用户名: 密码: 验证码:
可变参量光纤系统中光脉冲的传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光脉冲在光纤系统中的传输特性,由于其在光通信中有着广泛的应用,近年来一直是人们研究的热点之一。而作为此项研究的一个新的发展,光脉冲在可变参量光纤系统中传输特性的研究,近来则备受人们关注。它的理论模型是变系数非线性薛定谔方程,含高阶非线性项的变系数非线性薛定谔方程以及变系数高阶非线性薛定谔方程等。另外,在现代非线性科学中,这些非线性薛定谔方程本身就是很重要的模型,它们不仅出现在光通信中,而且还出现在物理学的其它领域,如非线性量子场论、磁学、非线性光学、玻色-爱因斯坦凝聚等领域,所以以这些非线性薛定谔方程为基本模型,研究其解的特性具有非常重要的科学意义和潜在的应用前景。
     本文以变系数非线性薛定谔方程,含高阶非线性项的变系数非线性薛定谔方程以及变系数高阶非线性薛定谔方程为基本模型,并以可变参量光纤系统为应用背景,通过解析的方法并结合数值模拟,研究皮秒光脉冲在可变参量光纤系统中的传输特性,含啁啾皮秒光脉冲在可变参量光纤系统中的传输特性,高功率皮秒光脉冲在可变参量光纤系统中的传输特性,飞秒光脉冲在可变参量光纤系统中的传输特性以及光束在非周期调制非线性介质中的传输特性。本文的结果和所使用方法为实际的光孤子控制系统或非均匀光纤系统等可变参量光纤系统中光脉冲的稳定传输提供了理论依据。
     本文的主要内容有以下五个部分组成:
     (1)以变系数非线性薛定谔方程为基本模型,从可积的角度出发,运用改进后的Darboux变换,详细给出变系数非线性薛定谔方程的精确亮多孤子解。由于孤子解中包含任意的分布函数,所以,我们就可以通过选取它们不同的形式,来解释或设计各种各样的孤子管理和控制,也就是来研究皮秒光脉冲在可变参量光纤系统中的传输。作为例子,本文运用这些解,详细分析指数控制系统和分布放大系统等可变参量光纤系统中,皮秒亮孤子的传输特性及孤子间的相互作用。结果表明,联合控制群速度色散分布和非线性分布能有效抑制邻近孤子间的相互作用。这对于增加光孤子通信系统中的信息比特率是非常重要的。同时,我们通过数值模拟的方法分析皮秒亮孤子脉冲对各种初值扰动,如白噪声、初始弱背景扰动,以及可积条件扰动的稳定性。结果表明,皮秒亮孤子脉冲对有限的初值扰动是稳定的,这为进一步的实验验证提供了一定的理论基础。最后,我们简单给出变系数非线性薛定谔方程的暗多孤子解,并依此讨论其基本的传输特性。这些结果不仅对可变参量光孤子通信系统有用,而且对其它物理问题的理论和实验研究也是重要的。
     (2)以变系数非线性薛定谔方程为基本模型,通过适当的变换,给出变系数非线性薛定谔方程的精确含啁啾多孤子解。作为例子,我们考虑指数分布控制系统,并演示精确解的一些主要特性。结果表明,对应于绝热保守的、有损耗的、有增益的指数可变参量光纤系统,皮秒含啁啾孤子脉冲能够被有效地压缩。而且在同样的初始条件下,孤子脉冲压缩效果在有损耗的光纤系统中最显著。这对于进行脉冲压缩新方案的设计是有用的。另外,我们通过数值模拟分析皮秒含啁啾孤子脉冲在各种有限初始扰动和可积条件扰动下的稳定性。这些结果,为以后的实验验证提供了一定的理论基础。
     (3)以含高阶非线性项的变系数非线性薛定谔方程为基本模型,在一定的参数条件下,运用拟解法给出含高阶非线性项的变系数非线性薛定谔方程的精确亮暗孤波解。这些解不仅对高功率孤子控制和管理的设计有意义,而且对其它问题,如具有饱和非线性的波导等问题的研究也有价值。作为例子,我们通过这些解,详细研究高功率皮秒孤波脉冲在周期分布放大系统中的传输特性,而且数值研究高功率皮秒孤波脉冲在约束条件扰动和各种初始扰动下在可变参量光纤系统中传输的稳定性。结果表明,一定的约束条件扰动和有限的初始扰动不会影响光脉冲传输的主要性质。最后,我们在色散双曲渐减型等可变参量光纤系统中研究邻近孤波脉冲间的相互作用。结果表明,适当地控制群速度色散参量、非线性参量、高阶非线性参量能有效地抑制邻近孤波间的相互作用。这些结果为光学传输的广泛应用提供了必要的理论基础。
     (4)以变系数高阶非线性薛定谔方程为基本模型,讨论飞秒光脉冲在可变参量光纤系统中的传输特性。首先在两类参数约束条件下给出变系数高阶非线性薛定谔方程的精确解。在第一类参数约束条件下,通过拟解法给出变系数高阶非线性薛定谔方程的精确1-孤子解。在第二类参数约束条件下,通过Darboux变换,给出该方程的精确亮多孤子解。其次,以一个孤子控制系统为例,通过这些精确解,研究飞秒光脉冲在可变参量光纤系统中的传输特性,并分析飞秒孤子脉冲在孤子控制系统中的相互作用。同时,通过数值模拟研究飞秒孤子脉冲在可变参量光纤系统中传输的稳定性。结果表明,在特定的可变参量光纤系统中,飞秒孤子脉冲能稳定传输的条件是较宽松的,能保证飞秒孤子脉冲的稳定传输。最后,简短给出飞秒暗孤子脉冲在可变参量光纤系统中的传输。这些结果对飞秒孤子通信,甚至其它物理领域都具有很重要的意义。
     (5)以带有非周期横向调制的非线性薛定谔方程为基本模型,研究带有非周期横向调制结构的介质中光的传输,并给出精确解。通过这些精确解,进一步讨论一些新的光学非线性效应,如通过适当地调整参数,来控制空间孤波的速度和出射方向。这些结果不仅对设计实用的光学器件有用,而且对解释物理学其它领域中一些物理现象也有一定的参考价值。
Propagation of light pulses in optical fibers is widely considered because of their extensive applications to optical communication. As a new development, propagation of light pulses in variable parameter fiber systems is of particular interest. The problem can be described by the generalized nonlinear Schrodinger equation with variable coefficients, the generalized cubic-quintic nonlinear Schrodinger equation with variable coefficients, and the higher-order nonlinear Schrodinger equation with variable coefficients. On the other hand, it is of scientific significance and application prospect to study solutions of the nonlinear Schrodinger equations, since the equations are the most important models of modern nonlinear science. They appear not only in optical communication, but also in many branches of physics, such as nonlinear quantum field theory, magnetism, nonlinear optics and Bose-Einstein condensed matter et al.
     In the dissertation, based on the generalized nonlinear Schrodinger equation with variable coefficients, the generalized cubic-quintic nonlinear Schrodinger equation with variable coefficients, and the higher-order nonlinear Schrodinger equation with variable coefficients, by taking variable parameter fiber systems as application background, analytically and numerically, we investigate the transmission of picosecond optical pulses in variable parameter fiber systems, the transmission of chirped picosecond optical pulses in variable parameter fiber systems, the transmission of picosecond pulses with high optical intensities in variable parameter fiber systems, the transmission of femtosecond optical pulses in variable parameter fiber systems, and the propagation of light in nonlinear optical media with nonperiodic modulation. The results obtained here and the methods used here may be helpful to provide some theoretical bases for studying the stable transmission of optical pulses in real optical soliton control systems or inhomogeneous fiber systems. The main contents are as follows:
     (1) Based on the generalized nonlinear Schrodinger equation with variable coefficients, from the integrable point of view, by employing simple, straightforward Darboux transformation, we obtain an exact multi-soliton solution of the generalized nonlinear Schrodinger equation with variable coefficients. Because the solutions include arbitrary distributed functions, thus by choosing different form in them, one can explain or design the various soliton controls. That is, one can investigate the transmission of picosecond optical pulses in variable parameter fiber systems. As an example, by the solutions, we consider the transmission of picosecond soliton pulses in an exponential distributed fiber control system and in a periodic distributed amplification system. Furthermore, the interaction between two neighboring soliton pulses is investigated. The results reveal that the combined effects of controlling both the group velocity dispersion distribution and the nonlinearity distribution can restrict the interaction between the neighboring solitons. It is advantageous to increase the information bit rate in optical soliton communications. Also, with the aid of the numerical simulation, we analyze stability of the transmission with respect to the finite initial perturbations, such as white noise and weak background perturbation, and under nonintegrable condition. The results reveal that the transmission is stable, which provides some theoretical bases for further experimental confirmation. Finally, we present exact dark multi-soliton solutions of the generalized nonlinear Schrodinger equation with variable coefficients, and discuss the transmission. The results are useful not only in variable parameter optical soliton communication, but also in theoretical and experimental study of other physical problems.
     (2) Based on the generalized nonlinear Schrodinger equation with variable coefficients, by using an appropriate mapping, exact chirped multi-soliton solutions of the nonlinear Schrodinger equation with variable coefficients are found. As an example, we consider an exponential distributed fiber control system, and demonstrate the main character of exact solutions. It is found that chirped soliton pulses can all be nonlinearly compressed cleanly and efficiently in the exponential distributed fiber control system with no loss or gain, with the loss, or with the gain. Furthermore, under the same initial condition, compression of optical soliton in the optical fiber with the loss is the most dramatic. This is useful to the new design of pulse compression. In addition, we numerically analyze stability of the transmission under the finite initial perturbations and under nonintegrable condition. The results provide some theoretical bases for further experimental confirmation.
     (3) Based on the generalized cubic-quintic nonlinear Schrodinger equation with variable coefficients, under certain parametric conditions, we present exact bright and dark solitary wave solutions by ansatz method. These solutions are useful not only in the design of soliton control and management with high optical intensities, but also in the study of other problems, such as waveguides with saturable nonlinearity. As an example, by the solutions, the transmission of picosecond solitary wave pulses with high optical intensities in a periodic distributed amplification system is studied in detail. Then, we numerically analyze stability of the transmission with respect to the finite initial perturbations and parametric condition perturbations. The results reveal that the perturbations could not influence the main character of the transmission. Finally, we analyze the interaction between solitary waves in variable parameter fiber systems, such as hyperbolically decreasing dispersion fiber system. The results reveal that the combined effects of intentional controlling both the group velocity dispersion distribution, the nonlinearity distribution, and higher-order nonlinearity distribution can restrict the interaction between neighboring solitary waves to some extent. This provides some theoretical bases for extensive applications to optical transmission.
     (4) Furthermore, we investigate the transmission of femtosecond optical pulses in variable parameter fiber systems, starting from the higher-order nonlinear Schrodinger equation with variable coefficients under two sets of parametric conditions. The exact one-soliton solution is presented by the ansatz method for one set of parametric conditions. For the other, exact multi-soliton solutions are presented by employing the Darboux transformation. As an example, by the solutions, we study the transmission of femtosecond soliton pulses in a soliton control system, and we discuss the interaction of femtosecond soliton pulses. Stability of the transmission is also discussed by numerical simulation in detail. The results show that the soliton control system may relax the limitations to parametric conditions. And the transmission is stable. Finally, we discuss the transmission of dark femtosecond pulses in variable parameter fiber systems. The results are important to femtosecond soliton communication, and other branches of physics.
     (5) Finally, we consider the propagation of light in nonlinear optical media with nonperiodic modulation. The problem is governed by the generalized nonlinear Schrodinger equation with nonperiodic transverse modulation. We consider the equation and obtain exact solutions. By the solutions, we discuss a series of new optical nonlinear effects. For example, we could control arbitrarily the velocity of spatial solitary wave, namely, the output direction of light by adjusting the parameters. The results are useful to design optical devices and understand some interesting physical phenomenon in other branches of physics.
引文
[1] 周凌云.非线性物理理论及应用.1.北京,科学出版社,2000,1-3.
    [2] 田慧平.超短光脉冲在非保守系统中的传输研究.1.太原,山西大学博士研究生学位论文,2003,1-13.
    [3] 陈陆君,梁昌洪.孤立子理论及其应用.1.西安,西安电子科技大学出版社,1997,3-5.
    [4] J.Scott-Russell.“Report on Waves".Proc.Roy.Soc.,1844, Edinburgh,319-320.
    [5] 谷超豪,郭柏灵,李翊神.孤立子理论与应用.1.杭州,浙江科学技术出版社,1990,1-5.
    [6] D.J. Korteweg and G. de Vries. "On the change of form of long waves advancing in a rectangular channel, and on anew type of long stationary waves". Phil. Mag., 1895, 39, ser.5,422-443.
    [7] N.J. Zabusky and M. D. Kruskal. "Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States". Phys. Rev. Lett., 1965, 15, 6, 240-243.
    [8] 杨祥林,温扬敬.光孤子通信理论基础.1.北京,国防工业出版社,2000.128-164.
    [9] 郭柏林,庞小峰.孤立子.北京,科学出版社,1987.
    [10] M. J. Ablowitz and P. A. Clarkson. "Soliton, Nonlinear Evolution Equation and Inverse Scattering". Cambridge, University Press, 1991.
    [11] Y. S. Kivshar and B. A. Malomed. "Dynamics of solitons in nearly integrable systems". Rev. Mod. Phys., 1989, 61, 4, 763-915.
    [12] 李禄.光脉冲在光纤中传输特性的理论研究.1.太原,山西大学博士研究生学位论文,2004,2-3.
    [13] A. C. Scott, F. Y. F. Chu and D. W. McLaughlin. "The soliton: A new concept in applied science". Proc. of IEEE, 1973, 61, 10, 1443-1483.
    [14] R. Hirota. "Exact Solution of the Korteweg—de Vries Equation for Multiple Collisions of Solitons". Phys. Rev. Lett., 1971, 27, 18, 1192-1194.
    [15] R. Hirota. "Exact envelope-soliton solutions of a nonlinear wave equation". J. Math. Phys. (N. Y.), 1973, 14, 7, 805-809.
    [16] S. L. Liu and W. Z. Wang. "Exact N-soliton solution of the modified nonlinear Schrodinger equation". Phys. Rev. E, 1993, 48, 4, 3054-3059.
