用户名: 密码: 验证码:
基于1,3-金刚烷二甲酸配位聚合物的构筑及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计和合成具有新颖结构和性质的配位聚合物已经展现了许多激动人心的新前景。最近,人们对设计和合成具有特定结构的金属有机框架的研究尤为火热。这不仅仅是因为它们有迷人的结构,更为重要的是它们在气体吸附,分子筛,离子交换和催化等方面有重要的潜在应用价值。然而,带有独特结构和功能的金属有机框架的自组装被许多因素所影响,如金属与有机配体的摩尔比,有机配体的本性,金属离子,体系中的溶剂分子,反应的温度,补偿离子和pH值等。因此,在现阶段去合成预知产物仍然是一项很大的挑战。本论文是在晶体工程组装原理的指导下,以1,3-金刚烷二甲酸配体为结构基块,通过选择特定的辅助配体和金属离子,合成得到了十六例配合物:{[Ag6(ADC)3(H2O)1.5]2·5.18H20}n (1),{[Ag(bpa)(HADC)]}n (2), {[Ag(bpp)(HADC)]·CH3OH}n (3),{[Ag4(bpe)3(ADC)2]·2H2O}n (4), {[Ag(bipy)(HADC)]·H2O}n (5),{[Ag2(bipy)2(ADC)]·6H2O}n (6), [Ag8(bpdap)4(ADC)4]·2C2H5OH·6H2O (7), [Zn(phen)(ADC)(H2O)]2·CH3OH (8), {[Zn(ADC)(bpe)]·H2O}n (9),{[Zn(ADC)(bipy)]·2H2O}.(10),{[Zn(ADC)(bpa)]2·5H2O}n(11), {[Zn(ADC)(bpp)]2·CH3OH}n (12),{[Zn(ADC)(bpp)]}n (13) {[Co(ADC)(bpp)(CH3OH)(H2O)].CH3OH·2H2O}n (14),{[Co(ADC)(bpp)]}n (15)和{[Cd2(ADC)2(bpp)3(H2O)]2·8H2O}n(16).X-对线单晶衍射分析结果表明:配合物1与配合物4分别是六核和四核的银簇;配合物2和配合物3为双核结构;配合物5和6为一维的无限链结构;而配合物7为不连续的八核银单元;配合物8为双核的寡聚物;配合物9是二维的层结构;配合物10和11结构类似,为一维链结构;配合物12是二维的带着(4,4)拓扑的二重穿插网络:配合物13,14和15均有手性空间群P212121,配合物13和15在本质上是同构的,都具有三重穿插的三维金刚烷网络结构;而配合物14为二维的格子结构;配合物16是维的带有内消旋结构的金属有机纳米管道。此外,运用元素分析、红外光谱、荧光光谱、热分析、X-射线粉末衍射等技术对配合物的性质进行了表征。
Design and synthesis of the coordination polymers exhibiting novel structures and properties have provided exciting new prospects. Recently, considerable progress has been made in the design and synthesis of specific metal-organic frameworks (MOFs) which are highly active areas of investigation because of their intriguing structures and, more importantly, their potential applications in gas storage, molecular sieves, ion exchange, and catalysis. However, the self-assembly of MOFs with unique structure and function is influenced by many factors, such as the metal-to-ligand molar ratio, the nature of organic ligands, metal ions, solvent molecules, reaction temperature, counterion, and pH value of the solution. Therefore, it is a great challenge to synthesize the predicted products at this stage. In this paper, we select 1,3-adamantanedicarboxylic acid as building blocks to construct coordination polymers with selected transition metal ions and auxiliary ligands guided by assembly principle of coordination polymer crystal engineering. We have synthesized 16 coordination polymers. They are listed as follows:complexes 1 and 4 are formed by hexanuclear and tetranuclear Ag(I) clusters with weak Ag-Ag interactions; complexes 2 and 3 are dinuclear structures; 5 and 6 exhibit an infinite 1D chain structure,; whereas 7 is a discrete octanuclear Ag(Ⅰ) unit; complex 8 forms a OD dinuclear with closed loop unit; the complex 9 is a 2D layer framework.; compounds 10 and 11 are isomorphous with a small discrepancy and present one-dimensional chain-like structures; compound 12 is a 2D interpenetrated network with (4,4) topology; compounds 13,14 and 15 crystallize in a chiral space group P212121. The high dimensional 13 and 15are essentially isostructural, and present a 3-fold interpenetrated 3D diamondoid network; whereas 14 exhibits a 2D grid layer with left-handed helical chain; compound 16 is a meso-helical one-dimensional structure showing independent metal-organic nanotube (MONT). Furthermore, the elemental analysis, IR spectra, thermal stability, X-ray powder diffraction and the luminescent properties for the compounds are also discussed.
