mol) and thus can be stable in gas phase (without solvent effects and crystal packing). This discovery enriches new knewledge of intermolecular interaction.
     That one of the lone pairs of the Br(2) atom points to the positively charged Br(3) atom in FBrδ+···δ+BrF or H(3) atom in FBrδ+···δ+HF causes the formation of novel halogen bond or hydrogen bond between two positively charged atoms of different molecules. Thus, according to the chemically intuitive model, the attraction arising from the special halogen bond or hydrogen bond can exceed the electrostatic repulsion between two contact positively charged atoms, which stabilizes the complex. It is found that the correlation interaction energies are large negative values (-3.86 and -1.36 kcal/mol) representing attractive contributions and are dominant in the interaction energies. Therefore, from the point of view of physics, the dispersion contribution plays an important role in the stabilities of these seemingly repulsive systems. This work may encourage more attention to some unconventional intermolecular interactions because they may be not only used to produce novel structures with particular physical properties but also significant for chemical and physical process and material investigations.
     (4) Our group has proposed a new idea to design nonlinear optical (NLO) molecules, that is that doping alkali atoms into polar molecules to form loosely bound excess electrons can effectively lower the transitioin energies of crucial excited states and increase the hyperpolarizabilities.
     In this work, we designed and systematically studiedthe static first hyperpolarizabilities of 18 organic alkalides (M+@n6adz)M′– (M, M′= Li, Na, K; n = 2, 3) formed by the interactions of two alkali-metal atoms with cage adz complexants, for the first time, and obtained the recordβ0 value of NLO molecules.
     Alkalides (M+@n6adz)M′– with cage adz complexants exhibit large static first hyperpolarizabilities (β0 = 1725 - 318354 au). Especially, all potassides (M+@n6adz)K– have considerably largeβ0 values (1.6×105 - 3.2×105 au) much larger than theβ0 value (3.6×104 au) of the previously designed cuplike alkalide Li+(calix[4]pyrrole)K–. Thus the 26adz and 36adz cage complexants are better than the calix[4]pyrrole cuplike complexant in enhancing the first hyperpolarizability. Furthermore, theβ0 value of 3.2×105 au of (K+@26adz)K– is about 3.5 times larger than that of 8.6×104 au of the well-known organometallic system
     Ru(trans-4,4'-dibutylaminostyryl-2,2'-bipyridine)32+, and about two times larger than the record value of 1.7×105 au of a long dipolar donor-acceptor conjugated organic molecule. It shows that this type of alkalides could be a new member of the large family of nonlinear optical (NLO) materials with different types.
     Most (M+@26adz)M′– have largerβ0 values than the corresponding (M+@36adz)M′–, which shows that the smaller 26adz cage is better than the larger 36adz cage. Thus choosing a proper cage size is also an important factor to be considered in the search for alkalides with large NLO responses.
     The bromide (Li+@26adz)Br– exhibit very smallβ0 value, whereas the alkalides (M+@26adz)M′– and (M+@36adz)M′– with alkali-metal anion M′– have greatβ0 values up to 3.2×105 au. Obviously, the diffused excess electron on the alkali-metal anion plays the crucial role in the large first hyperpolarizability of alkalides (M+@26adz)M′– and (M+@36adz)M′–.
     For (M+@26adz)M′–, theβ0 value depends not only on the atomic number of the outside M′– but also on the atomic number of the inside M+, while for (M+@36adz)M′–, theβ0 value only depends on the atomic number of the outside M′–.
     This work exhibits the tunable NLO behavior of these new organic alkalides and provides a new means for experimentalists to design high-performance NLO materials.
引文
1. X. Li, A. E. Kuznetsov, H. F. Zhang, A. I. Boldyrev, and L.-S. Wang, Observation of All-Metal Aromatic Molecules, Science 2001, 291, 859-861.
    2. A. E. Kuznetsov, A. I. Boldyrev, X. Li, and L.-S. Wang, On the Aromaticity of Square Planar Ga42– and In42– in Gaseous NaGa4– and NaIn4– Clusters, J. Am. Chem. Soc. 2001, 123, 8825-8831.
    3. C.-G. Zhan, F. Zheng, and D. A. Dixon, Electron Affinities of Aln Clusters and Multiple-Fold Aromaticity of the Square Al42– Structure, J. Am. Chem. Soc. 2002, 124, 14795-14803.
    4. (a) A. N. Alexandrova and A. I. Boldyrev, σ-Aromaticity and σ-Antiaromaticity in Alkali Metal and Alkaline Earth Metal Small Clusters, J. Phys. Chem. A 2003, 107, 554-560. (b) J. Aihara, H. Kanno, and T. Ishida, Aromaticity of Planar Boron Clusters Confirmed, J. Am. Chem. Soc. 2005, 127, 13324–13330. (c) Q. S. Li and L. P. Cheng, Aromaticity of Square Planar N42- in the M2N4 (M = Li, Na, K, Rb, or Cs) Species, J. Phys. Chem. A 2003, 107, 2882. (d) Q. Jin, B. Jin, and W. G.. Xu, Aromaticity of the square P42– dianion in the P4M (M = Be, Mg, and Ca) and P4M2 (M = Li, Na, and K) clusters, Chem. Phys. Lett., 369, 398–403. (e) Q. S. Li and Q. Jin, Aromaticity of Planar B5– Anion in the MB5 (M = Li, Na, K, Rb, and Cs) and MB5+ (M = Be, Mg, Ca, and Sr) Clusters, J.Phys. Chem. A, 2004, 108, 855-860.
    5. (a) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. v. E. Hommes, Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe, J. Am. Chem. Soc. 1996, 118, 6317-6318. (b) P. v. R.
    Schleyer and H. Jiao, Pure Appl. Chem. 1996, 68, 209-218. (c) P. v. R. Schleyer, H. Jiao, N. J. v. E. Hommes, V. G. Malkin, and O. L. Malkina, An Evaluation of the Aromaticity of Inorganic Rings: Refined Evidence from Magnetic Properties, J. Am. Chem. Soc. 1997, 119, 12669-12670. (d) B. Goldfuss, P. v. R. Schleyer, and F. Hampel, Aromaticity in Silole Dianions: Structural, Energetic, and Magnetic Aspects, Organometallics 1996, 15, 1755-1757.
    6. J.-P.Connerade, Quasi-atom and Super-atom, Physica Scripta. 2003, 68,25.
    7. W. D. Knight et al., Electronic Shell Structure and Abundances of Sodium Clusters, Phys. Rev. Lett. 1984, 52, 2141.
    8. W. Ekardt, Work function of small metal particles: Self-consistent spherical jellium-background model, Phys. Rev. B 1984, 29, 1558.
    9. T. F. Fassler and S. D. Hoffmann, Endohedral Zintl Ions: Intermetalloid Clusters, Angew. Chem .Int. Ed. 2004, 43, 6242.
    10. S. Neukermans, E. Janssens, Z. F. Chen, R. E. Silverans, P. v. R. Schleyer, and P. Lievens, Extremely Stable Metal-Encapsulated AlPb10+and AlPb12+ Clusters: Mass-Spectrometric Discovery and Density Functional Theory Study, Phys. Rev. Lett. 2004, 92, 163401-1.
    11. J.-J. Zhao and R.-H, Xie, Density functional Study of onion-skin-like [As@Ni12As20]3- and [Sb@Pd12Sb20]3- cluster ions, Chem. Phys. Lett. 2004, 396, 161.
    12. V. Kumar and Y. Kawazoe, Metal-doped magic clusters of Si, Ge, and Sn: The finding of a magnetic superatom, Appl. Phys. Lett. 2003, 83, 2677-2679.
    13. X. Y. Ren and Z. Y. Liu, Structural and electronic properties of S-doped fullerene C58: Where is the S atom situated? J. Chem. Phys. 2005, 122, 034306.
    14. Y. N. Makurin, A. A. Sofronov, A. I. Gusev, and A. L. Ivanovsky, Electronic Structure and Chemical Stabilization of C28 Fullerene, Chem. Phys. 2001, 270, 293.
    15. D. E. Bergeron, A. W. Castleman Jr., T. Morisato, and S. N. Khanna, Formation of Al13I-: Evidence for the Superhalogen Character of Al13, Science 2004,304, 84.
    16. D. Moran, F. Stahl, E. D. Jemmis, H. F. Schaefer, and P. v. R. Schleyer, Structures, stabilities, and ionization potentials of dodecahedrane endohedral complexes, J. Phys. Chem. A 2002, 106, 5144.
    17. P. Lievens, P. Thoen, S. Bouchaert, W. Bouwen, F. Vanhoutte, H. Weidele, R. E. Silverans, A. Navarro-Vazquez, and P. v. R. Schleyer, Ionization Potentials of LinO (2    18. A. N. Alexandrova and A. I. Boldyrev. σ-Aromaticity and σ-Antiaromaticity in Alkali Metal and Alkaline Earth Metal Small Clusters, J. Phys. Chem. A 2003, 107, 554-560.