    [17] S. L. Liu and W. Z. Wang. "Exact N-soliton solutions of the extended nonlinear Schrodinger equation". Phys. Rev. E, 1994,49, 6, 5726-5730.
    [18] M. Gedalin, T. C. Scott and Y. B. Band. "Optical Solitary Waves in the Higher Order Nonlinear Schrodinger Equation". Phys. Rev. Lett., 1997,78, 3,448-451.
    [19] K. Porsezian and K. Nakkeeran. "Optical Solitons in Presence of Kerr Dispersion and Self-Frequency Shift". Phys. Rev. Lett, 1996,76, 21, 3955-3958.
    [20] D. Mihalache, N. Truta and L.-C. Crasovan. "Painleve analysis and bright solitary waves of the higher-order nonlinear Schrodinger equation containing third-order dispersion and self-steepening term". Phys. Rev. E, 1997, 56, 1, 1064-1070.
    [21] A. Mahalingam and K. Porsezian. "Propagation of dark solitons with higher-order effects in optical fibers". Phys. Rev. E, 2001, 64, 4, 046608(1-9).
    [22] J. Kim, Q. H. Park and H. J. Shin. "Conservation laws in higher-order nonlinear Schrodinger equations". Phys. Rev. E, 1998, 58, 5, 6746-6751.
    [23] B. Xu and W. Wang. "Traveling-wave method for solving the modified nonlinear Schrodinger equation describing soliton propagation along optical fibers". Phys. Rev. E, 1995,51,2, 1493-1498.
    [24] V. B. Matveev and M. A. Salli. "Darboux Transformation and Solitons". Springer Series in Nonlinear Dynamics, berlin, Springer-Verlag, 1991.
    [25] Z. Y. Xu, L. Li, Z. H. Li and G. S. Zhou. "Modulation instability and solitons on a cw background in an optical fiber with higher-order effects". Phys. Rev. E, 2003, 67, 2, 026603(1-7).
    [26] Wu Junru, R. Keolian and I. Rudnick. "Observation of a Nonpropagating Hydrodynamic Soliton". Phys. Rev. Lett, 1984, 52, 16, 1421-1424.
    [27] Zakharov. V. E. and A. B. Shabat. "Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media". Sov. Phys. JETP, 1972,34,1,62-69.
    [28] A. Hasegawa and F. Tappert. "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion". Appl. Phys. Lett, 1973, 23, 3, 142-144.
    [29] A. Hasegawa and F. Tappert. "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion". Appl. Phys. Lett, 1973, 23, 4, 171-172.
    [30] L. F. Mollenauer, R. H. Stolen and J. P. Gordon. "Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers". Phys. Rev. Lett., 1980, 45, 13, 1095-1098.
    [31] P. Emplit, J. P. Hamaide, R. Reynaud, C. Frodhly and A. Barthelemy. "Picosecond steps and dark pulses through nonlinear single mode fibers". Opt. Commun., 1987, 62, 6, 374-379.
    [32] D. Krokel, N. J. Halas, G. Giuliani and D. Grischkowsky. "Dark-Pulse Propagation in Optical Fibers". Phys. Rev. Lett., 1988, 60, 1, 29-32.
    [33] A.M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird and W. J. Tomlinson. "Experimental Observation of the Fundamental Dark Soliton in Optical Fibers". Phys. Rev. Lett., 1988, 61, 21, 2445-2448.
    [34] G.P. Agrawal. "Nonlinear fiber optics". New York, Academic Press, 1995
    [35] 李仲豪.飞秒光孤立波在光纤中的传输特性的研究.1.太原,山西大学博士研究生学位论文,2000.12-24.
    [36] A. Hasegawa and Y. Kodama. "Solitons in Optical Communications". Oxford, Oxford University Press, 1995.
    [37] A. Hasegawa. "Plasma Instabilities and Nonlinear Effects". New York, Springer, 1975.
    [38] F. F. Chen. "Introduction to Plasma Physics and Controlled fusion". 2nd ed. New York, Plenum, 1984, 1, P. 336.
    [39] M. J. Ablowitz and H. Segur. "Solitons and Inverse Scattering Transformation". Philadelphia, SIAM, 1981.
    [40] A. Hasegawa. "Solitons in optical Fibers". 2nd ed. Berlin, Springer, 1990.
    [41] J.D. Cole. "On a quasi-linear paribolic equation occurring in aerodynamics". Quart. Appl. Math., 1951, 9, 3,225-236.
    [42] Y. Kodama. "Optical solitons in a monomode fiber". J. Stat. Phys., 1985, 39, 5/6, 597-614.
    [43] Y. Kodama and A. Hasegawa. "Nonlinear pulse propagation in a monomode dielectric guide". IEEE J. Quantum Electron., 1987, 23, 5, 510-524.
    [44] K. J. Blow and D. Wood. "Theoretical description of transient stimulated Raman scattering in optical fibers". IEEE J. Quantum Electron., 1989, 25, 12, 2665-2673.
    [45] P.V. Mamyshev and S. V. Chemikov. "Ultrashort-propagation in optical fibers". Opt. Lett., 1990, 15, 19, 1076-1078.
    [46] E. Bourkoff, W. Zhao, R. I. Joseph and D. N. Christodoulides. "Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion". Opt. Lett., 1987, 12, 4, 272-274.
    [47] Y. Kodama, M. Romagnoli, S. Wabnitz and M. Midrio. "Role of third-order dispersion on soliton instabilities and interactions in optical fibers". Opt. Lett., 1994, 19, 3, 165-167.
    [48] T. Brabec and E. Krausz. "Nonlinear Optical Pulse Propagation in the Single-Cycle Regime". Phys. Rev. Lett., 1997, 78, 17, 3282-3285.
    [49] F.M. Mitschke and L. E. Moilenauer. "Discovery of the soliton self-frequency shift". Opt. Lett., 1986, 11, 10, 659-661.
    [50] G. I. Stegeman and M. Segev. "Optical Spatial Solitons and Their Interactions: Universality and Diversity". Science, 1999, 286, 5444, 1518-1523.
    [51] R.Y. Chiao, E. Garmire and C. H. Townes. "Self-Trapping of Optical Beams". Phys. Rev. Lett., 1964, 13, 15,479-482.
    [52] J.S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel and P. W. E. Smith. "Observation of spatial optical solitons in a nonlinear glass waveguide". Opt. Lett., 1990, 15, 9, 471-473.
    [53] M. Segev, B. Crosignani, A. Yariv and B. Fischer. "Spatial solitons in photorefractive media". Phys. Rev. Lett., 1992, 68, 7, 923-926.
    [54] G. Duree, J. L. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, Di Porto P, E. Sharp and R. Neurgaonkar. "Observation of self-trapping of an optical beam due to the photorefractive effect". Phys. Rev. Lett., 1993, 71, 4, 533-536.
    [55] 侯春风,李师群,李斌,孙秀冬.光折变介质中的空间孤子.物理学进展,2001,21,2,237-254.
    [56] J. Yang, I. Makasyuk, H. Martin, P. G. Kevrekidis, B. A. Malomed, D. J. Frantzeskakis and Z. Chen. "Necklacelike Solitons in Optically Induced Photonic Lattices". Phys. Rev. Lett., 2005, 94, 11, 113902(1-4).
    [57] W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. Van Stryland, G. I. Stegeman, L. Torner and C. R. Menyuk. "Observation of Two-Dimensional Spatial Solitary Waves in a Quadratic Medium". Phys. Rev. Lett., 1995, 74, 25, 5036-5039.
    [58] R. Schiek, Y. Baek and G. I. Stegeman. "One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in planar waveguides". Phys. Rev. E, 1996, 53,1, 1138-1141.
    [59] 陈志刚.奇妙的空间光孤子.物理,2001,30,12,752-756.
    [60] V. Tikhonenko, J. Christou and B. Luther-Davies. "Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium". J. Opt. Soc. Am. B, 1995, 12, 11, 2046-2052.
    [61] Y. S. Kivshar, J. Christou, V. Tikhonenko, B. Luther-Davies and L. Pismen. "Dynamics of optical vortex solitons". Opt. Commun., 1998, 152, 1-3, 198-206.
    [62] P. Di Trapani, W. Chinaglia, S. Minardi, A. Piskarskas and G. Valiulis. "Observation of Quadratic Optical Vortex Solitons". Phys. Rev. Lett., 2000, 84, 17, 3843-3846.
    [63] Boris A Malomed, Dumitru Mihalache, Frank Wise and Lluis Torner. "Spatiotemporal optical solitons". J. Opt. B: Quantum Semiclass. Opt., 2005, 7, 5, R53-R72.
    [64] 《全国第十次光纤通信暨第十一届集成光学学术会议(OFCIO’2001)论文集》,中国,上海,二00一年十月.
    [65] 《全国第十一次光纤通信暨第十二届集成光学学术会议(OFCIO’2003)论文集》,中国,南京,二00三年十月.
    [66] 孙强,周虚.光纤通信系统及其应用.北京,清华大学出版社,2004.
    [67] 邱昆.光纤通信导论.成都,电子科技大学出版社,1995.
    [68] 张肇仪,张梓华,徐安士等译.光纤通信系统.北京,人民邮电出版社,1999.
    [69] 刘增基,周洋溢,胡辽林,周绮丽.光纤通信.西安,西安电子科技大学出版社,2001,1-8.
    [70] 张劲松,陶智勇,韵湘.光波分复用技术.北京,北京邮电大学出版社,2002,107-110.
    [71] 李玉权,崔敏,蒲涛译.光纤通信.3.北京,电子工业出版社,2002.
    [72] 李履信,沈建华.光纤通信系统.北京,机械工业出版社,2003.
    [73] Benyuan zhu, OFS, New Jersey, PaperTHE1,OFC'2004.
    [74] Toshiharu Ito, NEC Corporation, PaperTHE2, OFC'2004.
    [75] S. Kawanishi, H. Takara, K. Uchiyama, I. Shahe and K. Mori. "3Tbit/s(160Gbit/s×19 channel) optical TDM and WDM transmission experiment" . Electron. Lett., 1999, 35, 10, 826-827.
    [76] L.F. Mollenauer and R. H. Stolen. "Soliton laser". Opt. Lett., 1984, 9, 1, 13-15.
    [77] E. Desurvire, J. R. Simpson and P. C. Beeker. "High-gain erbium-doped traveling-wave fiber amplifier". Opt. Lett., 1987, 12, 11,888-890.
    [78] A. Hasegawa. "Optical solitons in fibers". Springer-Varlag, 1989.
    [79] Y. Kodama, A. Maruta and A. Hasegawa. "Long distance communications with solitons". Quantum Opt., 1994, 6, 6, 463-516.
    [80] Y. S. Kivshar and B. Luther-Davies. "Dark optical solitons: physics and applications". Phys. Rep., 1998, 298, 2-3, 81-197.
    [81] P. Andrekson. "Soliton tests show promise for dense wdm systems". Laser Focus World, 1999, 35, 5, 145.
    [82] M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada and A. Sahara. "Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies". IEEE J. Sel. Topics Quantum Electron., 2000, 6, 2, 363-396.
    [83] A. Hasegawa, Y. Kodama and A. Maruta. "Recent Progress in Dispersion-Managed Soliton Transmission Technologies". Opt. Fiber Tech., 1997, 3, 3, 197-213.
    [84] I. R. Gabitov and P. M. Lushnikov. "Nonlinearity management in a dispersion-managed system". Opt. Lett., 2002, 27, 2, 113-115.
    [85] I. Nasieva, J. D. Ania-Castanon and S. K. Tuitsyn. "Nonlinearity management in fiber links with distributed amplification ". Electron. Lett., 2003, 39, 11,856-857.
    [86] Rodislav Driben, Boris A. Malomed and Uri Mahlab. "Integration of nonlinearity-management and dispersion-management for pulses in fiber-optic links". Opt. Comm., 2004, 232, 1-6, 129-138.
    [87] M. Nakazawa. "Soliton transmission at 20 Gbit/s over 2000 km in Tokyo metropolitan optical network". Electron. Lett., 1995, 31, 17, 1478-1479.
    [88] Mitsunori Morisaki, Hiroto Sugahara, Toshiharu Ito and Takashi Ono. "2.56-Tb/s(64/spl times/42.7 Gb/s) WDM transmission over 6000 km using all-Raman amplified inverse double-hybrid spans". IEEE Photon. Tech. Lett., 2003, 15, 11, 1615-1617.
    [89] Martin Centurion, Mason A. Porter, P. G. Kevrekidis and Demetri Psaltis. "Nonlinearity Management in Optics: Experiment, Theory, and Simulation". Phys. Rev. Lett., 2006, 97, 3, 033903(1-4).
    [90] J. D. Moores. "Nonlinear compression of chirped solitary waves with and without phase modulation". Opt. Lett., 1996, 21,8, 555-557.
    [91] K. J. Nakkeeran. "Exact soliton solutions for a family of N coupled nonlinear Schrodinger equations in optical fiber media". Phys. Rev. E, 2000, 62, 1, 1313-1321.
    [92] E. Papaioannou, D. J. Frantzeskakis and K. Hizanidis. "An analytical treatment of the effect of axial inhomogeneity on femtosecond solitary waves near the zero dispersion point". IEEE J. Quantum Electron., 1996, 32, 1, 145-154.
    [93] Y.-T. Gao and B. Tian. "Computer algebra, Painleve analysis and the time-dependent-coefficient nonlinear Schrodinger equation". Comput. Math. Appl., 2000,40,8-9,1107-1108.
    [94] J. Garnier and F. K. Abdullaev. "Modulational instability induced by randomly varying coefficients for the nonlinear Schrodinger equation". Physica D, 2000, 145, 1-2, 65-83.
    [95] V. N. Serkin and A. Hasegawa. "Novel Soliton Solutions of the Nonlinear Schrodinger Equation Model". Phys. Rev. Lett., 2000, 85, 21, 4502-4505; "Soliton Management in the Nonlinear Schrodinger Equation Model with Varying Dispersion, Nonlinearity, and Gain". JETP Lett., 2000, 72, 2, 89-92; "Exactly Integrable Nonlinear Schrodinger Equation Models With Varying Dispersion, Nonlinearity and Gain: Application for Soliton Dispersion Managements". IEEE Journal of Selected Topics In Quantum Electronics, 2002, 8, 3, 418-431.
    [96] V. N. Serkin and T. L. Belyaeva. "High-Energy Optical Schrodinger Solitons". JETP Lett., 2001, 74, 12, 573-577; "Optimal control of optical soliton parameters: Part 1.The Lax representation in the problem of soliton management". Quantum Electron, 2001, 31, 11, 1007-1015.
    [97] H. J. Shin. "Darboux covariant soliton equations of inhomogeneous type". Phys. Lett. A, 2002, 294, 3-4, 199-209.
    