引文
[1]盂庆金,藏安邦.配位化学的创始与现代化[M].北京高等教育出版社,1998
    [2]Lehn J. M. Supramolecular Chemistry-Scope and Perspectives Molecules Supermolecules, and Molecular Devieea (Nobel Leeture)[J]. Angew. Chem. Int. Ed. 1998(27):89-112
    [3]Lehn J. M. Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization[J]. Angew. Chem. Int. Ed, 1990(29):1304-1319
    [4]Konstantinos D., Demadis., Maria Papadaki., et al. Stepwise Topotactic Transformations (1D to 3D) in Copper Carboxyphosphonate Materials:Structural Correlations[J]. Crystal Growth & Design,2010,10:357-364
    [5]Luan X. J., Wang Y. Y., Li D. S., et al. Self-Assembly of an Interlaced Triple-Stranded Molecular Braid with an Unprecedented Topology through Hydrogen-Bonding Interactions [J]. Angew. Chem. Int. Ed.,2005,44:3864-3867
    [6]Eugenio C, Carlos M. G., Jose R., et al. Polymetallic Oxalate-Based 2D Magnets:Soluble Molecular Precursors for the Nanostructuration of Magnetic Oxides[J].2010,132:5456-5468
    [7]Yu Q., Zeng Y. F., Zhao J. P., et al. Zeolite-like Metal-Organic Framework Based on a Flexible 2-(1H-benzimidazol-2-ylthio)acetic Ligand:Synthesis, Structures, and Properties[J]. Cryst. Growth Des,2010,10:1878-1884
    [8]Yue Q., Sun Q., Cheng A. L., et al. Metal-Organic Framework Based on [Zn4O(COO)6] Clusters:Rare 3D Kagome Topology and Luminescence [J]. Cryst. Growth Des,2010,10: 44-47
    [9]Lu W. G., Su C. Y., Lu T. B., et al. Two Stable 3D Metal-Organic Frameworks Constructed by Nanoscale Cages via Sharing the Single-Layer Walls[J]. J. Am. Chem. Soc, 2006,128:34-35
    [10]Su C. Y., Mark D., Smith., et al. A Three-Dimensional, Noninterpenetrating Metal Organic Framework with the Moganite Topology:A Simple (42.62.82)(4.64.8)2 Net Containing Two Kinds of Topologically Nonequivalent Points[J]. Inorg. Chem.,2004,43:6881-6883
    [11]Wang H., Wang Y. Y., Yang G. P., et al. A series of intriguing metal-organic frameworks with 3,3',4,4'-benzophenonetetracarboxylic acid:structural adjustment and pH-dependence[J]. CrystEngComm.,2008,10:1583-1594
    [12]Ma L. F., Wang L. Y., Lu D. H., et al. Structural Variation from 1D to 3D:Effects of Temperature and pH Value on the Construction of Co(II)-H2tbip/bpp Mixed Ligands System[J]. Cryst. Growth Des.,2009,9:1741-1749
    [13]Liang K., Zheng H., Song Y., et al. Self-Assembly of Interpenetrating Coordination Nets Formed from Interpenetrating Cationic and Anionic Three-Dimensional Diamondoid Cluster Coordination Polymers[J]. Angew. Chem., Int. Ed.2004,43:5776-5779
    [14]Zhang J. P., Lin Y. Y., Huang X. C., et al. Copper(I) 1,2,4-Triazolates and Related Complexes:Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties[J]. J. Am. Chem. Soc.,2005,127:5495-5506
    [15]Ma B. Q., Sun H. L., Gao S. The design and synthesis of a non-centric diamond-like network based NH4+ ion[J]. Chem. Commun.,2003,17:2164-2165
    [16]Bu X. H., Tong M. L., Chang H. C., et al. A Neutral 3D Copper Coordination Polymer Showing 1D Open Channels and the First Interpenetrating NbO-Type Network[J]. Angew. Chem., Int. Ed.2004,43:192-195
    [17]Lu T. B., Xiang H., Luck R. L., et al. Molecular architecture via coordination and multi-intermolecular interactions:Synthesis, structures and magnetic properties of one-dimensional coordination polymers of macrocyclic nickel(II) complexes with terephthalate and trans-butene dicarboxylate[J]. Inorg. Chim. Acta.,2003,355,229
    [18]Hosseini M. W., Self-assembly and generation of complexity [J]. Chem. Commun,2005, 5825-5829
    [19]Han L., Zhou Y., Zhao W. N., et al. Assembly of Metal-Organic Frameworks with Helical Layer:From 2D Parallel Interpenetrated Layer to 3D Self-Penetrating Network[J]. Cryst. Growth Des.,2009,9:660-662
    [20]Xiao D. R., Wang E. B., An H. Y., et al. Assembly of Metal-Organic Frameworks with Helical Layer:From 2D Parallel Interpenetrated Layer to 3D Self-Penetrating Network[J]. Chem. Eur. J.2006,12:6528-6541
    [21]Ma L. F., Wang L. Y., Lu D. H., et al. Structural Variation from 1D to 3D:Effects of Temperature and Ph Value on the Construction of Co(II)-H2tbip/bpp Mixed Ligands System[J]. Cryst. Growth Des.,2009,9:1741-1749
    [22]Wen G. L., Wang Y. Y., Shi Q. Z., et al. Self-assembled coordination polymers of V-shaped bis(pyridyl)thiadiazole dependent upon the spacer length and flexibility of aliphatic dicarboxylate ligands [J]. CrystEngComm.,2010,12:1238-1251
    [23]Dikarev E. V., Zhang H. T., Li B., Heterometallic Bismuth-Transition Metal Homoleptic β-Diketonates[J]. J. Am. Chem. Soc.,2005,127:6156-6157
    [24]Kondo M., Shimamura M., Noro S. I., et al. Microporous Materials Constructed from the Interpenetrated Coordination Networks. Structures and Methane Adsorption Properties [J]. Chem. Mater.2000,12:1288-1299
    [25]Zheng X., Sun C., Lu S., et al. New Porous Lanthanide Organic Frameworks [J]. Eu. J. Inorg. Chem.,2004:3262-3268.