    19. X.-B. Wang, C.-F. Ding, L. S. Wang, A. I. Boldyrev, and J. Simons, First experimental photoelectron spectra of superhalogens and their theoretical interpretations, J. Chem. Phys. 1999, 110, 4763.
    20. X.-B. Wang and L. S. Wang, Experimental Observation of a Very High Second Electron Affinity for ZrF6 from Photodetachment of Gaseous ZrF62- Doubly Charged Anions, J. Phys. Chem. A 2000, 104, 4429.
    21. D. E. Bergeron, P. J. Roach, A. W. Castleman, N. Jones, and S. N. Khanna, Al cluster superatoms as halogens in polyhalides and as alkaline earths in iodide salts, Science 2005, 307, 231-235.
    22. J. M. Mercero and J. M. Ugalde, Sandwich-Like Complexes Based on 'All-Metal' (Al42-) Aromatic Compounds, J. Am. Chem. Soc. 2004, 126, 3380-3381.
    23. Q. S. Li, J. Guan, Theoretical Study of Ni(N4)2, Ni(C4H4)2 and Ni(C2O2)2 Complexes, J. Phys. Chem. A 2003, 107, 8587-8593.
    24. (a) D. A. Dougherty, Cation-π Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp, Cation-π Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp, Science 1996, 271, 163. (b) D. A. Dougherty and D. A. Stauffer, Acetylcholine binding by a synthetic receptor: implications for biological recognition, Science 1990, 250, 1558. (c) J. B. O. Mitchell, C. L. Nandi, S. Ali, J. K. McDonald, J. M. Thornton, S. L. Price, and J. Singh, Amino/aromatic interactions, Nature 1993, 366, 413. (d) T. M. Fong, M. A. Cascieri, H. Yu, A. Bansal, C. Swain, and C. D. Strader, Amino?aromatic interaction between histidine 197 of the neurokinin-1 receptor and CP 96345, Nature 1993, 362, 350. (e) B. Honig and A. Nicholls, Classical electrostatics in biology and chemistry, Science 1995, 268, 1144.
    25. (a) K. S. Kim, M. Dupuis, G. C. Lie and E. Clementi, Revisiting small clusters of water molecules, Chem. Phys. Lett. 1986, 131, 451. (b) K. S. Kim, I. Park, S. Lee, K. Cho, J. Y. Lee, J. Kim and J. D. Joannopoulos, The Nature of a Wet Electron, Phys. Rev. Lett. 1996, 76, 956. (c) K. S. Kim, S. Lee, J. Kim, and J. Y. Lee, Molecular Cluster Bowl To Enclose a Single Electron, J. Am. Chem. Soc. 1997, 119, 9329. (d) S. Lee, J. Kim, S. J. Lee, and K. S. Kim, Novel Structures for the Excess Electron State of the Water Hexamer and the Interaction Forces Governing the Structures, Phys. Rev. Lett. 1997, 79, 2038. (e) J. S. Cho, H. Hwang, J. Park, K. S. Oh, and K. S. Kim, Starands vs Ketonands: Ab Initio Study, J. Am. Chem. Soc. 1996, 118, 485. (f) K. S. Kim, C. Cui, and S. J. J. Cho, Phys. Chem. 1998, 102, 461.
    26. (a) J.-M. Lehn, Supramolecular chemistry, Science 1993, 260, 1762. (b) J.-M. Lehn, Supramolecular Chemistry - Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture), Angew. Chem. Int. Ed. Engl. 1998, 27, 89.
    27. D. Philip and J. F. Stoddart, Self-Assembly in Natural and Unnatural Systems, Angew. Chem. Int. Ed. Engl. 1996, 35, 1154.
    28. (a) W. Klemperer, Intermolecular Interactions, Science 257, 887 (1992). (b) M. J. Elrod and R. J. Saykally, Many-Body Effects in Intermolecular Forces, Chem. Rev. 1994, 94, 1975. (c) T. S. Zwier, Annu. Rev. Phys. Chem. 1996, 47, 205.
    29. M. J. Calhorda, Weak hydrogen bonds: theoretical studies, Chem. Commun. 2000, 801.
    30. K. S. Kim, P. Tarakeshwar, and J. Y. Lee, Molecular Clusters of π-Systems: Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies, Chem. Rev. 2000, 100, 4145.
    31. R. Custelcean and J. E. Jackson, Dihydrogen Bonding: Structures, Energetics, and Dynamics, Chem. Rev. 2001,101, 1963.
    32. D. Wu, Z.-R. Li, and X.-Y. Hao, An ab initio theoretical prediction: An antiaromatic ring π-dihydrogen bond accompanied by two secondary interactions in a "wheel with a pair of pedals" shaped complex FH…C4H4…HF, J. Chem. Phys. 2004, 120, 1330.
    33. K. T. No, K.-Y. Nam, and H. A. Scheraga, Stability of Like and Oppositely Charged Organic Ion Pairs in Aqueous Solution, J. Am. Chem. Soc. 1997, 119, 12917.
    34. L. S. Jr. Smith and D. L. Wertz, Solute structuring in aqueous lanthanum(III) chloride solutions, J. Am. Chem. Soc. 1975, 97, 2365.
    35. A. Magalhaes, B. Maigret, J. Hoflack, J. N. F. Gomes, and H. A. Scheraga, J. Protein Chem. 1994, 13, 195.
    36. M. Y. Redko, R. H. Huang, J. E. Jackson, J. F. Harrison, and J. L. Dye, Barium Azacryptand Sodide, the First Alkalide with an Alkaline Earth Cation, Also Contains a Novel Dimer, (Na2)2-, J. Am. Chem. Soc. 2002, 125, 2259.
    37. T. Sleator and R. Tycko, Observation of individual organic molecules at a crystal surface with use of a scanning tunneling microscope, Phys. Rev. Lett. 1988, 60, 1418.
    38. J. Gao, S. Boudon, and G. Wipff, Ab initio and crystal structure analysis of like-charged ion pairs, J. Am. Chem. Soc. 1991, 113, 9610.
    39. E. Buisine, K. de Villiers, T. J. Egan, and C. Biot, Solvent-Induced Effects: Self-Association of Positively Charged π-Systems, J. Am. Chem. Soc. 2006, 128, 12122.
    40. D. Chopra, T. S. Cameron, J. D. Ferrara, and T. N. G. Row, Pointers toward the Occurrence of C-F···F-C Interaction: Experimental Charge Density Analysis of 1-(4-Fluorophenyl)-3,6,6-trimethyl-2-phenyl-1,5,6,7 -tetrahydro-4H-indol-4-one and 1-(4-Fluorophenyl)-6-methoxy-2-phenyl -1,2,3,4-tetrahydroisoquinoline, J. Phys. Chem. A 2006, 110, 10465.
    41. A. Bach, D. Lentz, and P. Luger, Charge Density and Topological Analysis of Pentafluorobenzoic Acid, J. Phys. Chem. A 2001, 105, 7405.
    42. A. R. Choudhury and T. N. Guru Row, Organic fluorine as crystal engineering tool: Evidence from packing features in fluorine substituted isoquinolines, CrystEngComm 2006, 8, 265.
    43. R.-Y. Li, Z.-R. Li, D. Wu, Y. Li, W. Chen, and C.-C. Sun, Study of π-Halogen Bonds in Complexes C2H4-nFn-ClF (n = 0-2), J. Phys. Chem. A 2005, 109, 2608.
    44. 孙慷, 张福学主编,<<压电学>>,上册,第十二章,国防工业出 版社,北京,1985。
    45. P. A. Franken, A. E. Hill, et al., Generation of Optical Harmonics, Phys. Rev. Lett. 1961, 7, 118.
    46. C.-T. Chen and G. -Z. Liu, Ann. Rev. Mater. Sci. 1986, 16, 203.
    47. D. J. Williams, ed., Nonlinear Optical Prooerties of Organic and Polymeric Materials, ACS Symp. Ser., No. 233, Washington D. C., 1983.
    48. D. S. Chemla, J. Zyss, ed., Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1 and 2, Academic Press, Orlando, 1987.
    49. C. C. Frazier, M. A. Harrey, et al., Second-harmonic generation in transition-metal-organic compounds, J. Phys. Chem. 1986, 90, 5703.
    50. A. D. Buckingham, Adv. Chem. Phys. 1967, 12, 107.
    51. S. R. Marder, J. W. Perry, G. Bourhill, Ch. B. Gorman, B. G. Tiemann, and K. Mansour, Relation Between Bond-Length Alternation and Second Electronic Hyperpolarizability of Conjugated Organic Molecules, Science (Washington, DC) 1993, 261, 186.
    52. S. R. Marder, L.-T. Cheng, B. G. Tiemann, A. C. Griedli, M. Blanchard-Desce, J. W. Perry, and J. Skindh?j, Large First Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond Length Alternation and Aromaticity, Science (Washington, DC) 1994, 263, 511.