    [98] V. I. Kruglov, A.C. Peacock and J. D. Harvey. "Exact Self-Similar Solutions of the Generalized Nonlinear Schrodinger Equation with Distributed Coefficients". Phys. Rev. Lett., 2003, 90, 11,113902(1-4).
    [99] F. Abdullaeev. "Theory of Solitons in Inhomogeneous Media". New York, Wiley, 1994.
    [100] R. Ganapathy, V. C. Kuriakose and K. Porsezian. "Soliton propagation in a birefringent optical fiber with fiber loss and frequency chirping". Opt. Commun., 2001,194,4-6,299-302.
    [101] M. N. Vinoj, V. C. Kuriakose and K. Porsezian. "Optical soliton with damping and frequency chirping in fibre media". Chaos, Solitons and Fractals, 2001, 12, 13, 2569-2575.
    [102] R. Ganapathy and V. C. Kuriakose. "Soliton interaction in a dispersion-decreasing fiber with effective gain and effective phase modulation". Chaos, Solitons and Fractals, 2003, 15, 1,99-105.
    [103] Y. Xiao, Z. Xu, L. Li, Z. Li and G. Zhou. "SOLITON PROPAGATION IN NONUNIFORM OPTICAL FIBERS". Journal of Nonlinear Optical Physics and Materials, 2003, 12,3,341-348.
    [104] L. Li, Z. Li, S. Li and G. Zhou. "Modulation instability and solitons on a cw background in inhomogeneous optical fiber media". Opt. Commun., 2004, 234, 1-6, 169-176.
    [105] C. C. Mak, K.W. Chow and K. Nakkeeran. "Soliton Pulse Propagation in Averaged Dispersion-managed Optical Fiber System". Journal of the Physical Society of Japan, 2005, 74, 5, 1449-1456.
    [106] C. H. Tenorio, E. V. Vargas, V. N. Serkin, M. A. Granados, T. L. Belyaeva, R. P. Moreno and L. M. Lara. "Dynamics of solitons in the model of nonlinear Schrodinger equation with an external harmonic potential: II .Dark solitons". Quantum Electronics, 2005, 35, 10, 929-937.
    [107] A. Uthayakumar, A. Mahalingam, Y. G. Han and S. B. Lee. "Optical soliton propagation in erbium-doped fiber with variable dispersion and nonlinear effects". Journal of Modern Optics, 2006, 53, 11, 1619-1626.
    [108] T. Brugarino and M. Sciacca. "Singularity analysis and integrability for a HNLS equation governing pulse propagation in a generic fiber optics". Opt. Commun., 2006, 262, 2, 250-256.
    [109] A. Mahalingam and T. Alagesan. "Singularity structure analysis of inhomogeneous Hirota and higher order nonlinear Schrodinger equations". Chaos, Solitons and Fractals, 2005, 25,2, 319-323.
    [110] Y. Y. Wang and J. F. Zhang. "Variable-coefficient KP equation and solitonic solution for two-temperature ions in dusty plasma". Physics Letters A, 2006, 352, 1-2,155-162.
    [111] J. F. Zhang, Q. Yang and C. Q. Dai. "Optical quasi-soliton solutions for higher-order nonlinear Schrodinger equation with variable coefficients". Opt. Commun., 2005, 248, 1-3, 257-265.
    [112] J. F. Zhang, C. Q. Dai, Q. Yang and J. M. Zhu. "Variable-coefficient F-expansion method and its application to nonlinear Schrodinger equation". Opt. Commun., 2005, 252,4-6,408-421.
    [113] C. Q. Dai and J. F. Zhang. "New solitons for the Hirota equation and generalized higher-order nonlinear Schrodinger equation with variable coefficients". J. Phys. A: Math. Gen., 2006, 39, 4, 723-737.
    [114] F. D. Zong, C. Q. Dai, Q. Yang and J. F. Zhang. "Soliton solutions for variable coefficient nonlinear Schrodinger equation for optical fiber and their application". Acta Physica Sinica, 2006, 55, 8, 3805-3808.
    [115] J. L. Zhang, M. L.Wang and X. Z. Li. "Solitary Waves for Cubic-Quintic Nonlinear Schrodinger Equation with Variable Coefficients". Commun. Theor. Phys., 2006, 45, 2, 343-346.
    [1] A. Hasegawa and F. Tappert. "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion". Appl. Phys. Lett., 1973, 23, 3, 142-144.
    [2] A. Hasegawa and F. Tappert. "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion". Appl, Phys. Lett., 1973, 23, 4, 171-172.
    [3] V.E. Zakharov and A. B. Shabat. "Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media". Sov. Phys. JETP 1972, 34, 1, 62-69.
    [4] V.E. Zakharov and A. B. Shabat. "On interactions between solitons in a stable medium". Sov. Phys. JETP 1973, 37, 5, 823-828.
    [5] L.F. Mollenauer, R. H. Stolen and J. P. Gordon. "Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers". Phys. Rev. Lett., 1980, 45, 13, 1095-1098.
    [6] P. Emplit, J. P. Hamaide, R. Reynaud, C. Frodhly and A. Barthelemy. "Picosecond steps and dark pulses through nonlinear single mode fibers". Opt. Commun., 1987, 62, 6, 374-379.
    [7] D. Anderson and M. Lisak. "Bandwidth limits due to mutual pulse interaction in optical soliton communication systems". Opt. Lett., 1986, 11, 3, 174-176.
    [8] Y. Kodama and K. Nozaki. "Soliton interaction in optical fibers". Opt. Lett., 1987, 12, 12, 1038-1040.
    [9] G.P. Agrawal. "Nonlinear fiber optics". New York, Academic Press, 1995.
    [10] 黄念宁.孤子理论和微扰方法.上海,上海科学技术教育出版社,1996,217-229.
    [11] 杨祥林,温扬敬.光孤子通信理论基础.北京,国防工业出版社,2000.128-164.
    [12] A. Hasegawa, Y. Kodama and A. Maruta. "Recent Progress in Dispersion-Managed Soliton Transmission Technologies". Opt. Fiber Tech., 1997, 3, 3, 197-213.
    [13] I. R. Gabitov and P. M. Lushnikov. "Nonlinearity management in a dispersion-managed system". Opt. Lett., 2002, 27, 2, 113-115.
    [14] I. Nasieva, J. D. Ania-Castanon and S. K. Tuitsyn. "Nonlinearity management in fiber links with distributed amplification ". Electron. Lett., 2003, 39, 11, 856-857.
    