    [26]Rosini E. J., Eddaoudi M., et al. Hydrogen Storage in Mieroporous Metal-Organic Frameworks[J]. Science,2003,300:1127-1129
    [27]Muler U., Hesse M., Lobitee K., et al. Organometallic Building Materials and Method for Producing the Same:US,2004009724[P].2004-05-20
    [28]Snejko N., Cascales C., From rational octahedron design to reticulation serendipity. A thermally stable rare earth polymeric disulfonate family with Cd12-like structure. bifunctional catalysis and optical properties [J]. Chem. Commun.2002,13:1366-1367
    [29]Fournier N. C., Lhoste, Sinou D., Palladium (0)-catalysed synthesis of cis-and trans-linalyl oxides[J]. Tetrahedmn,1997,53(12):4353-4362
    [30]Vidari G., Dirosa A., Zanoni G., et al. Enantioselective synthesis of each stereoisomer of the pyranoid linalool oxides:the linalool route[J]. Tetrahedron:Asymmetry,1999,10: 3547-3557
    [31]Vidari G., Dirosa A., Castronovo F., at al. Enantioaelectire synthesis of each stereoisomer of the pyranoid linalcol oxides:the geraniol route[J]. Tatrahedron:Asymmetry, 2000,11:981-989
    [32]Rowsell J. L. C., Yaghi O. M. Strategies for Hydrogen Storage in Metal-Organic Frameworks[J]. Angew. Chem., Int. Ed. Engl.,2005,44:4670-4679
    [33]Kou Hui-Zhong., Gao Song., Ma Bao-Qing., et al. Crystal Structure and Magnetic Properties of a New Two-dimensional Cyano-bridged Bimetallic Assembly [NiL]3 [Cr(CN)5(NO)]2·10H2O(L=3,10-dimethyl-1,3,5,8,10,12-hexaazacyclotetradecane)[J]. Chem. Commun.,2000,8:713-714
    [34]Wang Z. M., Zhang B., Fujiwara H., et al. Mn3(HC00)6:a 3D porous magnet of diamond nework with nodes of Mn-centered MnMn4 tetrahedron and guest-modulated ordering temperature [J]. Chem. Commun.,2004,4:416-417
    [35]Fennir H., Mathivanan P., Vidale K. L., et al. Helical Rosette Nanotubes:Design, Self-Assembly, and Characterization[J]. J. Am. Chem. Soc.,2001,123:3854-3855
    [36]Kraus T., Budesinsky M., Cisarova I., et al. Per(6-amino-2-O-carboxymethyl-6-deoxy-3-O-methyl)-a-cyclodextrin:Helical Self-Assembly of a Polyionic Amino Acid into Nanotubes [J]. Angew. Chem., Int. Ed.2002, 41:1715-1717
    [37]Hong B. H., Lee J. Y., Lee C. W et al. Self-Assembled Arrays of Organic Nanotubes with Infinitely Long One-Dimensional H-Bond Chains[J]. J. Am. Chem. Soc.,2001,123: 10748-10749
    [38]Zhang S. Y., Lan J. B., Mao Z. H., et al. Crystal Water of Cadmium Acetate-Dependent Formation of One-Dimensional Channel Structure Based on 4,4'-bis(1-Imidazolyl)biphenyl[J]. Cryst.Growth Des.,2008,8:3134-3136
    [39]Akhter Z., Ingham S. L., Lewis J., Raithby P. R., [Os10(CO)24{Au(PPh2R)}4], A Tubular Heterobimetallic Carbonyl-Osmium[J]. Angew. Chem., Int. Ed.1996,35:992-993
    [40]Bonavia G., Haushalter R. C., O'Connor C. J., et al. Hydrothermal synthesis and structural characterization of a tubular oxovanadium organophosphonate, (H3O)[(V3O4)(H2O)(PhPO3)3]·xH2O(x=2.33)[J]. Chem. Commun.,1998,2187-2188
    [41]Aranda M. A. G., Cabeza A., Bruque S., et al. Clearfield A., Polymorphism and Phase Transition in Nanotubular Uranyl Phenylphosphonate:(UO2)3(HO3PC6H5)2(O3PC6H5)2·H2O[J]. Inorg. Chem.,1998,37: 1827-1832
    [42]Ghosh S., Bharadwaj P. K., Coordination Polymers of La(Ⅲ) as Bunched Infinite Nanotubes and Their Conversion into an Open-Framework Structure[J]. Inorg. Chem.,2005, 44:3156-3161
    [43]Benmerad B., Clair P., Armspach D., et al. Sulfur-capped cyclodextrins:a new class of cavitands with extroverted as well as introverted donor functionalities [J]. Chem. Commun., 2006,2678-2680
    [44]Zhang H. T., Li Y. Z., Wang T. W., et al. A ZnⅡ-Based Chiral Crystalline Nanotube[J]. Eur. J. Inorg. Chem.,2006,3532-3536
    [45]Wang R. H., Hong M. C., Luo J. H., et al. A new type of three-dimensional framework constructed from dodecanuclear cadmium(Ⅱ) macrocycles[J]. Chem. Commun.,2003, 1018-1019