    53. M. Blanchard-Desce, V. Alain, P. V. Bedworth, S. R. Marder, A. Fort, C. Runser, M. Barzoukas, S. Lebus, and R. Wortmann, Large Quadratic Hyperpolarizabilities with Donor-Acceptor Polyenes Exhibiting Optimum Bond Length Alternation: Correlation Between Structure and Hyperpolarizability, Chem. –Eur. J. 1997, 3, 1091.
    54. J. L. Oudar and D. S. Chemla, Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment, J. Chem. Phys., 1977, 66, 2664.
    55. B. F. Levine, and C. G. Bethea, Second and third order hyperpolarizabilities of organic molecules, J. Chem. Phys. 1975, 63, 2666.
    56. B. F. Levine, and C. G. Bethea, Appl. Phys. Lett. 1974, 24, 445.
    57. J. L. Oudar, Optical nonlinearities of conjugated molecules, Stilbene derivatives and highly polar aromatic compounds, J. Chem. Phys. 1977, 67, 446.
    58. L. –T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Sprangler, Experimental investigations of organic molecular nonlinearoptical polarizabilities. 2. A study of conjugation dependences, J. Phys. Chem. 1991, 95, 10643.
    59. J. O. Morley, V. J. Docherty, and D. Pugh, J. Chem. Soc. Perkin. Trans. 1987, 2, 1351.
    60. R. A. Huijts and G. L. J. Hesselink, Length dependence of the second-order polarizability in conjugated organic molecules, Chem. Phys. Lett. 1989, 156, 209.
    61. M. Barzoukas, M. Blanchard-Desce, D. Josse, and J. –M. Lehn, Very large quadratic nonlinearities in solution of two push-pull polyene series: Effect of the conjugation length and of the end groups, Chem. Phys. 1989, 133, 323.
    62. H. Ikeda, Y. Kabawe, T. Sakai, and K. Kawasaki, Second harmonic generation in nonbenzenoid aromatics, Chem. Phys. Lett. 1989, 157, 576.
    63. C. Dehu, F. Meyers, E. Hendrickx, K. Clays, A. Persoons, S. R. Marder, and J. –L. Bredas, Solvent Effects on the Second-Order Nonlinear Optical Response of π-Conjugated Molecules: A Combined Evaluation through Self-Consistent Reaction Field Calculations and Hyper-Rayleigh Scattering Measurements, J. Am. Chem. Soc. 1995, 117, 10127.
    64. S. R. Marder, Ch. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J. –L. Bredas, and B. M. Pierce, A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes, Science (Washington, DC) 1994, 265, 632.
    65. G. Bourhill, J. –L. Bredas, L. –T. Cheng, S. R. Marder, F. Meyers, J. W. Perry, and B. G. Tiemann, Experimental Demonstration of the Dependence of the First Hyperpolarizability of Donor-Acceptor-Substituted Polyenes on the Ground-State Polarization and Bond Length Alternation, J. Am. Chem. Soc. 1994, 116, 2619.
    66. K. Mohanalingam, P. Chandra-Ray, and P. K. Das, Synth. Metals 1996, 82, 47.
    67. I. –Y. Wu, J. T. Lin, J. Luo, S. –S. Sun, C. –S. Li, K. J. Lin, C. Tsai, C. –C. Hsu, and J. –L. Lin, Syntheses and Reactivity of Ruthenium σ–Pyridylacetylides, Organometallics 1997, 16, 2038.
    68. W. Wenseleers, E. Goovaerts, A. Bouwen, M. H. Garcia, M. P. Robalo, P. J. Mendes, and A. R. Dias, Dissertation Abstracts Internat., 2000, B60, 4038.
    69. I. R. Whittall, M. G. Humphrey, A. Persoons, and S. Houbrechts, Organometallic Complexes for Nonlinear Optics. 3.1 Molecular Quadratic Hyperpolarizabilities of Ene-, Imine-, and Azo-Linked Ruthenium -Acetylides: X-ray Crystal Structure of Ru((E)-4,4'-C≡CC6H4CH =CHC6H4NO2)(PPh3)2(η-C5H5), Organometallics 1996, 15, 1935.
    70. S. Houbrechts, K. Clays, A. Persoons, V. Cadierno, M. P. Gamasa, J. Gimeno, I. R. Whittall, and M. G. Humphrey, Proc. SPIE-Int. Soc. Opt. Eng. 1996, 98, 2852.
    71. W. Wenseleers, A. W. Gerbrandij, E. Goovaerts, M. H. Garcia, M. P. Robalo, P. J. Mendes, J. C. Rodrigues, and A. R. Dias, J. Mater. Chem. 1998, 8, 925.
    72. L. T. Cheng, W. Tam, and F. Eaton, Quadratic hyperpolarizabilities of Group 6A metal carbonyl complexes, Organometallics 1990, 9, 2856.
    73. V. Cadierno, S. Conejero, M. Pilar Gamasa, J. Gimeno, I. Asselberghs, S. Houbrechts, K. Clays, A. Persoons, J.Borge, and S. Garcia-Granda, Synthesis and Second-Order Nonlinear Optical Properties of Donor-Acceptor σ-Alkynyl and σ-Enynyl Indenylruthenium(II) Complexes, X-ray Crystal Structures of [Ru{C≡CCH=C(C6H4NO2-3)2}(η5 -C9H7)(PPh3)2] and (EE)-[Ru{C≡C(CH=CH)2-C6H4NO2-4}(η5 -C9H7)(PPh3)2], Organometallics 1999, 18, 582.
    74. I. S. Lee, H. Seo, and Y. K. Chung, Preparation of (Thiophene)manganese Tricarbonyl Cations for Nonlinear Optics, Organometallics 1999, 18, 1091.
    75. E. Licandro, S. Maiorana, A. Papagni, P. Hellier, L. Capella, A. Persoons, and S. Houbrechts, J. Organomet. Chem. 1999, 583, 111.
    76. Y. Li, Z. R. Li, D. Wu, R. Y. Li, X. Y. Hao, and C. C. Sun, An ab Initio Prediction of the Extraordinary Static First Hyperpolarizability for the Electron-Solvated Cluster (FH)2{e}(HF), J. Phys. Chem. B 2004, 108, 3145-3148.
    77. W. Chen, Z. R. Li, D. Wu, F. L. Gu, X. Y. Hao, B. Q. Wang, R. J. Li, and C. C. Sun, The static polarizability and first hyperpolarizability of the water trimer anion: Ab initio study, J. Chem. Phys. 2004, 121, 10489-10494.
    78. (a) W. Chen, Z. R. Li, D. Wu, R. Y. Li, and C. C. Sun, Theoretical Investigation of the Large Nonlinear Optical Properties of (HCN)n Clusters with Li Atom, J. Phys. Chem. B 2005, 109, 601-608. (b) W. Chen, Z. R. Li, D. Wu, Y. Li, and C. C. Sun, Inverse Sodium Hydride: Density Functional Theory Study of the Large Nonlinear Optical Properties, J. Phys. Chem. A 2005, 109, 2920-2924. (c) W. Chen, Z. R. Li, D. Wu, Y. Li, C. C. Sun, and F. L. Gu, The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole, J. Am. Chem. Soc. 2005, 127, 10977-10981. (d) W. Chen, Z. R. Li, D. Wu, Y. Li, C. C. Sun, F. L. Gu, and Y. Aoki. Nonlinear Optical Properties of Alkalides Li+(calix[4]pyrrole)M- (M = Li, Na, and K): Alkali Anion Atomic Number Dependence, J. A. Chem. Soc. 2006, 128, 1072-1073. (e) Y. Q. Jing, Z. R. Li, D. Wu, Y. Li, B. Q. Wang, F. L. Gu, and Y. Aoki, Effect of the Complexant Shape on the Large First Hyperpolarizability of Alkalides Li+(NH3)4M–, ChemPhysChem. 2006, 7, 1759-1763. (f) Y. Q. Jing, Z. R. Li, D. Wu, Y. Li, and B. Q. Wang, What Is the Role of the Complexant in the Large First Hyperpolarizability of Sodide Systems Li(NH3)nNa (n = 1-4)? J. Phys. Chem. B. 2006, 110, 11725-11729. (g) H. L. Xu, Z. R. Li, D. Wu, B. Q. Wang, Y. Li, F. L. Gu, and Y. Aoki, Structures and Large NLO Responses of New Electrides: Li-Doped Fluorocarbon Chain, J. Am. Chem. Soc. 2007, 129, 2967-2970.