    [15] Rodislav Driben, Boris A. Malomed and Uri Mahlab. "Integration of nonlinearity-management and dispersion-management for pulses in fiber-optic links". Opt. Comm., 2004, 232, 1-6, 129-138.
    
    [16] K. Porsezian and D Vijay Emmanuel Muthiah. "Soliton pulse compression in nonuniform birefringent fibres". J. Opt. A: Pure Appl. Opt., 2002, 4, 2, 202-207.
    
    [17] V. N. Serkin and A. Hasegawa. "Novel Soliton Solutions of the Nonlinear Schrodinger Equation Model". Phys. Rev. Lett., 2000, 85, 21, 4502-4505; "Soliton Management in the Nonlinear Schrodinger Equation Model with Varying Dispersion, Nonlinearity, and Gain". JETP Lett., 2000, 72, 2, 89-92; "Exactly Integrable Nonlinear Schrodinger Equation Models With Varying Dispersion, Nonlinearity and Gain: Application for Soliton Dispersion Managements". IEEE Journal of Selected Topics In Quantum Electronics, 2002, 8, 3, 418-431.
    
    [18] V. N. Serkin and T. L. Belyaeva. "High-Energy Optical Schrodinger Solitons". JETP Lett., 2001, 74, 12, 573-577; "Optimal control of optical soliton parameters: Part 1.The Lax representation in the problem of soliton management". Quantum Electron., 2001, 31, 11, 1007-1015.
    
    [19] V. I. Kruglov, A. C. Peacock and J. D. Harvey. "Exact Self-Similar Solutions of the Generalized Nonlinear Schrodinger Equation with Distributed Coefficients". Phys. Rev. Lett., 2003, 90, 11, 113902(1-4); "Exact solutions of the generalized nonlinear Schrodinger equation with distributed coefficients". Phys. Rev. E, 2005, 71, 5, 056619(1-11).
    
    [20] A. Hasegawa and Y. Kodama. "Solitons in Optical Communications". Oxford, Oxford University Press, 1995.
    