    [46]Hong M. C., Zhao Y. J., Su W. P., et al. A Silver(Ⅰ) Coordination Polymer Chain Containing Nanosized Tubes with Anionic and Solvent Molecule Guests[J]. Angew. Chem., Int. Ed.2000,39:2468-2470
    [47]Su C. Y., Goforth A. M., Smith M. D., et al. Exceptionally Stable, Hollow Tubular Metal-Organic Architectures:Synthesis, Characterization, and Solid-State Transformation Study[J]. J. Am. Chem. Soc.,2004,126:3576-3586
    [48]Zhao B., Cheng P., Dai Y., et al. A Nanotubular 3D Coordination Polymer Based on a 3d-4f Heterometallic Assembly[J]. Angew. Chem., Int. Ed.2003,42:934-936
    [49]Su C. Y., Smith M. D., zur Loye H. C., et al. Columnar Supramolecular Architecture Self-Assembled from S4-Symmetric Coordination Nanotubes Encapsulating Neutral Guest Molecules[J]. Angew. Chem., Int. Ed.2003,42:4085-4089
    [50]Xia J., Shi W., Chen X. Y., et al. A CNT-like coordination tube with cyano-bridges[J]. Dalton Trans.,2007,2373-2375
    [51]Jensen P., Batten S. R., Moubaraki B., et al. Infinite molecular tubes:structure and magnetism of M(dca)2(apym) [M=Co, Ni, apym=2-aminopyrimidine, dca=dicyanamide, N(CN)2][J]. Chem. Commun.,2000,793-794
    [52]Wang X. L., Qin C., Wang E. B., et al. Carlucci L., Entangled Coordination Networks with Inherent Features of Polycatenation, Polythreading, and Polyknotting[J]. Angew. Chem., Int. Ed.2005,44:5824-5827
    [53]Cao X. Y., Zhang J., Cheng J. K., et al. Co-chelation of a scorpion-shaped carboxylate ligand and phenanthroline lead to a 2-D interpenetratively tubular architecture [J]. CrystEngComm.,2004,6:315-317
    [54]Dai F. N., He H. Y., Sun D. F., A Metal-Organic Nanotube Exhibiting Reversible Adsorption of (H2O)12 Cluster[J]. J. Am. Chem. Soc.,2008,130:14064-14065
    [55]Huang K.-L., Liu X., Chen X., et al. Spontaneous Assembly of 63 Topological Metal-Organic Nanotubes with Distinct Asymmetric Subunits for the Construction of Hydrophilic Intertube Channels Encapsulating Rare Helical Water-Chains[J]. Cryst.Growth Des.,2009,9:1646-1650
    [56]Qin C., Wang X. L., Carlucci L., et al. From arm-shaped layers to a new type of polythreaded array:a two fold interpenetrated three-dimensional network with a rutile topology[J]. Chem. Commun.2004,1876
    [57]Eddaoudi M., Moler D. B., Li H., et al. Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks[J]. Acc. Chem. Res.2001,34:319-330
    [58]Horike S., Matsuda R., Tanaka D., et al. Dynamic Motion of Building Blocks in Porous Coordination Polymers [J]. Angew. Chem. Int. Ed.2006,45:7226-7230
    [59]Pan B., Parker X., Huang D. H., et al. Zn(tbip) (H2tbip= 5-tert-Butyl Isophthalic Acid):A Highly Stable Guest-Free Microporous Metal Organic Framework with Unique Gas Separation Capability [J]. J. Am. Chem. Soc.2006,128:4180-4181
    [60]Das S., Banerjee P., Peng S. M., et al. Mononuclear to Polynuclear Transition Induced by Ligand Coordination:Synthesis, X-ray Structure, and Properties of Mono-, Di-, and Polynuclear Copper(II) Complexes of Pyridyl-Containing Azo Ligands[J]. Inorg. Chem., 2006,45:562-570.
    [61]Wang Y. T., Fan H. H., Wang H. Z., et al. A Solvothermally in Situ Generated Mixed-ligand Approach for NLO-Active Metal-Organic Framework Materials[J]. Inorg. Chem.,2005,44:4148-4150.
    [62]Mrozinski J., New trends of molecular magnetism[J]. Coord. Chem. Rev.2005,249: 2534-2548
    [63]Murugesu M., Wernsdorfer W., Abboud K. A., et al. New Structural Motifs in Manganese Single-Molecule Magnetism from the Use of Triethanolamine Ligands[J]. Angew. Chem. Int. Ed.2005,44:892-896
    [64]Foguet A. D., OBrien T. A., Wernsdorfer W., et al. DFT Computational Rationalization of an Unusual Spin Ground State in an Mn12 Single-Molecule Magnet with a Low-Symmetry Loop Structure[J]. Angew. Chem. Int. Ed.2005,44:897-901.