    79. (a) M. J. Wagner and J. L. Dye, In Molecular Recognition: Receptors for Cationic Guests, Gokel, G. W., Ed. Pergamon: Oxford, UK, 1996, Vol. 1, pp 477-510. (b) J. Kim, A. S. Ichimura, R. H. Huang, M. Redko, R. C. Phillips, J. E. Jackson, and J. L. Dye, Crystalline Salts of Na- and K- (Alkalides) that Are Stable at Room Temperature, J. Am. Chem. Soc. 1999, 121, 10666-10667. (c) J. L. Dye, Anionic electrons in electrides, Nature 1993, 365, 10-11. (d) J. L. Dye, M. J. Wagner, G. Overney, R. H. Huang, and D. Tomanek, Cavities and Channels in Electrides, J. Am. Chem. Soc. 1996, 118, 7329-7336. (e) J. L. Dye, Electrides: From 1D Heisenberg Chains to 2D Pseudo-Metals, Inorg. Chem. 1997, 36, 3816-3826. (f) V. I. Srdanov, G. D. Stacky, E. Lippma, and G. Engelhardt, Evidence for an Antiferromagnetic Transition in a Zeolite-Supported Cubic Lattice of F Centers, Phys. Rev. Lett. 1998. 80, 2449-2452. (g) P. P. Edwards, P. A. Anderson, and J. M. Tomas, Dissolved Alkali Metals in Zeolites, Acc. Chem. Res. 1996, 29, 23-29. (h) A. S. Ichimura and J. L. Dye, Toward Inorganic Electrides, J. Am. Chem. Soc. 2002, 124, 1170-1171. (i) S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, M. Hirano, I. Tanaka, and H. Hosono, High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e-), Science 2003, 301, 626-629. (j) J. L. Dye, Electrons as Anions, Science 2003, 301, 607-608.
    80. J. Springborg, Adamanzanes—bi- and tricyclic tetraamines and their coordination compounds, Dalton Trans. 2003, 1653-1665.
    1. M. Bor and R. Oppenheimer, Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84, 457.
    2. (a) W. J. Hehre, L. Radom, P. v. R. Schleyer, et al., Ab Initio Molecular Orbital Theory, John Wiley &Sons, Inc., 1986. (b) D. A. McQuarrie, Quantum Chemistry University Science Books: Mill Vally. CA. 1983.
    3. (a) 唐敖庆, 杨忠志, 李前树, 量子化学, 北京, 科学出版社, 1982. (b) 徐光宪, 黎乐民, 王德民, 量子化学基本原理和从头计算法, 北京, 科学出版社, 1985.
    4. P. O. Lowdin, Correlation Problem in Many-Electron Quantum Mechanics, Adv. Chem. Phys. 1959, 2, 207.
    5. J. A. Pople, R. Seeger, R. Krishnan, Variational Configuration Interaction Methods and Comparison with Perturbation Theory, Int. J. Quant. Chem. 1977, 11, 149.
    6. J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, Toward a Systematic Molecular Orbital Theory for Excited States, J. Phys. Chem. 1992, 96, 135.
    7. R. Krishnan, H. B. Schlegel, and J. A. Pople, Derivate Studies in Configuration Interaction Theory, J. Chem. Phys. 1980, 72, 4654.
    8. B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, and H. F. Schaefer, Analytic Gradient from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach, J. Chem. Phys. 1980, 72, 4652 .
    9. E. A. Salter, G. W. Trucks, and R. J. Bartlett, Analytic Energy Derivatives in Many-Body Methods I. First Derivatives, J. Chem. Phys. 1989, 90, 1752.
    10. K. Raghavachari and J. A. Pople, Calculation of one-electron properties using limited configuration interaction techniques, Int. J. Quant. Chem. 1981, 20, 1067.
    11. J. A. Pople, M. Head-Gordon, and K. Raghavachari, Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies, J. Chem. Phys. 1987, 87, 5968.
    12. J. A. Cioslowski, New Robust Algorithm for Fully Automated Determination of Attactor Interaction Lines in Moleclues, Chem. Phys. Lett. 1994, 219, 151.
    13. H. B. Schlegel and M. A. Robb, MCSCF Gradient Optimization of the H2CO→H2+CO Transition Structure, Chem. Phys. Lett. 1982, 93, 43.
    14. R. H. E. Eade and M. A. Robb, Direct Minimization in MCSCF Theory. The Quasi-Newton Method, Chem. Phys. Lett. 1981, 83, 362.
    15. D. Hegarty and M. A. Robb, Application of Unitary Group Methods to Configuration Interaction Calculations, Mol. Phys. 1979, 38, 1795.
    16. P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B,1964, 136, 864.
    17. W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A, 1965, 140, 1133.
    18. J. C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: New York, 1974.
    19. D. R. Salahub and M. C. eds. Zerner, The Challenge of d and f Electrons ACS: Washington, D.C., 1989.
    20. R. G. Parr and W. Yang, Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989.
    21. J. A. Pople, P. M. W. Gill, and B. G. Johnson, Kohn-Sham density-functional theory within a finite basis set, Chem. Phys. Lett. 1992, 199, 557.
    22. B. G. Johnson and M. J. Frisch, An implementation of analytic second derivatives of the gradient-corrected density functional energy, J. Chem. Phys. 1994, 100, 7429.
    23. J. K. Labanowski and J. W. eds. Andzelm, Density Functional Methods in Chemistry, Springer-Verlag: New York, 1991.
    24. K. Fukui, Variational Principles in a Chemical Reaction, Int. J. Quantum. Chem. 1981, 15, 633
    25. K. Fukui, A. Tachibana and K. Yamashita, Toward Chemodynamics, Int. J. Quantum. Chem. 1981, 15, 621.
    26. B. Wang, H. Hou, and Y. Gu, Ab Initio/Density Functional Theory and Multichannel RRKM Calculations for the CH3O + CO Reaction, J. Phys. Chem. A 1999, 103, 8021.
    27. J. B. Foresman, M. Head-Gordon, and J. A.Pople, Toward a systematic molecular orbital theory for excited states, J. Phys. Chem. 1992, 96, 135.
    28. K. Raghavachari and J. A. Pople, Calculation of one-electron properties using limited configuration interaction techniques, Int. J. Quant. Chem. 1981, 20, 1067.
    29. (a) H. –X. Zhang and C. –M. Che, Chem. Eur. J. 2001, 7, 4887. (b) Q. –J. Pan and H. –X. Zhang, Organometallics 2004, 23, 5198. (c) Q. –J. Pan and H.–X. Zhang, J. Phys. Chem. A 2004, 108, 3650. (d) Q. –J. Pan and H. –X. Zhang, Inorg. Chem. 2004, 43, 593. (e) Q. –J. Pan and H. –X. Zhang, Chem. Phys. Lett. 2004, 394, 155. (f) Q. –J. Pan and H. –X. Zhang, J. Mol. Struct. (Theochem) 2004, 671, 53. (g) Q. –J. Pan and H. –X. Zhang, J. Chem. Phys. 2003, 119, 4346. (h) Q. –J. Pan and H. –X. Zhang, Eur. J. Inorg. Chem. 2003, 4202. (i) 潘清江,张红星 高等学校化学学报 2003, 24, 310.
    30. (a) J. –F. Wang, J. –K. Feng, A. –M. Ren, X. –D. Liu, Y. –G. Ma, P. Lu, and H. –X. Zhang, Macromolecules 2004, 37, 3451. (b) Y. Liao, J. –K. Feng, L. Yang, A. –M. Ren, and H. –X. Zhang, Organometallics 2005, 24,
    385. (c) L. Yang, A. –M. Ren, J. –K. Feng, X. –J. Liu, Y. –G. Ma, M. Zhang, X. –D. Liu, J. C. Shen, and H. –X. Zhang, J. Phys. Chem. A 2004,
    108, 6797. (d) L. Yang, A. –M. Ren, J. –K. Feng, X. –D. Liu, Y. –G. Ma, and H. –X. Zhang, Inorg. Chem. 2004, 43, 5961.
    31. S. J. A. van Gisbergen, J. A. Groeneveld, A. Rosa, J. G. Snijders, and E. J. Baerends, Excitation Energies for Transition Metal Compounds from Time-Dependent Density Functional Theory. Applications to MnO4-, Ni(CO)4, and Mn2(CO)10, J. Phys. Chem. A 1999, 103, 6835.
    32. M. D. Halls and H. B. Schlegel, Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III), Chem. Mater. 2001, 13, 2632.
    33. J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd edition, Gaussian, Inc., Pittsburgh, PA, 1996.
    34. I. Frank, Excited State Molecular Dynamics, Invited Review, SIMU Newsletter, 2001, 3, 63–77.
    35. 王一波 中国科学 B 辑 1995,25,1016.
    36. S. F. Boyns and F. Bermardi, Mol. Phy. 1970, 19, 553.
    37. D. E. Woon, Benchmark calculations with correlated molecular wave functions. V. The determination of accurate ab initio intermolecular potentials for He2, Ne2, and Ar2, J. Chem. Phys. 1994, 100, 2838.
    38. F. M. Tao and Y. K. Pan, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 1985, 82, 270.
    39. F. M. Tao and Y. K. Pan, M?ller–Plesset perturbation investigation of the He2 potential and the role of midbond basis functions, J. Chem. Phys. 1992, 97, 4989.
    40. M. J. Panich, NMR study of the F---Hcdots, three dots, centeredF hydrogen bond. Relation between hydrogen atom position and F---Hcdots, three dots, centeredF bond length, Chem. Phys. 1995, 196, 511.