    [21] F. Abdullaeev. "Theory of solitons in inhomogeneous media". New York, Wiley, 1994.
    
    [22] S. Wabnitz. "Stabilization of sliding-filtered soliton wavelength division multiplexing transmissions by dispersion-compensating fibers". Opt. Lett., 1996, 21, 9, 638-640.
    
    [23] N. J Smith and N. J Doran. "Modulational instabilities in fibers with periodic dispersion management". Opt. Lett., 1996, 21, 8, 570-572.
    [24] V.A.Bogatyrev,M.M.Bubnov,E.M.Dianov,A.S.Kurkov,P.V.Mamyshev,A.M.Prokhoro v,S.D.Rumyantsev,V.A.Semenov,S.L.Semenov,A.A.Sysoliatin,S.V.Chernikov,A.N.G ur'yanov,G.G.Devyatykh and S.I.Miroshnichenko. "A single-mode fiber with chromatic dispersion varying along the length". J. Lightwave Technol., 1991, 9, 5, 561-566.
    [25] P. V Mamyshev, V Chers and M Dianov. "Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines". IEEE J. Quantum Electron., 1991,27,10,2347-2355.
    [26] M. Nakazawa, H. Kubota, K. Suzuki and E. Yamada. "Recent progress in soliton transmission technology". Chaos, 2000, 10, 3, 486-514.
    [27] A. Hasegawa. "Quasi-soliton for ultra-high speed communications". Physica D (Amsterdam), 1998,123, 1-4, 267-270.
    [28] T. I. Lakoba and D. J. Kaup. "Hermite-Gaussian expansion for pulse propagation in strongly dispersion managed fibers". Phys. Rev. E, 1998, 58, 5, 6728-6741.
    [29] J. Gamier and F. K. Abdullaev. "Modulational instability induced by randomly varying coefficients for the nonlinear Schrodinger equation". Physica D, 2000, 145, 1-2, 65-83.
    [30] H. J. Shin. "Darboux covariant soliton equations of inhomogeneous type". Phys. Lett. A, 2002, 294, 3-4, 199-209.
    [31] J. D. Moores. "Nonlinear compression of chirped solitary waves with and without phase modulation". Opt. Lett., 1996, 21, 8, 555-557.
    [32] Y. Xiao, Z. Y. Xu, L. Li, Z. H. Li and G. S. Zhou. "SOLITON PROPAGATION IN NONUNIFORM OPTICAL FIBERS". Journal of Nonlinear Optical Physics and Materials, 2003, 12,3,341-348.
    [33] K. J. Nakkeeran. "Exact soliton solutions for a family of N coupled nonlinear Schrodinger equations in optical fiber media". Phys. Rev. E, 2000, 62, 1, 1313-1321.
    [34] S. Kumar and A. Hasegawa. "Quasi-soliton propagation in dispersion-managed optical fibers". Opt. Lett., 1997, 22, 6, 372-374.
    [35] R. Ganapathy, V. C. Kuriakose and K. Porsezian. "Soliton propagation in a birefringent optical fiber with fiber loss and frequency chirping". Opt. Commun., 2001,194,4-6,299-302.
    [36] M. N. Vinoj, V. C. Kuriakose and K. Porsezian. "Optical soliton with damping and frequency chirping in fibre media". Chaos, Solitons and Fractals, 2001, 12, 13, 2569-2575.
    [37] R. Ganapathy and V. C. Kuriakose. "Soliton interaction in a dispersion-decreasing fiber with effective gain and effective phase modulation". Chaos, Solitons and Fractals, 2003, 15,1,99-105.
    