    [65]Millange F., Serre C., Marrot J., et al. Synthesis, structure and properties of a three-dimensional porous rare-earth carboxylate MIL-83(Eu):Eu2(O2C-C10H14-CO2)3[J]. J. Mater. Chem.,2004,14:642-645
    [66]Nielsen R. B., Kongshaug K. O., Fjellvag H., et al. synthesis, crystal structure and thermal properties of the layered metal-organic compound Zn(C12H14O4)[J]. J. Mater. Chem.,2008,18: 1002-100
    [1]Chen B., Eddaoudi M., Hyde T., et al. Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores[J]. Science.,2001,291:1021-1023
    [2]Davis M. E. Ordered porous materials for emerging applications[J]. Nature.,2002,417: 813-821
    [3]Huang X. C., Chen X. M. A New Route to Supramolecular Isomers via Molecular Templating:Nanosized Molecular Polygons of Copper(I) 2-Methylimidazolates[J]. J. Am. Chem. Soc.,2004,126:13218-13219
    [4]Catalano V. J., Zhang J. P., Chen X. M. A New Route to Supramolecular Isomers via Molecular Templating:Nanosized Molecular Polygons of Copper(I) 2-Methylimidazolates[J]. J. Am. Chem. Soc.,2004,126:13218-13219
    [5]Cingolani A., Galli S., Masciocchi N., et al. Sorption-Desorption Behavior of Bispyrazolato-Copper(Ⅱ) 1D Coordination Polymers[J]. J. Am. Chem. Soc.,2005,127: 6144-6145
    [6]Dikarev E. V., Zhang H. T., Li B. Heterometallic Bismuth-Transition Metal Homoleptic β-Diketonates[J]. J. Am. Chem. Soc.,2005,127:6156-6157
    [7]Biradha K., Fujita M., Selective formation of rectangular grid coordination polymers with grid dimensions 10x15,10x20 and 15x20 A[J]. Chem. Commun.,2001,15-16
    [8]Kitagawa S., Kitaura R., Noro S., Functional porous coordination polymers[J]. Angew. Chem. Int. Ed.,2004,43:2334-2375
    [9]Chen C. L., Goforth A. M., Smith M. D., et al. Co2(PPCA)2(H20)(V4012)0.5:A New Framework Material Exhibiting Reversible Shrinkage and Expansion Via a Single Crystal to Single Crystal Transformation Involving a Change in the Cobalt Coordination Environment (PPCA=4-(Pyridin-4-yl)Pyridine-2-Carboxylic Acid)" [J].Angew. Chem. Int. Ed.,2005,44: 6673-6677
    [10]Luan X. J., Wang Y. Y., Li D. S., et al. Self-Assembly of an Interlaced Triple-Stranded Molecular Braid with an Unprecedented Topology through Hydrogen-Bonding Interactions[J]. Angew. Chem. Int. Ed.,2005,44:3864-3867
    [11]Wu W. P., Wang Y. Y., Wang C. J., et al. Structural characterization and luminescence behavior of a 2D silver (I) coordination polymer assembled from pyridine-2,6-dicarboxylic acid N-oxide[J]. Inorg. Chem. Commun.,2006,9:645-648
    [12]Ma L. F., Wang L. Y., Huo X. K., et al. Chain, Pillar, Layer, and Different Pores:A N-[(3-Carboxyphenyl)-sulfonyl]glycine Ligand as a Versatile Building Block for the Construction of Coordination Polymers[J]. Cryst. Growth Des.,2008,8:620-628
    [13]Jin X., Xie X., Qian H., et al. Synthesis and crystal structure of a novel decanuclear silver cluster complex [Ag(SC6H2Pr31-2,4,6)]10·2CHCl3-C2H5OH[J]. Chem. Commun.,2002,600-601
    [14]Chen J. X., Xu Q. F., Xu Y., et al. Solid-State Reactions of AgAc with TabHPF6 at Room Temperature-Isolation and Structural Characterisation of an Unusual Octadecanuclear Silver Thiolate Cluster [Ag9(Tab)8(MeCN)8]2(PF6)18·4MeCN [Tab= 4-(trimethylammonio)benzenethiolate][J].Eur. J. Inorg. Chem.,2004,689:4247-4252
    [15]Fijolek H. G., Gonzalez-Duarte P., Park S. H., et al. Structure-Spectroscopy Correlations in Silver Thiolates:Application to the Structure of Silver 1,5-Pentanedithiolate[J]. Inorg. Chem.,1997,36:5299-5305
    [16]Jin X., Tang K., Liu W., et al. Formation and X-ray structure of a novel tetradecanuclear silver cluster complex, Ag14(μ6-S)(SPh)12(PPh3)8·4CH3OH·13H2O [J]. Polyhedron 1996,15: 1207-1211
    [17]Salgado M. T., Bacher K. L., Stillman M. J., Probing structural changes in the alpha and beta domains of copper-and silver-substituted metallothionein by emission spectroscopy and electrospray ionization mass spectrometry[J]. J. Biol. Inorg. Chem.,2007,12:294-312
    [18]Palacios O., Polec-Pawlak K., Lobinski R., et al. Is Ag(I) an adequate probe for Cu(I) in structural copper-metallothionein studies[J]. J. Biol. Inorg. Chem.,2003,8:831-842
    [19]Wang Z. Q., Kravtsov V. C., Zaworotko M. J. Ternary Nets formed by Self-Assembly of Triangles, Squares, and Tetrahedra[J]. Angew. Chem. Int. Ed.,2005,44:2877-2880
    [20]Vicente J., Gonzalez-Herrero P., Garcla-Sanchez Y., et al. Novel Types of Tetra-, Hexa-, Octa-, and Dodecanuclear Silver Clusters Containing (2,7-Di-tert-butylfluoren-9-ylidene)methanedithiolate[J]. Inorg. Chem.,2009,48:2060-2071