    41. F. M. Tao, Bond functions, basis set superposition errors and other practical issues with ab initio calculations of intermolecular potentials, Int. Rev. in Phys. Chem. 2001, 20, 617-643.
    42. 孙延波,吴迪,李志儒,孙家钟,键函数对 ArCl-相互作用势理论计算结果的影响,Chem. J. Chin. Univ. (高等学校化学学报) 2002, 23, 121.
    43. Z. R. Li, F. M. Tao, and Y. K. Pan, Study of locally dense and locally saturated basis sets in localized molecular orbital calculations of nuclear shielding: Ab initio LORG calculations for 13C and 17O in norbornenone, Int. J. Quant. Chem. 1996, 57, 202.
    44. F. M. Tao, Z. R. Li, and Y. K. Pan, An accurate ab initio potential energy surface of He---H2O, Chem. Phys. Lett. 1996, 255, 179.
     1. X. Li, A. E. Kuznetsov, H. F. Zhang, A. I. Boldyrev, L.-S. Wang, Observation of All-Metal Aromatic Molecules, Science 2001, 291, 859-861.
    2. C.-G. Zhan, F. Zheng, and D. A. Dixon, Electron Affinities of Aln Clusters and Multiple-Fold Aromaticity of the Square Al42– Structure, J. Am. Chem. Soc. 2002, 124, 14795-14803.
    3. (a) A. N. Alexandrova and A. I. Boldyrev, σ-Aromaticity and σ-Antiaromaticity in Alkali Metal and Alkaline Earth Metal Small Clusters, J. Phys. Chem. A 2003, 107, 554-560. (b) J. Aihara, H. Kanno, and T. Ishida, Aromaticity of Planar Boron Clusters Confirmed, J. Am. Chem. Soc. 2005, 127, 13324–13330. (c) Q. S. Li and L. P. Cheng, Aromaticity of Square Planar N42- in the M2N4 (M = Li, Na, K, Rb, or Cs) Species, J. Phys. Chem. A 2003, 107, 2882.
    4. (a) W. D. Knight et al., Electronic Shell Structure and Abundances of Sodium Clusters, Phys. Rev. Lett. 1984, 52, 2141. (b) W. Ekardt, Work function of small metal particles: Self-consistent spherical jellium-background model, Phys. Rev. B 1984, 29, 1558. (c) R. E. Leuchtner, A. C. Harms, A. W. Jr. Castleman, Thermal metal cluster anion reactions: Behavior of aluminum clusters with oxygen, J. Chem. Phys. 1989, 91, 2753-2754. (d) A. C. Harms, R. E. Leuchtner, S. W. Sigsworth, and A. W. Jr. Castleman, Gas-phase reactivity of metal alloy clusters, J. Am. Chem. Soc. 1990, 112, 5673-5674. (e) B. K. Rao and P. Jena, Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis, J. Chem. Phys. 1999, 111, 1890-1904. (f) T. F. Fassler and S. D. Hoffmann, Endohedral Zintl Ions:Intermetalloid Clusters, Angew. Chem .Int. Ed., 2004, 43, 6242. (g) S. Neukermans, E. Janssens, Z. F. Chen, R. E. Silverans, P. v. R. Schleyer, and P. Lievens, Extremely Stable Metal-Encapsulated AlPb10+and AlPb12+ Clusters: Mass-Spectrometric Discovery and Density Functional Theory Study, Phys. Rev. Lett., 2004, 92, 163401-1. (h) J.-J. Zhao and R.-H Xie, Density functional Study of onion-skin-like [As@Ni12As20]3- and [Sb@Pd12Sb20]3- cluster ions, Chem. Phys. Lett. 2004, 396, 161. (i) V. Kumar and Y. Kawazoe, Metal-doped magic clusters of Si, Ge, and Sn: The finding of a magnetic superatom, Appl. Phys. Lett. 2003, 83, 2677-2679. (j) X. Y. Ren and Z. Y. Liu, Structural and electronic properties of S-doped fullerene C58: Where is the S atom situated? J. Chem. Phys. 2005, 122, 034306. (k) D. E. Jr. Bergeron, A. W. Castleman, T. Morisato, and S. N. Khanna, Formation of Al13I–: Evidence for the Superhalogen Character of Al13, Science 2004, 304, 84-87.
    5. J. M. Mercero and J. M. Ugalde, Sandwich-Like Complexes Based on 'All-Metal' (Al42–) Aromatic Compounds, J. Am. Chem. Soc. 2004, 126, 3380-3381.
    6. Q.-S. Li and J. Guan, Theoretical Study of Ni(N4)2, Ni(C4H4)2, and Ni(C2O2)2 Complexes, J. Phys. Chem. A 2003, 107, 8584-8593.
    7. L. Gagliardi and P. Pyykko, η5-N5--Metal-η7-N73-: A New Class of Compounds, J. Phys. Chem. A 2002, 106, 4690-4694.
    8. J. L. Dye, Electrons as Anions, Science 2003, 301, 607.
    9. S.Matsuishi, et al, High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e–), Science 2003, 301, 626.
    10. V. Petkov, S. J. L. Billinge, T. Vogt, A. S. Ichimura, and J. L. Dye, Structure of Intercalated Cs in Zeolite ITQ-4: An Array of Metal Ions and Correlated Electrons Confined in a Pseudo-1D Nanoporous Host, Phys. Rev. Lett. 2002, 89, 075502.
    11. A. S. Ichimura, J. L. Dye, M. A. Camblor, and L. A. Villaecusa, Toward Inorganic Electrides, J.Am. Chem. Soc. 2002, 124, 1170.
    12. Z.-Y. Li, J.-L. Yang, J.G. Hou, and Q.-S. Zhu, Inorganic Electride: Theoretical Study on Structural and Electronic Properties, J. Am. Chem. Soc. 2003, 125, 6050.
    13. W. Chen, Z. R. Li, D. Wu, R. Y. Li, and C. C. Sun, Theoretical Investigation of the Large Nonlinear Optical Properties of (HCN)n Clusters with Li Atom, J. Phys. Chem. B 2005, 109, 601-608.
    14. W. Chen, Z. R. Li, D. Wu, Y. Li, C. C. Sun, and F. L. Gu, The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole, J. Am. Chem. Soc. 2005, 127, 10977-10981.
    15. C. M?ller and M. S. Plesset, Note on an Approximation Treatment for Many-Electron Systems, Phys. ReV. 1934, 46, 618-622.
    16. (a) J. Cizek, Adv. Chem. Phys. 1969, 14, 35-89. (b) G. D. III Purvis and R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910-1918. (c) G. E. Scuseria, C. L. Janssen, and H. F. III Schaefer, J. Chem. Phys. 1988, 89, 7382-7387.
    17. (a) A. E. Reed, R. B. Weinstock, and F. J. Weinhold, Chem. Phys. 1985, 83, 735-746. (b) J. E. Carpenter, and F. Weinhold, J. Mol. Struct. (THEOCHEM) 1988, 169, 41-62.
    18. Atoms in Molecules- A Quantum Theory, R. F. W. Bader, Ed. Oxford University Press, Oxford, 1990.
    19. (a) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. v. E. Hommes, Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe, J. Am. Chem. Soc. 1996, 118, 6317-6318. (b) P. v. R. Schleyer and H. Jiao, Pure Appl. Chem. 1996, 68, 209-218. (c) P. v. R. Schleyer, H. Jiao, N. J. v. E. Hommes, V. G. Malkin, and O. L. Malkina, An Evaluation of the Aromaticity of Inorganic Rings: Refined Evidence from Magnetic Properties, J. Am. Chem. Soc. 1997, 119, 12669-12670. (d) B. Goldfuss, P. v. R. Schleyer, and F. Hampel, Aromaticity in Silole Dianions: Structural, Energetic, and Magnetic Aspects, Organometallics 1996, 15, 1755-1757.
    20. (a) S. F. Boys and F. Bernardi, Mol. Phys. 1970, 19, 553-559. (b) P. Hobza and Z. Havlas, Theor. Chem. Acc. 1998, 99, 372-377.
    21. I. Alkorta and J. Elguero, Theoretical Study of Strong Hydrogen Bonds between Neutral Molecules: The Case of Amine Oxides and Phosphine Oxides as Hydrogen Bond Acceptors, J. Phys. Chem. A 1999, 103, 272-279.
    22. M. J. Frisch et al., GAUSSIAN 03, revision B.03, Gaussian, Inc.: Pittsburgh, PA, 2003.
    23. (a) U. Kock and P. L. A. Popelier, Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density, J. Phys. Chem. 1995, 99, 9747-9754. (b) P. L. A. Popelier, Characterization of a Dihydrogen Bond on the Basis of the Electron Density, J. Phys. Chem. A 1998, 102, 1873-1878.
    24. Molecular spectra and molecular structure I: spectra of diatomic molecules, 2ed.; G. Herzberg, Ed; Van Nostrand; New York; 1950.