    [38] A. C. Newell. "Nonlinear Tunnelling". J. Math. Phys., 1978, 19, 5, 1126-1133.
    [39] V. N. Serkin, V. M. Chapela, J. Persino and T. L. Belyaeva. "Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides". Opt. Commun., 2001, 192, 3-6, 237-244.
    [40] I. Gabitov, E. G. Shapiro and S. K. Turitsyn. "Asymptotic breathing pulse in optical transmission systems with dispersion compensation". Phys. Rev. E, 1997, 55, 3, 3624-3633.
    [41] Martin Centurion, Mason A. Porter, P. G. Kevrekidis and Demetri Psaltis. "Nonlinearity Management in Optics: Experiment, Theory, and Simulation". Phys. Rev. Lett., 2006, 97, 3, 033903(1-4).
    [42] S. Kumar, M. Wald, F. Lederer and A. Hasegawa. "Soliton interactionin strongly dispersion-managed optical fibers". Opt. Lett., 1998, 23, 13, 1019-1021.
    [43] S. K. Turitsyn and E. G. Shapiro. "Dispersion-managed soliton in fiber links with in-line filtering presented in the basis of chirped GaussHermite functions". J. Opt. Soc. Am. B, 1999,16, 9,1321-1331.
    [44] B. A. Malomed and A. Berntson. "Propagation of an optical pulse in a fiber link with random-dispersion management". J. Opt. Soc. Am. B, 2001, 18, 9, 1243-1251.
    [45] M. J. Ablowitz and G. Biondini. "Multiscale pulse dynamicsin communication systems with strong dispersion management". Opt. Lett., 1998, 23, 21, 1668-1670; M. J. Ablowitz and T. Hirooka. "Resonant intrachannel pulse intraction in dispersion-managed transmission systems". IEEE J. Sel. Top. Quantum Electron., 2002, 8, 3, 603-614; M. J. Ablowitz and J. T. Moeser. "Dispersion management for randomly varying optical fibers". Opt. Lett., 2004,29, 8, 821-823.
    [46] V. B. Matveev and M. A. Salli. "Darboux Transformation and Solitons". berlin, Springer Series in Nonlinear Dynamics, Springer-Verlag, 1991.
    [47] 谷超豪,胡和生,周子翔.孤立子理论中的达布变换及几何应用.上海,上海科学技术出版社,1999.
    [48] G. Darboux, Sur une proposition relative aux equation lineaires. Compts Rendus Hebdomadaires des Seances de l'Academie des Sciences, Paries, 1882, 94, 1456-1459.
    [49] N.N. Akhmediev and N. V. Mitzkevich. "Extremely high degree of N-soliton pulse compression in an optical fiber". IEEE J. Quantum Electron., 1991, 27, 3,849-857.
    [50] Z.Y. Xu, L. Li, Z. H. Li and G. S. Zhou. "Soliton interaction under the influence of higher-order effects". Opt. Commun., 2002, 210, 3-6, 375-384; "Modulation instability and solitons on a cw background in an optical fiber with higher-order effects". Phys. Rev. E, 2003, 67, 2, 026603(1-7).
    [51] Z.Y. Xu, L. Li, Z. H. Li, G. S. Zhou and K. Nakkeeran. "Exact soliton solutions for the core of dispersion-managed solitons". Phys. Rev. E, 2003, 68, 4, 046605(1-8).
    [52] S. P. Burstev, A. V. Mikhailov and V. E. Zakharov. "Inverse scattering method with variable spectral parameter". Yheor. Math. Phys., 1987, 70, 227-240.
    [53] R A. Clarkson. "Painleve analysis of the damped, driven nonlinear Schrodinger equation". Proc. R. Soc. A, 1988, 109, 1-2, 109-126.
    [54] C. Desem and P. L. Chu. "Reducing soliton interaction in single-mode optical fibers". IEE Proc. Pt. J., 1987, 134, 3, 145-151.
    [55] J.W. Cooley and J. W. Tukey. "An algorithm for the machine calculation of complex Fourier series". Math. Comput., 1965, 19, 2, 297-301.
    [56] M. Lax, J. H. Batteh and G. P. Agrawal. "Channeling of intense electromagnetic beams". J. Appl. Phys., 1981, 52, 1,109-125.
    [57] Y. R. Taha and M. J. Ablowitz. "Analytical and numerical aspects of certain nonlinear evolution equations part II: Numerical nonlinear Schrodinger equation". J. Comput. Phys., 1984, 55, 2, 203-230.
    [58] M. S. Ismail. "Finite difference method with cubic spline for solving nonlinear Schrodinger equation". Int. J. Comput. Phys., 1996, 62, 101-112.
    [59] Q. Chang, E. Jia and W. Sun. "Difference schemes for solving the generalized nonlinear Schrodinger equation". J. Comput. Math., 1999, 148, 2, 397-415.
    [60] R.H. Hardin and E. D. Tappen. "Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations". SLAM Rev. Chronicle, 1973, 15,423.
    [61] 李禄.光脉冲在光纤中传输特性的理论研究.1.太原,山西大学博士研究生学位论文,2004,49-50.
    [62] 王照林.运动稳定性及其应用.北京,高等教育出版社,1992.
    [63] 舒仲周.运动稳定性.成都,西南交通大学出版社,1988.
    [64] M. Matuszewski, M. Trippenbach, B. A Malomed, E. Infeld and A. A Skorupski. "Two-dimensional dispersion-managed light bullets in Kerr media". Phys. Rev. E, 2004, 70, 1, 016603(1-6).
    [65] B.L. Lawrence and G. I. Stegeman. "Two-dimensional bright spatial solitons stable over limited intensities and ring formation in polydiacetylene para-toluenesulfonate". Opt. Lett., 1998, 23, 8, 591-593.
    [66] S. L. Palacios and J. M. Fernandez-Diaz. "Black optical solitons for media with parabolic nonlinearity law in the presence of fourth order dispersion". Opt. Commun., 2000, 178, 4-6, 457-460.
    [67] I. Towers and B. A Malomed. "Stable (2+l)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity". J. Opt. Soc. Am. B, 2002, 19, 3, 537-543.
    [68] D. Krokel, N. J. Halas, G. Giuliani and D. Grischkowsky. "Dark-Pulse Propagation in Optical Fibers". Phys. Rev. Lett., 1988, 60, 1, 29-32.
    [69] A.M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, Kirschner, D. E. Leaird and W. J. Tomlinson. "Experimental Observation of the Fundamental Dark Soliton in Optical Fibers". Phys. Rev. Lett., 1988, 61, 21, 2445-2448.
    [70] W. Zhao and E. Bourkoff. "Propagation Properties of Dark Solitons". Opt. Lett., 1989, 14, 13,703-705.
    [71] W. Zhao and E. Bourkoff. "Interaction between two dark solitons". Opt. Lett., 1989, 14, 24, 1371-1373.
    [72] E.M. Dianov, P. V. Mamyshev, A. M. Prokhorov and S. V. Chernikov. "Generation of a train of fundamental solitons at a high repetition rate in optical fibers". Opt. Lett., 1989, 14, 18, 1008-1010.
    [73] S. A. Gredeskul and Y. S. Kivsher. "Generation of Dark Solitons in Optical Fibers". Phys. Rev. Lett., 1989, 62, 8, 977-977; "Dark-soliton generation in optical fibers". Opt. Lett., 1989, 14, 22, 1281-1283.
    [74] S. L. Palacios, A. Guinea, J. M. Fernandez-Diaz and R. D. Crespo. "Dark solitary waves in the nonlinear Schrodinger equation with third order dispersion, self-steepening, and self-frequency shift". Phys. Rev. E, 1999, 60, 1, R45- R47.
    [75] J. P. Hamaide, Ph. Emplit and M. Haelterman. "Dark Soliton Jitter in Amplified Optical Transmission Systems". Opt. Lett., 1991, 16, 20, 1578-1580.
    [76] Y. S. Kivshar, M. Haelterman, P. Emplit and J.-P. Hamaide. "Gordon-Haus effcct on dark solitons". Opt. Lett., 1994, 19, 1, 19-21.
    [77] Y. S. Kivshar and B. luther-Davies. "Dark optical solitons: physics and applications". Phys. Rep, 1998, 298, 2-3, 81-197.
    [78] L. Li, Z. H. Li, Z. Y. Xu, G. S. Zhou and K. H. Spatschek. "Gray optical dips in the subpicosecond regime". Phys. Rev. E, 2002, 66,4, 046616(1-8).
    [1] D. Marcuse and J. M. Wiesenseld. "Chirped picosecond pulses: evaluation of the time-dependent wavelength for semiconductor film lasers". Appl. Opt., 1984, 23, 1,74-81.
    [2] P.L. Chu and C. Desem. "Soliton propagation in the presence of source chirping and mutual interaction in single-mode optical fibers". Electron. Lett., 1987, 23, 6, 260-261.
    [3] 杨祥林,赵阳.非线性单模光纤中源啁啾孤子相互作用.光学学报,1989,9,11,995-1001.
    [4] G. R Agrawal. "Nonlinear fiber optics". New York, Academic Press, 1995.
    [5] J.D. Moores. "Nonlinear compression of chirped solitary waves with and without phase modulation". Opt. Lett., 1996, 21, 8, 555-557.
    [6] Y. Xiao, Z. Y. Xu, L. Li, Z. H. Li and G. S. Zhou. "SOLITON PROPAGATION IN NONUNIFORM OPTICAL FIBERS". Journal of Nonlinear Optical Physics and Materials, 2003, 12, 3,341-348.
    [7] K.J. Nakkeeran. "Exact soliton solutions for a family of N coupled nonlinear Schrodinger equations in optical fiber media". Phys. Rev. E, 2000, 62, 1, 1313-1321.
    [8] R. Ganapathy, V. C. Kuriakose and K. Porsezian. "Soliton propagation in a birefringent optical fiber with fiber loss and frequency chirping". Opt. Commun., 2001, 194, 4-6, 299-302.
    [9] M.N. Vinoj, V. C. Kuriakose and K. Porsezian. "Optical soliton with damping and frequency chirping in fibre media". Chaos, Solitons and Fractals, 2001, 12, 13, 2569-2575.
    [10] R. Ganapathy and V. C. Kuriakose. "Soliton interaction in a dispersion-decreasing fiber with effective gain and effective phase modulation". Chaos, Solitons and Fractals, 2003, 15, 1, 99-105.
    [11] L. Li, Z. H. Li, S. Q. Li and G. S. Zhou. "Modulation instability and solitons on a cw background in inhomogeneous optical fiber media". Opt. Commun., 2004, 234, 1-6, 169-176.
    [12] A. Hasegawa and F. Tappert. "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion". Appl. Phys. Lett., 1973, 23, 3, 142-144.
    [13] A. Hasegawa and F. Tappert. "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion". Appl. Phys. Lett., 1973, 23, 4, 171-172.
    [14] L. F. Mollenauer, R. H. Stolen and J. P. Gordon. "Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers". Phys. Rev. Lett., 1980, 45, 13, 1095-1098.
    [15] M. Nakazawa, H. Kubota, K. Suzuki and E. Yamada. "Recent progress in soliton transmission technology". Chaos, 2000, 10, 3, 486-514.
    [16] A. Hasegawa. "Quasi-soliton for ultra-high speed communications". Physica D (Amsterdam), 1998, 123, 1-4,267-270.
    [17] T. I. Lakoba and D. J. Kaup. "Hermite-Gaussian expansion for pulse propagation in strongly dispersion managed fibers". Phys. Rev. E, 1998, 58, 5, 6728-6741.
    [18] V.A.Bogatyrev,M.M.Bubnov,E.M.Dianov,A.S.Kurkov,P.V.Mamyshev,A.M.Prokhoro v,S.D.Rumyantsev,V.A.Semenov,S.L.Semenov,A.A.Sysoliatin,S.V.Chernikov,A.N.G ur'yanov,G.G.Devyatykh and S.I.Miroshnichenko. "A single-mode fiber with chromatic dispersion varying along the length". J. Lightwave Technol., 1991, 9, 5, 561-566.
    [19] P. V Mamyshev, V Chers and M Dianov. "Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines". IEEE J. Quantum Electron., 1991,27,10,2347-2355.
    [20] V. N. Serkin and A. Hasegawa. "Novel Soliton Solutions of the Nonlinear Schrodinger Equation Model". Phys. Rev. Lett., 2000, 85, 21, 4502-4505; "Soliton Management in the Nonlinear Schrodinger Equation Model with Varying Dispersion, Nonlinearity, and Gain". JETP Lett., 2000, 72, 2, 89-92; "Exactly Integrable Nonlinear Schrodinger Equation Models With Varying Dispersion, Nonlinearity and Gain: Application for Soliton Dispersion Managements". IEEE Journal of Selected Topics In Quantum Electronics, 2002, 8, 3,418-431.
    [21] V. N. Serkin and T. L. Belyaeva. "High-Energy Optical Schrodinger Solitons". JETP Lett., 2001, 74, 12, 573-577; "Optimal control of optical soliton parameters: Part 1.The Lax representation in the problem of soliton management". Quantum Electron., 2001, 31, 11,1007-1015.
    [22] V. I. Kruglov, A. C. Peacock and J. D. Harvey. "Exact Self-Similar Solutions of the Generalized Nonlinear Schrodinger Equation with Distributed Coefficients". Phys. Rev. Lett, 2003, 90, 11, 113902(1-4); "Exact solutions of the generalized nonlinear Schrodinger equation with distributed coefficients". Phys. Rev. E, 2005, 71, 5, 056619(1-11).
    [23] J. Garnier and F. K. Abdullaev. "Modulational instability induced by randomly varying coefficients for the nonlinear Schrodinger equation". Physica D, 2000, 145, 1-2,65-83.
    [24] H. J. Shin. "Darboux covariant soliton equations of inhomogeneous type". Phys. Lett. A, 2002, 294, 3-4, 199-209.
    [25] S. Kumar and A. Hasegawa. "Quasi-soliton propagation in dispersion-managed optical fibers". Opt. Lett., 1997, 22, 6, 372-374.
    