    [21]Chen Z. N., Zhao Z., Fan Y., et al. Luminescent groups 10 and 11 heteropolynuclear complexes based on thiolate or alkynyl ligands[J]. Coord. Chem. Rev.,2009,253:1-20
    [22]Branham M. R., Douglas A. D., Mills A. J., Tracy J. B., White P. S., Murray R. W., Arylthiolate-Protected Silver Quantum Dots[J]. Langmuir.,2006,22:11376-11383
    [23]Lu Y. L., Wu J. Y., Chan M. C., et al. Influence of Water Content on the Self-Assembly of Metal-Organic Frameworks Based on Pyridine-3,5-dicarboxylate[J]. Inorg. Chem.,2006, 45:2430-2437
    [24]Fenske D., Persau C., Dehnen S., et al. Syntheses and Crystal Structures of the Ag-S Cluster Compounds [Ag70S20(SPh)28(dppm)10] (CF3CO2)2 and [Ag262S100(StBu)62(dppb)6][J]. Angew. Chem., Int. Ed.,2004,43:305-309
    [25]Chen Y. B., Chen L., Wu L. M., Structure-Controlled Solventless Thermolytic Synthesis of Uniform Silver Nanodisks[J]. Inorg. Chem.,2005,44:9817-9822
    [26]Tong M. L., Wu Y. M., Ru J., et al. Pseudo-Polyrotaxane and β-Sheet Layer-Based Three-Dimensional Coordination Polymers Constructed with Silver Salts and Flexible Pyridyl-Type Ligands[J]. Inorg. Chem.2002,41:4846-4848
    [27]Viau G., Piquemal J. Y., Esparrica M., et al. Formation of assembled silver nanowires by reduction of silver thiolate in polyol/toluene medium[J]. Chem. Commun.,2003,42: 2216-2217
    [28]Young A. G., Hanton L. R., Square planar silver(Ⅰ) complexes:A rare but increasingly observed stereochemistry for silver(Ⅰ)[J]. Coord. Chem. Rev.,2008,252:1346-1386
    [29]Zheng S. L., Tong M. L., Chen X. M. Silver(Ⅰ)-hexamethylenetetramine molecular architectures:from self-assembly to designed assembly[J]. Coord. Chem. Rev.,2003,246: 185-202
    [30]Yaghi O. M., O'Keeffe M., Ockwig N. W., et al. Reticular Synthesis and the Design of New Materials[J]. Nature,2003,423:705-714
    [31]Rosi N. L., Eckert J., Eddaoudi M., et al. Hydrogen Storage in Microporous Metal-Organic Frameworks [J]. Science,2003,300:1127-1129
    [32]Eddaoudi M., Kim J., Wachter J. B., et al. Porous Metal-Organic Polyhedra:25 A Cuboctahedron Constructed from 12 Cu2(CO2)4 Paddle-Wheel Building Blocks[J]. J. Am. Chem. Soc.,2001,123:4368-4369
    [33]Rowsell J. L. C., Yaghi O. M. Strategies for Hydrogen Storage in Metal-Organic Frameworks [J]. Angew. Chem., Int. Ed. Engl.,2005,44(30):4670-4679
    [34]Robson R. A Net-based Approach to Coordination Polymer[J]. J. Chem. Soc, Dalton. Trans.,2000,21:3735-3744
    [35]Millange F., Serre C., Marrot J., et al. Synthesis, structure and properties of a three-dimensional porous rare-earth carboxylate MIL-83(Eu):Eu2(O2C-C10H14-CO2)3[J]. J. Mater. Chem.,2004,14:642-645
    [36]Nielsen R. B., Kongshaug K. O., Fjellvag H. Delamination, synthesis, crystal structure and thermal properties of the layered metal-organic compound Zn(C12H14O4) [J]. J. Mater. Chem., 2008,18:1002-1007
    [37]Smith G., Lynch D. E., Kennard C. H. L., Preparation and Crystal Structure of the Silver(Ⅰ) p-Toluenesulfonate-p-Aminobenzoic Acid Complex Polymer Adduct, the First Reported Example of a Silver(Ⅰ) Complex Involving Two Different Organic Acid Species[J]. Inorg. Chem.,1996,35:2711-2712
    [38]Rowsell J. L. C., Yaghi O. M. Strategies for Hydrogen Storage in Metal-Organic Frameworks[J]. Angew. Chem., Int. Ed. Engl.,2005,44(30):4670-4679
    [39]Shimizu G. K. H., Enright G. D., Ratcliffe C. I., et al. Anion pillaring of layered silver coordination networks [J]. Chem. Commun.,1999,5:461-462
    [40]Melcer N. J., Enright G. D., Ripmeester J. A., et al. The Effects of Anion Variation and Ligand Derivatization on Silver Coordination Networks Based upon Weaker Interactions [J]. Inorg. Chem.,2001,40:4641-4648
    [41]Sun D. F., Cao R., Sun Y. Q., et al. Self-Assembly of a One-Dimensional Silver Complex Containing Two Kinds of Helical Chains[J]. Eur. J. Inorg. Chem.,2003,1:38-41
    [42]Steel P. J., Fitchett C. M., Metallosupramolecular silver(Ⅰ) assemblies based on pyrazine and related ligands[J]. Coord. Chem. Rev.,2008,252:990-1006
    [43]Sheldrich G. M., Acta. Crystallogr. Sect., A 1990,46:467-473
    [44]Sheldrick G. M. Program for the Solution of Crystal Structures[M]. SHELXS, University of Gottingen, Germany,1997
    [45]Madison W., Bruker APEX2 Software, Bruker AXS Inc. V2.0-1, USA,2005
    [46]Sheldrick G. M., SADABS, Program for Empirical Absorption Correction of Area Detector Data[M]. University of Gottingen, Germany,1997
    [47]Sheldrick G. M., SHELXL, Program for the Refinement of Crystal Structures[M]. University of G ttingen, Germany,1997
    [48]Zhang C. J., Chen Y. J., Pang H. J., et al. Synthesis and characterization of the highest connected 3D a-metatungstate POM/TMC hybrid with AgⅠ…AgⅠ interactions [J]. Inorg. Chem. Commun.,2008,11:765-768