    25. Molecular Spectra and Molecular Structure Constants of Diatomic Molecules; K. P. Huber and G. Herzberg, Ed; Van Nostrand; New York; 1979.
     1. D. E. Bergeron, A. W. Castleman Jr., T. Morisato, and S. N. Khanna, Formation of Al13I?: Evidence for the Superhalogen Character of Al13, Science 2004, 304, 84.
    2. D. E. Bergeron, A. W. Castleman, T. Morisato, and S. N. Khanna, Formation and properties of halogenated aluminum clusters, J. Chem. Phys. 2004, 121, 10456.
    3. D. E. Bergeron, P. J. Roach, A. W. Castleman, N. Jones, and S. N. Khanna, Al cluster superatoms as halogens in polyhalides and as alkaline earths in iodide salts, Science 2005, 307, 231-235.
    4. X.-B. Wang, C.-F. Ding, L. S. Wang, A. I. Boldyrev, and J. Simons, First experimental photoelectron spectra of superhalogens and their theoretical interpretations, J. Chem. Phys. 1999, 110, 4763.
    5. B. M. Elliott, E. Koyle, A. I. Boldyrev, X. B. Wang, and L. S. Wang, MX3? Superhalogens (M = Be, Mg, Ca; X = Cl, Br): A Photoelectron Spectroscopic and ab Initio Theoretical Study, J. Phys. Chem. A 2005,109, 11560.
    6. G. L. Gutsev and A. I. Boldyrev, DVM-Xα calculations on the ionization potentials of MXk+1? complex anions and the electron affinities of MXk+1 “superhalogens”, Chem. Phys. 1981, 56, 277.
    7. G. L. Gutsev and A. I. Boldyrev, Adv. Chem. Phys. 1985, 61, 169.
    8. N. Bartlett, Proc. Chem. Soc. 1962, 218.
    9. F. Wudl, From organic metals to superconductors: managing conduction electrons in organic solids, Acc. Chem. Res. 1984, 17, 227.
    10. G. L. Gutsev and A. I. Boldyrev, DVM Xα calculations on the electronic structure of “superalkali” cations, Chem. Phys. Lett. 1982, 92, 262.
    11. E. Rehm, A. I. Boldyrev, and P. v. R. Schleyer, Ab initio study of superalkalis. First ionization potentials and thermodynamic stability, Inorg. Chem. 1992, 31, 4834.
    12. A. N. Alexandrova and A. I. Boldyrev, σ-Aromaticity and σ-Antiaromaticity in Alkali Metal and Alkaline Earth Metal Small Clusters, J. Phys. Chem. A 2003, 107, 554-560.
    13. Ph. Dugourd, D. Rayane, P. Labastie, B. Vezin, J. Chevaleyre, and M. Broyer, Measurements of lithium cluster ionization potentials, Chem. Phys. Lett. 1992, 197, 433.
    14. D. C. Young, Computational Chemistry 2002.
    15. R. G. Parr and W. Yang, Density–Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989.
    16. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 1993, 98, 5648.
    17. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 1992, 46, 6671.
    18. C. M?ller and M. S. Plesset, Note on an Approximation Treatment for Many-Electron Systems, Phys. ReV. 1934, 46, 618.
    19. T. H. Dunning, Jr., Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys. 1989, 90, 1007.
    20. R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, J. Chem. Phys. 1992, 96, 6796.
    21. D. E. Woon and T. H. Dunning, Jr., Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon, J. Chem. Phys. 1993, 98, 1358.
    22. D. E. Woon and T. H. Dunning, Jr., Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties, J. Chem. Phys. 1994, 100, 2975.
    23. A. E. Reed, R. B. Weinstock, and F. Weinhold, Natural population analysis, J. Chem. Phys. 1985, 83, 735.
    24. J. E. Carpenter and F. J. Weinhold, Mol.Struct.(THEOCHEM) 1988, 169, 41.
    25. R. F. W. Bader, Atoms in Molecules: a Quantum Theory, Clarendon Press, Oxford, 1990.
    26. P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. v. E. Hommes, Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe, J. Am. Chem. Soc. 1996, 118, 6317-6318.
    27. P. v. R. Schleyer and H. Jiao, Pure Appl. Chem. 1996, 68, 209.
    28. P. v. R. Schleyer, H. Jiao, N. J. v. E. Hommes, V. G. Malkin, and O. L. Malkina, An Evaluation of the Aromaticity of Inorganic Rings: Refined Evidence from Magnetic Properties, J. Am. Chem. Soc. 1997, 119, 12669-12670.
    29. B. Goldfuss, P. v. R. Schleyer, and F. Hampel, Aromaticity in Silole Dianions: Structural, Energetic, and Magnetic Aspects, Organometallics 1996, 15, 1755-1757.
    30. S. F. Boys and F. Bernardi, Mol. Phys. 1970, 19, 553.
    31. P. Hobza and Z. Havlas, Counterpoise-corrected potential energy surfaces of simple H-bonded systems, Theor. Chem. Acc. 1998, 99, 372.
    32. I. Alkorta and J. Elguero, Theoretical Study of Strong Hydrogen Bonds between Neutral Molecules: The Case of Amine Oxides and Phosphine Oxides as Hydrogen Bond Acceptors, J. Phys. Chem. A 1999,103, 272.
    33. Frisch, et al. GAUSSIAN 03, revision B.03, Gaussian, Inc., Pittsburgh PA, 2003.
    34. U. Kock and P. L. A. Popelier, Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density, J. Phys Chem. 1995, 99, 9747.
    35. P. L. A. Popelier, Characterization of a Dihydrogen Bond on the Basis of the Electron Density, J. Phys. Chem. A 1998,102, 1873.
    36. J. L. Dye, J. M. Ceraso, M. T. Lok, B. L. Barnett, and F. J. Tehan, Crystalline salt of the sodium anion Na?, J. Am. Chem. Soc. 1974, 96, 608.
    37. F. J. Tehan, B. L. Barnett, and J. L. Dye, Alkali anions. Preparation and crystal structure of a compound which contains the cryptated sodium cation and the sodium anion, J. Am. Chem. Soc. 1974, 96, 7203.
    38. J. L. Dye, Chemtracts: Inorg. Chem. 1993, 5, 243.
    39. J. Kim, A. S. Ichimura, R. H. Huang, M. Redko, M. Phillips, J. E. Jackson, and J. L. Dye, Crystalline Salts of Na- and K- (Alkalides) that Are Stable at Room Temperature, J. Am. Chem. Soc. 1999, 121, 10666.
    40. J. L. Dye, Anionic electrons in electrides, Nature 1993, 365, 10.
    41. J. L. Dye, M. J. Wagner, G. Overney, R. H. Huang, and D. Tomanek, Cavities and Channels in Electrides, J. Am. Chem. Soc. 1996, 118, 7329.
    42. J. L. Dye, Electrides: From 1D Heisenberg Chains to 2D Pseudo-Metals, Inorg. Chem. 1997, 36, 3816.
    43. V. I. Srdanov, G. D. Stacky, E. Lippma, and G. Engelhardt, Evidence for an Antiferromagnetic Transition in a Zeolite-Supported Cubic Lattice of F Centers, Phys. Rev. Lett. 1998, 80, 2449.
    44. P. P. Edwards, P. A. Anderson, and J. M. Tomas, Dissolved Alkali Metals in Zeolites, Acc. Chem. Res. 1996, 29, 23.
    45. A. S. Ichimura, J. L. Dye, M. A. Camblor, and L. A. Villaescusa, Toward Inorganic Electrides, J. Am. Chem. Soc. 2002, 124, 1170.
    46. S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, M. Hirano, I. Tanaka, and H. Hosono, High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e-), Science 2003, 301, 626.
    47. J. L. Dye, Electrons as Anions, Science 2003, 301, 607.
    48. W. Chen, Z. R. Li, D. Wu, R. Y. Li, and C. C. Sun, Theoretical Investigation of the Large Nonlinear Optical Properties of (HCN)n Clusters with Li Atom, J. Phys. Chem. B 2005,109, 601.
    49. W. Chen, Z. R. Li, D. Wu, R. Y. Li, C. C. Sun, and F. L. Gu, The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole, J. Am. Chem. Soc. 2005, 127, 10977.
    1. M. J. Calhorda, Weak hydrogen bonds: theoretical studies, Chem. Commun. 2000, 801.
    2. K. S. Kim, P. Tarakeshwar, and J. Y. Lee, Molecular Clusters of π-Systems: Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies, Chem. Rev. 2000, 100, 4145.
    3. R. Custelcean and J. E. Jackson, Dihydrogen Bonding: Structures, Energetics, and Dynamics, Chem. Rev. 2001,101, 1963.
    4. D. Wu, Z.-R. Li, and X.-Y. Hao, An ab initio theoretical prediction: An antiaromatic ring π-dihydrogen bond accompanied by two secondary interactions in a "wheel with a pair of pedals" shaped complex FH…C4H4…HF, J. Chem. Phys. 2004, 120, 1330.