    [26] A. C. Newell. "Nonlinear Tunnelling". J. Math. Phys., 1978, 19, 5, 1126-1133.
    [27] V. N. Serkin, V. M. Chapela, J. Persino and T. L. Belyaeva. "Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides". Opt. Commun., 2001, 192, 3-6, 237-244.
    [28] I. Gabitov, E. G. Shapiro and S. K. Turitsyn. "Asymptotic breathing pulse in optical transmission systems with dispersion compensation". Phys. Rev. E, 1997, 55, 3, 3624-3633.
    [29] S. Kumar, M. Wald, F. Lederer and A. Hasegawa. "Soliton interaction in strongly dispersion-managed optical fibers". Opt. Lett., 1998, 23, 13, 1019-1021.
    [30] S. K. Turitsyn and E. G. Shapiro. "Dispersion-managed soliton in fiber links with in-line filtering presented in the basis of chirped GaussHermite functions". J. Opt. Soc. Am. B, 1999, 16, 9, 1321-1331.
    [31] B. A. Malomed and A. Berntson. "Propagation of an optical pulse in a fiber link with random-dispersion management". J. Opt. Soc. Am. B, 2001, 18, 9, 1243-1251.
    [32] M. J. Ablowitz and G. Biondini. "Multiscale pulse dynamicsin communication systems with strong dispersion management". Opt. Lett., 1998, 23, 21, 1668-1670; M. J. Ablowitz and T. Hirooka. "Resonant intrachannel pulse intraction in dispersion-managed transmission systems". IEEE J. Sel. Top. Quantum Electron., 2002, 8, 3, 603-614; M. J. Ablowitz and J. T. Moeser. "Dispersion management for randomly varying optical fibers". Opt. Lett., 2004, 29, 8, 821-823.
    [33] A. Hasegawa, Y. Kodama and A. Maruta. "Recent Progress in Dispersion-Managed Soliton Transmission Technologies". Opt. Fiber Tech., 1997, 3, 3, 197-213.
    [34] Z. Y. Xu, L. Li, Z. H. Li, G. S. Zhou and K. Nakkeeran. "Exact soliton solutions for the core of dispersion-managed solitons". Phys. Rev. E, 2003, 68, 4, 046605 (1-8).
    [35] A. Uthayakumar, K. Porsezian and K. Nakkeeran. "Soliton aspects of inhomogeneous coupled nonlinear Schrodinger equations in optical fibre". J. Pure Appl. Opt., 1998,7, 1459-1464.
    [36] L. E. Mollenauer, R. H. Stolen, J. P. Gordon and W. J. Tomlinson. "Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers". Opt. Lett., 1983,8,5,289-291.
    [37] A. S. Gouveia-Neto, A. S. L. Gomes and J. R. Taylor. "Generation of 33-fsec pulses at 1.32 m through a higher-order soliton effect in a single-mode optical fiber". Opt. Lett., 1987, 12,6,395-397.
    
    [38] S. A. Aklunanov,V. A. Vysolukh and A. S. Chirkin. New York, AIP Press, 1992.
    [39] E. M. Dianov, A. B. Grudinin, A. M. Prokhorov and V. N. Serkin. in: J.R. Taylor (Ed.), "Optical Solitons - Theory and Experiment". Cambridge, Cambridge University Press, 1992, p. 1, Chapter 7.
    [40] N. A. Olsson and G. P. Agrawal. "Spectral shift and distortion due to self-phase modulation of picosecend pulses in 1.5 μm optical amplifiers". Appl. Phys. Lett., 1989,55,1,13-15.
    [41] S. V. Chernikov, E. M. Dianov, D. J. Richardson and D. N. Payne. "Soliton pulse compression in dispersion-decreasing fiber". Opt. Lett., 1993, 18, 7, 476-478.
    [1] S. Tanev and D. I. Pushkarov. "Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibres and waveguides". Opt. Commun., 1997, 141, 5-6, 322-328.
    
    [2] Kh. I. Pushkarov, D. I. Pushkarov and I. V. Tomov. "Self-action of light beams in nonlinear media: soliton solutions". Opt. Quantum Electron., 1979, 11, 471-478.
    [3] Kh. I. Pushkarov and D. I. Pushkarov. "Soliton Solutions in Some Non-Linear Schrodinger-Like Equations". Rep. Math. Phys., 1980, 17, 1, 37-40.
    [4] N. Akhmediev and A. Ankiewicz. "Solitons: Nonlinear Pulses and Beams". London, Chapman & Hall, 1997.
    [5] D. I. Pushkarov and S. Tanev. "Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities". Opt. Commun., 1996, 124, 3-4, 354-364.
    [6] Pavel Honzatko. "Interaction of two quasi-solitons in semiconductor-doped optical fibres". Opt. Commun., 1996,127,4-6, 363-371. [7] V. N. Serkin, V. M. Chapela, J. Percino and T. L. Belyaeva. "Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides". Opt. Commun., 2001,192, 3-6, 237-244.
    [8] M. Segev and G. Stegeman. "Self-trapping of optical beams: spatial solitons". Phys. Today, 1998, 51,8,42-48.
    [9] B. L. Lowrence and G. I. Stegeman. "Two-dimensional bright spatial solitons stable over limited intensities and ring formation in polydiacetylene para-toluenesulfonate". Opt. Lett., 1998,23,8,591-593.
    [10] V. N. Serkin, M. Matsumoto and T. L. Belyaeva. "Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers". Opt. Commun., 2001, 196, 1-6, 159-171.
    
    [11] V. N. Serkin, A. Hasegawa and T. L. Belyaeva. "Comment on "Exact Self-Similar Solutions of the Generalized Nonlinear Schrodinger Equation with Distributed Coefficients". Phys. Rev. Lett., 2004, 92, 19, 199401.
    
    [12] V. I. Kruglov, A. C. Peacock and J. D. Harvey. "Kruglov et al. Reply:". Phys. Rev. Lett., 2004, 92, 19, 199402.
    [13] V. N. Serkin and A. Hasegawa. "Novel Soliton Solutions of the Nonlinear Schrodinger Equation Model". Phys. Rev. Lett., 2000, 85, 21, 4502-4505; "Soliton Management in the Nonlinear Schrodinger Equation Model with Varying Dispersion, Nonlinearity, and Gain". JETP Lett., 2000, 72, 2, 89-92; "Exactly Integrable Nonlinear Schrodinger Equation Models With Varying Dispersion, Nonlinearity and Gain: Application for Soliton Dispersion Managements". IEEE Journal of Selected Topics In Quantum Electronics, 2002, 8, 3, 418-431.
    
    [14] S. L. Palacios and J. M. Fernandez-Diaz. "Black optical solitons for media with parabolic nonlinearity law in the presence of fourth order dispersion". Opt. Commun, 2000, 178, 4-6, 457-460.
    
    [15] A. Mostofi, H. Hatami-Hanza and P. L. Chu. "Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers". IEEE J.Quantum Electron, 1997, 33,4, 620-628.
    
    [16] V. N. Serkin and T. L. Belyaeva. "High-Energy Optical Schrodinger Solitons". JETP Lett, 2001, 74, 12, 573-577; "Optimal control of optical soliton parameters: Part 1.The Lax representation in the problem of soliton management". Quantum Electron, 2001, 31, 11, 1007-1015.
    
    [17] V. I. Kruglov, A. C. Peacock and J. D. Harvey. "Exact Self-Similar Solutions of the Generalized Nonlinear Schrodinger Equation with Distributed Coefficients". Phys. Rev. Lett, 2003, 90, 11, 113902(1-4); "Exact solutions of the generalized nonlinear Schrodinger equation with distributed coefficients". Phys. Rev. E, 2005, 71, 5,056619(1-11).
    [1] 李禄.光脉冲在光纤中传输特性的理论研究.1.太原,山西大学博士研究生学位论文,2004,4-4.
    [2] K. Porsezian and K. Nakkeeran. "Optical Solitons in Presence of Kerr Dispersion and Self-Frequency Shift". Phy. Rev. Lett., 1996, 76, 21, 3955-3958.
    [3] Z.Y. Chen and N. N. Huang. "Explicit N-soliton solution of the modified nonlinear Schrodinger equation". Phys. Rev. A, 1990, 41, 7, 4066-4069.
    [4] R. Hirota. "Exact envelope-soliton solutions of a nonlinear wave equation". J. Math. Phys. (N. Y.), 1973, 14, 7, 805-809.
    [5] N. Sasa and J. Satsuma. "New-Type of Solitons for a Higher-Order Nonlinear Schrodinger equation". J. Phy. Soc. Jpn., 1991, 60, 2, 409-417.
    [6] S. Liu and W. Z. Wang. "Exact N-soliton solutions of the extended nonlinear Schrodinger equation". Phys. Rev. E, 1994, 49, 6, 5726-5730.
    [7] J. Kim, Q. H. Park and H. J. Shin. "Conservation laws in higher-order nonlinear Schrodinger equations". Phys. Rev. E, 1998, 58, 5, 6746-6751.
    [8] M. Gedalin, T. C. Scott and Y. B. Band. "Optical Solitary Waves in the Higher Order Nonlinear Schrodinger Equation". Phys. Rev. Lett., 1997, 78, 3,448-451.
    [9] Z.H. Li, G. S. Zhou and D. C. Su. "N-soliton solution in the higher order nonlinear Schrodinger equation". SPIE Proc.(SPIE, Belingham), 1998, 3552, 226-231.
    [10] S. L. Palacios, A. Guinea, J. M. Fernandez-Diaz and R. D. Crespo. "Dark solitary waves in the nonlinear Schrodinger equation with third order dispersion, self-steepening, and self-frequency shift". Phys. Rev. E, 1999, 60, 1, R45-R47.
    [11] A. Mahalingam and K. Porsezian. "Propagation of dark solitons with higher-order effects in optical fibers". Phys. Rev. E, 2001, 64, 4, 046608(1-9).
    [12] V. I. Karpman, J. J. Rasmussen and A.G. Shagalov. "Dynamics of sotitons and quasisolitons of the cubic third-order nonlinear Schrodinger equation". Phys. Rev. E, 2001, 64, 2, 026614(1-13).
    [13] Z. H. Li, L. Li, H. R Tian, G. S. Zhou and K. H. Spatschek. "Chirped Femtosecond Solitonlike Laser Pulse Form with Self-Frequency Shift". Phys. Rev. Lett., 2002, 89, 26,263901(1-4).
    [14] W. E Hong. "Optical solitary wave solutions for the higher order nonlinear Schrodinger equation with cubic-quintic non-Kerr terms". Opt. Commun., 2001, 194, 1-3,217-223.
    [15] Y. Kodama, M. Romagnoli, S. Wabnitz and M. Midrio. "Role of third-order dispersion on soliton instabilities and interactions in optical fibers". Opt. Lett., 1994, 19,3,165-167.
    [16] L. Li, Z. H. Li, Z.Y. Xu, G. S. Zhou and K. H. Spatschek. "Gray optical dips in the subpicosecond regime". Phys. Rev. E, 2002, 66, 4, 046616(1-8).
    [17] B. Xu and W. Wang. "Traveling-wave method for solving the modified nonlinear Schrodinger equation describing soliton propagation along optical fibers". Phys. Rev. E, 1995,51,2, 1493-1498.
    [18] M. J. Potasek and M. Tabor. "Exact solutions for an extended nonlinear Schrodinger equation". Phys. Lett. A, 1991, 154, 9,449-452.
    [19] D. Mihalache, N. Truta and L.-C. Crasovan. "Painleve analysis and bright solitary waves of the higher-order nonlinear Schrodinger equation containing third-order dispersion and self-steepening term". Phys. Rev. E, 1997, 56, 1, 1064-1070.
    [20] J. R. de Oliveira and M.A.de Moura. "Analytical solution for the modified nonlinear Schrodinger equation describing optical shock formation". Phys. Rev. E, 1998, 57, 4, 4751-4756.
    [21] E. M. Gromov, L. V. Piskunova and V. V. Tutin. "Dynamics of wave packets in the frame of third-order nonlinear Schrodinger equation". Phys. Lett. A, 1999, 256, 2-3, 153-158.
    [22] Z. H. Li, L. Li, H. P. Tian and G. S. Zhou. "New Types of Solitary Wave Solutions for the Higher Order Nonlinear Schrodinger Equation". Phys. Rev. Lett., 2000, 84, 18, 4096-4099.
    [23] E. Papaioannou, D. J. Frantzeskakis and K. Hizanidis. "An analytical treatment of the effect of axial inhomogeneity on femtosecond solitary waves near the zero dispersion point". IEEE J. Quantum Electron., 1996, 32, 1, 145-154.
    [24] M. Lakshmanan and S. Ganesan. "Geometrical and gauge equivalence of the generalized Hirota, Heisenberg and Wkis equations with linear inhomogeneities". PhysicaA, 1985, 132, 1,117-142.
    [25] A. Hasegawa and Y. Kodama. "Solitons in Optical Communications". Oxford, Oxford University Press, 1995.
    