    [49]Bertelli M., Carlucci L., Ciani G., et al. Novel networks of silver(I) cations assembled with the polydentate N-donor bases hexamethylenetetramine and 1,3,5-triazine[J]. J. Mater. Chem.,1997,7:1271-1276
    [50]Li Y., Xu G., Zou W. Q., et al. A Novel Metal-Organic Network with High Thermal Stability:Nonlinear Optical and Photoluminescent Properties[J]. Inorg. Chem.,2008,47(18): 7945-7947
    [51]Li F. F., Ma J. F., Song S. Y., et al. Influence of Neutral Ligands on the Structures of Silver(I) Sulfonates[J]. Inorg. Chem.,2005,44:9374-9383
    [52]Abu-Youssef M. A. M., Escuer A., Goher M. A. S., et al. Can a Homometallic Chain Be Ferrimagnetic?[J]. Angew. Chem. Int. Ed.,2000,39(9):1624-1626
    [53]Paliwal S., Geib S., Wilcox C. S. Molecular Torsion Balance for Weak Molecular Recognition Forces. Effects of "Tilted-T" Edge-to-Face Aromatic Interactions on Conformational Selection and Solid-State Structure [J]. J. Am. Chem. Soc.,1994,116: 4497-4498
    [54]Khlobystov A. N., Blake A. J., Champness N. R., et al. Majouga A. G., Zyk N. V., Schroder M., Supramolecular design of one-dimensional coordination polymers based on silver(Ⅰ) complexes of aromatic nitrogen-donor ligands[J]. Coord. Chem. Rev.,2001,222: 155-192
    [55]Mingos D. M., Wsdes D. J. Introduction to Cluster Chemistry[M]. Wiley Sons Inc.,1992
    [56]Munakata M., Wu L. P., Yamamoto M., et al. Construction of Three-Dimensional Supramolecular Coordination Copper(Ⅰ) Compounds with Channel Structures Hosting a Variety of Anions by Changing the Hydrogen-Bonding Mode and Distances[J].J. Am. Chem. Soc.,1996,118:3117-3124
    [57]Sugimori T., Masuda H., Ohata N., et al. Structural Dependence of Aromatic Ring Stacking and Related Weak Interactions in Ternary Amino Acid-Copper(Ⅱ) Complexes and Its Biological Implication[J]. Inorg. Chem.,1997,36:576-583
    [58]Wu Q., Esteghamatian M., Hu N. X., et al. Synthesis, Structure, and Electroluminescence of BR2q(R=Et, Ph,2-Naphthyl and q=8-Hydroxyquinolato) [J]. Chem. Mater.,2000,12: 79-83
    [59]McGarrah J. E., Kim Y. J., Hissler M., et al. Toward a Molecular Photochemical Device:A Triad for Photoinduced Charge Separation Based on a Platinum Diimine Bis(acetylide) Chromophore[J]. Inorg. Chem.,2001,40:4510-4511
    [60]De Santis G., Fabbrizzi L., Licchelli M., et al. Molecular Recognition of Carboxylate Ions Based on the Metal-Ligand Interaction and Signaled through Fluorescence Quenching[J]. Angew. Chem., Int. Ed. Engl.,1996,35:202-204
    [61]Barbieri A., Accorsi G., Armaroli N., Luminescent complexes beyond the platinum group: the d10 avenue[J]. Chem. Commun.,2008,2185-2193
    [62]Yang J. H., Zheng S. L., Yu X. L., et al. Syntheses, Structures, and Photoluminescent Properties of Three Silver(I) Cluster-Based Coordination Polymers with Heteroaryldicarboxylate[J]. Cryst. Growth Des.,2004,4:831-836
    [63]Chen X. L., Gou L., Hu H. M., et al. New Examples of Metal Coordination Architectures of 4,4'-Sulfonyldibenzoic Acid:Syntheses, Crystal Structure and Luminescence[J]. Eur. J. Inorg. Chem.,2008,239-250
    [64]Yang En-Cui., Liang Qing-Qing., Wang Peng., et al. A 3D Photoluminescent Cadmium(Ⅱ)-Organic Framework with Unusual Pentanuclear Custer as Secondary Building Unit[J]. Inorg. Chem. Commun.,2009,12:211-213
    [65]Zheng Y. N., Wang H., Liu J. Q., et al. Novel silver(Ⅰ) compounds assembled from hybrid ligands based on linear or T-shaped coordination environment[J]. Inorg. Chem. Commun.,2009,12:611-614
    [66]Lin H. S., Maggard P. A. Synthesis and Structures of a New Series of Silver-Vanadate Hybrid Solids and Their Optical and Photocatalytic Properties [J]. Inorg. Chem.,2008,47: 8044-8052
    [67]Lin Y. Y., Zhang Y. B., Zhang J. P., et al. Pillaring Zn-Triazolate Layers with Flexible Aliphatic Dicarboxylates into Three-Dimensional Metal-Organic Frameworks [J]. Cryst. Growth Des.,2008,8:3673-3679
    [68]Gerasko O. A., Mainicheva E. A., Naumova M. I., et al. Sandwich-Type Tetranuclear Lanthanide Complexes with Cucurbit[6]uril:From Molecular Compounds to Coordination Polymers[J]. Inorg. Chem.,2008,47:8869-8880
    [69]Kascatan-Nebioglu A., Panzner M. J., Tessier C. A., et al. N-Heterocyclic carbene-silver complexes:A new class of antibiotics[J]. Coord. Chem. Rev.,2007,251:884-895
    [1]Khlobystov A. N., Blake A. J., Champness N. R., et al. Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands[J]. Coord. Chem. Rev.2001,222:155-192