    5. K. T. No, K.-Y. Nam, and H. A. Scheraga, Stability of Like and Oppositely Charged Organic Ion Pairs in Aqueous Solution, J. Am. Chem. Soc. 1997, 119, 12917.
    6. L. S. Jr. Smith and D. L. Wertz, Solute structuring in aqueous lanthanum(III) chloride solutions, J. Am. Chem. Soc. 1975, 97, 2365.
    7. A. Magalhaes, B. Maigret, J. Hoflack, J. N. F. Gomes, and H. A. Scheraga, J. Protein Chem. 1994, 13, 195.
    8. M. Y. Redko, R. H. Huang, J. E. Jackson, J. F. Harrison, and J. L. Dye, Barium Azacryptand Sodide, the First Alkalide with an Alkaline Earth Cation, Also Contains a Novel Dimer, (Na2)2?, J. Am. Chem. Soc. 2002, 125, 2259.
    9. T. Sleator and R. Tycko, Observation of individual organic molecules at a crystal surface with use of a scanning tunneling microscope, Phys. Rev. Lett. 1988, 60, 1418.
    10. J. Gao, S. Boudon, and G. Wipff, Ab initio and crystal structure analysis of like-charged ion pairs, J. Am. Chem. Soc. 1991, 113, 9610.
    11. E. Buisine, K. de Villiers, T. J. Egan, and C. Biot, Solvent-Induced Effects: Self-Association of Positively Charged π-Systems, J. Am. Chem. Soc. 2006, 128, 12122.
    12. D. Chopra, T. S. Cameron, J. D. Ferrara, and T. N. G. Row, Pointers toward the Occurrence of C-F···F-C Interaction: Experimental Charge Density Analysis of 1-(4-Fluorophenyl)-3,6,6-trimethyl-2-phenyl -1,5,6,7-tetrahydro-4H-indol-4-one and 1-(4-Fluorophenyl)-6-methoxy-2 -phenyl-1,2,3,4-tetrahydroisoquinoline, J. Phys. Chem. A 2006, 110, 10465.
    13. A. Bach, D. Lentz, and P. Luger, Charge Density and Topological Analysis of Pentafluorobenzoic Acid, J. Phys. Chem. A 2001, 105, 7405.
    14. A. R. Choudhury and T. N. Guru Row, Organic fluorine as crystal engineering tool: Evidence from packing features in fluorine substituted isoquinolines, CrystEngComm 2006, 8, 265.
    15. R.-Y. Li, Z.-R. Li, D. Wu, Y. Li, W. Chen, and C.-C. Sun, Study of π-Halogen Bonds in Complexes C2H4-nFn-ClF (n = 0-2), J. Phys. Chem. A 2005, 109, 2608.
    16. A. E. Reed, R. B. Weinstock, and F. Weinhold, Natural population analysis, J. Chem. Phys. 1985, 83, 735.
    17. J. E. Carpenter and F. Weinhold, J. Mol. Struct. (Theochem) 1988, 169, 41.
    18. E. D. Glendenig, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, and F. Weinhold, NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2001.
    19. F.-M. Tao and W. Klemperer, Accurate ab initio potential energy surfaces of Ar–HF, Ar–H2O, and Ar–NH3, J. Chem. Phys. 1994, 101, 1129.
    20. S. F. Boys and F. Bernardi, Mol. Phys. 1970, 19, 553.
    21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN 03, revision B03, Gaussian, Inc., Wallingford, CT, 2004.
    22. B.-Q. Wang, Z.-R. Li, D. Wu, X.-Y. Hao, R.-J. Li, and C.-C. Sun, Single-electron hydrogen bonds in the methyl radical complexes H3C…HF and H3C…HCCH: an ab initio study, Chem. Phys. Lett. 2003, 375, 91.
    23. See EPAPS Document No. E-JCPSA6-126-307713 for the summarization of calculated geometry, interaction energy, IR spectra, and vibrational modes for FXδ+···δ+YF, HXδ–···δ+YF, XFδ–···δ+YF, FXδ+···δ+HF, HXδ–···δ+HF, and XFδ–···δ+HF (X, Y = Cl, Br). This document can be reached through a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
    24. G. Chalasinski and M. M. Szczesniak, Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations, Chem. Rev. 1994, 94, 1723.
    25. P. Hobza and R. Zahradnik, Intermolecular interactions between medium-sized systems. Nonempirical and empirical calculations of interaction energies. Successes and failures, Chem. Rev. 1988, 88, 871.
    26. B. J. Howard, T. R. Dyke, and W. Klemperer, The molecular beam spectrum and the structure of the hydrogen fluoride dimer, J. Chem. Phys. 1984, 81, 5417.
    27. K. D. Kolebrander, C. E. Dykstra, and J. M. Lisy, Torsional vibrational modes of (HF)3: IR–IR double resonance spectroscopy and electrical interaction theory, J. Chem. Phys. 1988, 88, 5995.
    28. G. C. Pimentel and A. D. McClellan, The Hydrogen Bond, W. H. Freeman, San Francisco, Calif., 1960.
    29. J. E. D. Bene, Molecular orbital theory of the hydrogen bond. VII. Series of dimers having ammonia as the proton acceptor, J. Am. Chem. Soc. 1973, 95, 5460.
    1 S. R. Marder, J. W. Perry, G. Bourhill, Ch. B. Gorman, B. G. Tiemann, and K. Mansour, Relation Between Bond-Length Alternation and Second Electronic Hyperpolarizability of Conjugated Organic Molecules, Science (Washington, DC) 1993, 261, 186.
    2 S. R. Marder, L.-T. Cheng, B. G. Tiemann, A. C. Griedli, M. Blanchard-Desce, J. W. Perry, and J. Skindh?j, Large First Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond Length Alternation and Aromaticity, Science (Washington, DC) 1994, 263, 511.
    3 M. Blanchard-Desce, V. Alain, P. V. Bedworth, S. R. Marder, A. Fort, C. Runser, M. Barzoukas, S. Lebus, and R. Wortmann, Chem. –Eur. J. 1997, 3, 1091.
    4 J. L. Oudar and D. S. Chemla, Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment, J. Chem. Phys. 1977, 66, 2664.
    5 B. F. Levine and C. G. Bethea, Second and third order hyperpolarizabilities of organic molecules, J. Chem. Phys. 1975, 63, 2666.
    6 B. F. Levine and C. G. Bethea, Appl. Phys. Lett. 1974, 24, 445.
    7 J. L. Oudar, Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds, J. Chem. Phys. 1977, 67, 446.
    8 L. –T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Sprangler, Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences, J. Phys. Chem. 1991, 95, 10643.
    9 J. O. Morley, V. J. Docherty, and D. Pugh, J. Chem. Soc. Perkin. Trans. 1987, 2, 1351.
    10 R. A. Huijts and G. L. J. Hesselink, Length dependence of the second-order polarizability in conjugated organic molecules. Chem. Phys. Lett. 1989, 156, 209.
    11 M. Barzoukas, M. Blanchard-Desce, D. Josse, and J. –M. Lehn, Very large quadratic nonlinearities in solution of two push-pull polyene series: Effect of the conjugation length and of the end groups, Chem. Phys. 1989, 133, 323.
    12 H. Ikeda, Y. Kabawe, T. Sakai, and K. Kawasaki, Second harmonic generation in nonbenzenoid aromatics, Chem. Phys. Lett. 1989, 157, 576.
    13 C. Dehu, F. Meyers, E. Hendrickx, K. Clays, A. Persoons, S. R. Marder, and J. –L. Bredas, Solvent Effects on the Second-Order Nonlinear Optical Response of π-Conjugated Molecules: A Combined Evaluation through Self-Consistent Reaction Field Calculations and Hyper-Rayleigh Scattering Measurements, J. Am. Chem. Soc. 1995, 117, 10127.
    14 S. R. Marder, Ch. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J. –L. Bredas, and B. M. Pierce, A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes, Science (Washington, DC) 1994, 265, 632.
    15 G. Bourhill, J. –L. Bredas, L. –T. Cheng, S. R. Marder, F. Meyers, J. W. Perry, and B. G. Tiemann, Experimental Demonstration of the Dependence of the First Hyperpolarizability of Donor-Acceptor-Substituted Polyenes on the Ground-State Polarization and Bond Length Alternation, J. Am. Chem. Soc. 1994, 116, 2619.
    16 K. Mohanalingam, P. Chandra-Ray, and P. K. Das, Synth. Metals 1996, 82, 47.
    17 I. –Y. Wu, J. T. Lin, J. Luo, S. –S. Sun, C. –S. Li, K. J. Lin, C. Tsai, C. –C. Hsu, and J. –L. Lin, Syntheses and Reactivity of Ruthenium σ–Pyridylacetylides, Organometallics 1997, 16, 2038.