    [26] G. P. Agrawal. "Nonlinear Fiber Optics". New York, Academic Press, 1995.
    [27] M. Nakazawa, H. Kubota, K. Suzuki and E. Yamada. "Recent progress in soliton transmission technology". Chaos, 2000, 10, 3, 486-514.
    [28] A. Hasegawa. "Quasi-soliton for ultra-high speed communications". Physica D (Amsterdam), 1998, 123, 1-4, 267-270.
    [29] T. I. Lakoba and D. J. Kaup. "Hermite-Gaussian expansion for pulse propagation in strongly dispersion managed fibers". Phys. Rev. E, 1998, 58, 5, 6728-6741.
    [30] K. Porsezian and K. Nakkeeran. "Solitons in random nonuniform erbium doped nonlinear fiber media". Phys. Lett. A, 1995, 206, 3-4, 183-186.
    [31] V. N. Serkin and A. Hasegawa. "Novel Soliton Solutions of the Nonlinear Schrodinger Equation Model". Phys. Rev. Lett., 2000, 85, 21, 4502-4505; "Soliton Management in the Nonlinear Schrodinger Equation Model with Varying Dispersion, Nonlinearity, and Gain". JETP Lett., 2000, 72, 2, 89-92; "Exactly Integrable Nonlinear Schrodinger Equation Models With Varying Dispersion, Nonlinearity andGain: Application for Soliton Dispersion Managements". IEEE Journal of Selected Topics In Quantum Electronics, 2002, 8, 3, 418-431.
    [32] V. N. Serkin and T. L. Belyaeva. "High-Energy Optical Schrodinger Solitons". JETP Lett., 2001,74, 12, 573-577; "Optimal control of optical soliton parameters: Part 1.The Lax representation in the problem of soliton management". Quantum Electron., 2001,31,11,1007-1015.
    [33] V. I. Kruglov, A. C. Peacock and J. D. Harvey. "Exact Self-Similar Solutions of the Generalized Nonlinear Schrodinger Equation with Distributed Coefficients". Phys. Rev. Lett., 2003, 90, 11, 113902(1-4); "Exact solutions of the generalized nonlinear Schrodinger equation with distributed coefficients". Phys. Rev. E, 2005, 71, 5, 056619(1-11).
    [34] F. Abdullaeev. "Theory of solitons in inhomogeneous media". New York, Wiley, 1994.
    [35] V. B. Matveev and M.A. Salli. "Darboux Transformations and Solitons". Berlin, Springer Series in Nonlinear Dynamics, Springer, 1991.
    [36] Z. Y. Xu, L. Li, Z. H. Li and G. S. Zhou. "Soliton interaction under the influence of higher-order effects". Opt. Commun., 2002, 210, 3-6, 375-384; "Modulation instability and solitons on a cw background in an optical fiber with higher-order effects". Phys. Rev. E, 2003, 67, 2, 026603(1-7).
    [37] Z. Y. Xu, L. Li, Z. H. Li, G. S. Zhou and K. Nakkeeran. "Exact soliton solutions for the core of dispersion-managed solitons". Phys. Rev. E, 2003, 68, 4, 046605(1-8).
    [38] L. Li, Z. H. Li, S. Q. Li and G. S. Zhou. "Modulation instability and solitons on a cw background in inhomogeneous optical fiber media". Opt. Commun., 2004, 234, 1-6, 169-176.
    [1] D. N. Christodoulides and R. I. Joseph. "Discrete self-focusing in nonlinear arrays of coupled waveguides". Opt. Lett., 1988, 13, 9, 794-796.
    
    [2] D. N. Christodoulides, F. Lederer and Y. Silberberg. "Discretizing light behaviour in linear and nonlinear waveguide lattices". Nature, 2003, 424, 6950, 817-823.
    [3] H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd and J. S. Aitchison. "Discrete Spatial Optical Solitons in Waveguide Arrays". Phys. Rev. Lett., 1998, 81, 16,3383-3386.
    [4] W. Krolikowski, U. Trutschel, M. Cronin-Golomb and S. Schmidt-Hattenberger. "Solitonlike optical switching in a circular fiber array". Opt. Lett., 1994, 19, 5, 320-322.
    [5] R. Muschall, C. Schmidt-Hattenberger and F. Lederer. "Spatially solitary waves in arrays of nonlinear waveguides". Opt. Lett., 1994, 19, 5, 323-325.
    [6] A. B. Aceves, C. De Angelis, S. Trillo and S. Wabnitz. "Storage and steering of self-trapped discrete solitons in nonlinear waveguide arrays". Opt. Lett., 1994, 19, 5, 332-334.
    [7] W. Krolikowski and Y. S. Kivshar. "Soliton-based optical switching in waveguide arrays". J. Opt. Soc. Am. B, 1996, 13, 5, 876-887.
    [8] O. Bang and P. D. Miller. "Exploiting discreteness for switching in waveguide arrays". Opt. Lett., 1996, 21, 15, 1105-1107.
    [9] T. Pertsch, U. Peschel and F. Lederer. "All-optical switching in quadratically nonlinear waveguide arrays". Opt. Lett., 2003, 28, 2, 102-104.
    [10] D. N. Christodoulides and E. D. Eugenieva. "Blocking and Routing Discrete Solitons in Two-Dimensional Networks of Nonlinear Waveguide Arrays". Phys. Rev. Lett., 2001, 87, 23, 233901(1-4); "Minimizing bending losses in two-dimensional discrete soliton networks". Opt. Lett., 2001, 26, 23,1876-1878.
    
    [11] R. Scharf and A. R. Bishop. "Length-scale competition for the one-dimensional nonlinear Schrodinger equation with spatially periodic potentials". Phys. Rev. E, 1993,47,2,1375-1383.
    
    [12] O. Cohen, T. Schwartz, J. W. Fleischer, M. Segev and D. N. Christodoulides. "Multiband Vector Lattice Solitons". Phys. Rev. Lett., 2003, 91, 11, 113901(1-4).
    [13] Y. V. Kartashov, A. S. Zelenina, L. Torner and V. A. Vysloukh. "Spatial soliton switching in quasi-continuous optical arrays". Opt. Lett., 2004, 29, 7, 766-768.
    [14] N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer and M. Segev. "Discrete solitons in photorefractive optically induced photonic lattices". Phys. Rev. E, 2002,66,4, 046602(1-5).
    [15] J. W. Fleischer, M. Segev, N. K. Efremidis and D. N. Christodoulides. "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices". Nature, 2003,422, 01452, 147-150.
    [16] D. Neshev, E. Ostrovskaya, Y. Kivshar and W. Krolikowski. "Spatial solitons in optically induced gratings". Opt. Lett., 2003, 28, 9, 710-712.
    [17] A. A. Sukhorukov and Y. S. Kivshar. "Spatial optical solitons in nonlinear photonic crystals". Phys. Rev. E, 2002, 65, 3, 036609(1-14).
    [18] H. H. Chen and C. S. Liu. "Solitons in Nonuniform Media". Phys. Rev. Lett., 1976, 37,11,693-697.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700