    18 W. Wenseleers, E. Goovaerts, A. Bouwen, M. H. Garcia, M. P. Robalo, P. J. Mendes, and A. R. Dias, Dissertation Abstracts Internat., 2000, B60, 4038.
    19 I. R. Whittall, M. G. Humphrey, A. Persoons, and S. Houbrechts, Organometallic Complexes for Nonlinear Optics. 3.1 Molecular Quadratic Hyperpolarizabilities of Ene-, Imine-, and Azo-Linked Ruthenium -Acetylides: X-ray Crystal Structure of Ru((E)-4,4'-C≡CC_6H_4CH =CHC_6H_4NO_2)(PPh3)2(η-C5H5), Organometallics 1996, 15, 1935.
    20 S. Houbrechts, K. Clays, A. Persoons, V. Cadierno, M. P. Gamasa, J. Gimeno, I. R. Whittall, and M. G. Humphrey, Proc. SPIE-Int. Soc. Opt. Eng. 1996, 98, 2852.
    21 W. Wenseleers, A. W. Gerbrandij, E. Goovaerts, M. H. Garcia, M. P. Robalo, P. J. Mendes, J. C. Rodrigues, and A. R. Dias, J. Mater. Chem. 1998, 8, 925.
    22 L. T. Cheng, W. Tam, and F. Eaton, Quadratic hyperpolarizabilities of Group 6A metal carbonyl complexes, Organometallics 1990, 9, 2856.
    23 V. Cadierno, S. Conejero, M. Pilar Gamasa, J. Gimeno, I. Asselberghs, S. Houbrechts, K. Clays, A. Persoons, J.Borge, and S. Garcia-Granda, Synthesis and Second-Order Nonlinear Optical Properties of Donor-Acceptor σ-Alkynyl and σ-Enynyl Indenylruthenium(II) Complexes, X-ray Crystal Structures of [Ru{C≡CCH=C(C_6H_4NO_2-3)2}(η5 -C9H7)(PPh3)2] and (EE)-[Ru{C≡C(CH=CH)2-C_6H_4NO_2-4}(η5 -C9H7)(PPh3)2], Organometallics 1999, 18, 582.
    24 I. S. Lee, H. Seo, and Y. K. Chung, Preparation of (Thiophene)manganese Tricarbonyl Cations for Nonlinear Optics, Organometallics 1999, 18, 1091.
    25 E. Licandro, S. Maiorana, A. Papagni, P. Hellier, L. Capella, A. Persoons, and S. Houbrechts, J. Organomet. Chem. 1999, 583, 111.
    26 Y. Li, Z. R. Li, D. Wu, R. Y. Li, X. Y. Hao, and C. C. Sun, An ab Initio Prediction of the Extraordinary Static First Hyperpolarizability for the Electron-Solvated Cluster (FH)2{e}(HF), J. Phys. Chem. B 2004, 108, 3145-3148.
    27 W. Chen, Z. R. Li, D. Wu, F. L. Gu, X. Y. Hao, B. Q. Wang, R. J. Li, and C. C. Sun, The static polarizability and first hyperpolarizability of the water trimer anion: Ab initio study, J. Chem. Phys. 2004, 121, 10489-10494
    28 (a) W. Chen, Z. R. Li, D. Wu, R. Y. Li, and C. C. Sun, Theoretical Investigation of the Large Nonlinear Optical Properties of (HCN)n Clusters with Li Atom, J. Phys. Chem. B 2005, 109, 601-608. (b) W. Chen, Z. R. Li, D. Wu, Y. Li, and C. C. Sun, Inverse Sodium Hydride: Density Functional Theory Study of the Large Nonlinear Optical Properties, J. Phys. Chem. A 2005, 109, 2920-2924. (c) W. Chen, Z. R. Li, D. Wu, Y. Li, C. C. Sun, and F. L. Gu, The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole, J. Am. Chem. Soc. 2005, 127, 10977-10981. (d) W. Chen, Z. R. Li, D. Wu, Y. Li, C. C. Sun, F. L. Gu, and Y. Aoki. Nonlinear Optical Properties of Alkalides Li+(calix[4]pyrrole)M- (M = Li, Na, and K): Alkali Anion Atomic Number Dependence, J. A. Chem. Soc. 2006, 128, 1072-1073. (e) Y. Q. Jing, Z. R. Li, D. Wu, Y. Li, B. Q. Wang, F. L. Gu, and Y. Aoki, Effect of the Complexant Shape on the Large First Hyperpolarizability of Alkalides Li+(NH3)4M–, ChemPhysChem. 2006, 7, 1759-1763. (f) Y. Q. Jing, Z. R. Li, D. Wu, Y. Li, and B. Q. Wang, What Is the Role of the Complexant in the Large First Hyperpolarizability of Sodide Systems Li(NH3)nNa (n = 1-4)? J. Phys. Chem. B. 2006, 110, 11725-11729. (g) H. L. Xu, Z. R. Li, D. Wu, B. Q. Wang, Y. Li, F. L. Gu, and Y. Aoki, Structures and Large NLO Responses of New Electrides: Li-Doped Fluorocarbon Chain, J. Am. Chem. Soc. 2007, 129, 2967-2970.
    29 (a) M. J. Wagner and J. L. Dye, In Molecular Recognition: Receptors for Cationic Guests, Gokel, G. W., Ed. Pergamon: Oxford, UK, 1996, Vol. 1, pp 477-510. (b) J. Kim, A. S. Ichimura, R. H. Huang, M. Redko, R. C. Phillips, J. E. Jackson, and J. L. Dye, Crystalline Salts of Na- and K- (Alkalides) that Are Stable at Room Temperature, J. Am. Chem. Soc. 1999, 121, 10666-10667. (c) J. L. Dye, Anionic electrons in electrides, Nature 1993, 365, 10-11. (d) J. L. Dye, M. J. Wagner, G. Overney, R. H. Huang, and D. Tomanek, Cavities and Channels in Electrides, J. Am. Chem. Soc. 1996, 118, 7329-7336. (e) J. L. Dye, Electrides: From 1D Heisenberg Chains to 2D Pseudo-Metals, Inorg. Chem. 1997, 36, 3816-3826. (f) V. I. Srdanov, G. D. Stacky, E. Lippma, and G. Engelhardt, Evidence for an Antiferromagnetic Transition in a Zeolite-Supported Cubic Lattice of F Centers, Phys. Rev. Lett. 1998. 80, 2449-2452. (g) P. P. Edwards, P. A. Anderson, and J. M. Tomas, Dissolved Alkali Metals in Zeolites, Acc. Chem. Res. 1996, 29, 23-29. (h) A. S. Ichimura and J. L. Dye, Toward Inorganic Electrides, J. Am. Chem. Soc. 2002, 124, 1170-1171. (i) S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, M. Hirano, I. Tanaka, and H. Hosono, High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e-), Science 2003, 301, 626-629. (j) J. L. Dye, Electrons as Anions, Science 2003, 301, 607-608.
    30 J. Springborg, Adamanzanes—bi- and tricyclic tetraamines and their coordination compounds, Dalton Trans. 2003, 1653-1665.
    31 B.Champagne, E. A. Perpète, D. Jacquenmin, S. J. A. van Gisbergen, E. –J. Baerends, C. Soubra-Ghaoui, and K. A. Robins, Assessment of Conventional Density Functional Schemes for Computing the Dipole Moment and (Hyper)polarizabilities of Push-Pull -Conjugated Systems, J. Phys. Chem. A 2000, 104, 4755-4763.
    32 B. Champagne, E. Botek, M. Nakano, T. Nitta, K. Yamaguchi, Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems, J. Chem. Phys. 2005, 122, 114315.
    33 M. Nakano, R. Kishi, T. Nitta, T. Kubo, K. Nakasuji, K. Kamada, K. Ohta, B. Champagne, E. Botek, and K. Yamaguchi, Second Hyperpolarizability (γ) of Singlet Diradical System: Dependence of γ on the Diradical Character, J. Phys. Chem. A 2005, 109, 885-891.
    34 Frisch, et al. GAUSSIAN 03, revision B.03; Gaussian, Inc.: Wallingford CT, 2004.
    35 C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, Chiral metal complexes with large octupolar optical nonlinearities, Nature 1995, 374, 339-342.
    36 F. W. Vance and J. T. Hupp, Probing the Symmetry of the Nonlinear Optic Chromophore Ru(trans-4,4'-diethylaminostyryl-2,2'-bipyridine)32+: Insight from Polarized Hyper-Rayleigh Scattering and Electroabsorption (Stark) Spectroscopy, J. Am. Chem. Soc. 1999, 121, 4047-4053.
    37 M. Blanchard-Desce, V. Alain, P. V. Bedworth, S. R. Marder, A. Fort, C. Runser, M. Barzoukas, S. Lebus, and R. Wortmann, Large Quadratic Hyperpolarizabilities with Donor-Acceptor Polyenes Exhibiting Optimum Bond Length Alternation: Correlation Between Structure and Hyperpolarizability, Chem. Eur. J. 1997, 3, 1091-1104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700