    [2]Han L., Zhou Y., Zhao W. N., et al. Assembly of Metal-Organic Frameworks with Helical Layer:From 2D Parallel Interpenetrated Layer to 3D Self-Penetrating Network[J]. Cryst. Growth Des.,2009,9:660-662
    [3]Qi Y., Luo F., Batten S. R., et al. Syntheses and Crystal Structures of a Series of Novel Helical Coordination Polymers Constructed from Flexible Bis(imidazole) Ligands and Metal Salts[J]. Cryst. Growth Des.,2008,8:2806-2813
    [4]Albrecht M., "Let's Twist Again"-Double-Stranded, Triple-Stranded, and Circular Helicates[J]. Chem. ReV.,2001,101:3457-3498
    [5]Moulton B., Zaworotko M. J., From Molecules to Crystal Engineering:Supramolecular Isomerism and Polymorphism in Network Solids[J]. Chem. ReV.,2001,101:1629-1658
    [6]Schmuck C., Molecules with Helical Structure:How To Build a Molecular Spiral Staircase [J]. Angew. Chem., Int. Ed.2003,42:2448-2452
    [7]Yaghi O. M., OKeeffe M., Ockwig N. W., et al. Reticular synthesis and the design of new materials[J]. Nature 2003,423:705-714
    [8]Bu X. H., Tong M. L., Chang H. C., et al. A Neutral 3D Copper Coordination Polymer Showing 1D Open Channels and the First Interpenetrating NbO-Type Network[J]. Angew. Chem., Int. Ed.2004,43:192-195
    [9]Cui Y., Lee S. J., Lin W., Interlocked Chiral Nanotubes Assembled from Quintuple Helices[J].J. Am. Chem. Soc.,2003,125:6014-6015
    [10]Zhang J. P, Lin Y. Y., Huang X. C., et al. Molecular chairs, zippers, zigzag and helical chains:chemical enumeration of supramolecular isomerism based on a predesigned metal-organic building-block[J]. Chem. Commun.,2005,1258-1260
    [11]Azumaya I., Uchida D., Kato T., et al. Absolute Helical Arrangement of Stacked Benzene Rings:Heterogeneous Double-Helical Interaction Comprising a Hydrogen-Bonding Belt and an Offset Parallel Aromatic-Aromatic-Interaction Array [J]. Angew. Chem., Int. Ed. 2004,43:1360-1363
    [12]Sun Y. Q., Zhang J., Chen Y. M., et al. Porous Lanthanide-Organic Open Frameworks with Helical Tubes Constructed from Interweaving Triple-Helical and Double-Helical Chains [J]. Angew. Chem., Int. Ed.2005,44:5814-5817
    [13]Rao C. N. R., Natarajan S., Vaidhyanathan R., Metal Carboxylates with Open Architectures [J]. Angew. Chem., Int. Ed.2004,43:1466-1496
    [14]Ye B. H., Tong M. L., Chen X. M., Metal-organic molecular architectures with 2,2'-bipyridyl-like and carboxylate ligands[J]. Coord. Chem. ReV.,2005,249:545-565
    [15]Chen J. Q., Cai Y. P., Fang H. C., et al. Construction of Three-Dimensional Metal-Organic Frameworks with Helical Character through Coordinative and Supramolecular Interactions[J]. Cryst. Growth Des.,2009,9:1605-1613
    [16]Jiang L., Feng X. L., Su C. Y., et al. Interchain-Solvent-Induced Chirality Change of 1D Helical Chains:From Achiral to Chiral Crystallization[J]. Inorg. Chem.,2007,46: 2637-2644
    [17]Ou G. C., Jiang L., Feng X. L., et al. Spontaneous Resolution of a Racemic Nickel(Ⅱ) Complex and Helicity Induction via Hydrogen Bonding:The Effect of Chiral Building Blocks on the Helicity of One-Dimensional Chains[J]. Inorg. Chem.,2008,47:2710-2718
    [18]Zheng X. D., Jiang L., Feng X. L., et al. The Supramolecular Isomerism Based on Argentophilic Interactions:The Construction of Helical Chains with Defined Right-Handed and Left-Handed Helicity[J]. Inorg. Chem.,2008,47:10858-10865
    [19]Gardner G. B., Venkataraman D., Moore J. S., et al. Spontaneous assembly of a hinged coordination network[J]. Nature,1995,374:792-795
    [20]Wei K. J., Xie Y. S., Ni J., et al. Syntheses, Crystal Structures, and Photoluminescent Properties of a Series of M(Ⅱ) Coordination Polymers Containing M-X2-M Bridges:From 1-D Chains to 2-D Networks[J]. Cryst.Growth Des.,2006,6:1341-1350
    [21]Zhang X. J., Zhou X. P., Li D., Anion-Directed Assembly of Macrocycle and Helix[J]. Cryst.Growth Des.,2006,6:1440-1444
    [22]Luan X. J., Wang Y. Y., Li D. S., et al. Self-Assembly of an Interlaced Triple-Stranded Molecular Braid with an Unprecedented Topology through Hydrogen-Bonding Interactions [J]. Angew. Chem., Int. Ed.2005,44:3864-3867
    [23]Withersby M. A., Blake A. J., Champness N. R., et al. Anion Control in Bipyridylsilver(Ⅰ) Networks:A Helical Polymeric Array [J]. Angew. Chem. Int. Ed. Engl.1997,36:2327-2329
    [24]Huang X. C., Zhang J. P., Lin Y. Y., et al. Triple-stranded helices and zigzag chains of copper(Ⅰ) 2-ethylimidazolate:solvent polarity-induced supramolecular isomerism[J]. Chem. Commun.,2005,2232-2234
    [25]Zhang Q. C., Bu X. H., Lin Z. E., et al. Metal-Complex-Decorated Homochiral Heterobimetallic Telluride Single-Stranded Helix[J]. Inorg. Chem.,2007,46:7262-7264
    [26]Guo Z. G., Cao R., Wang X., et al. A Multifunctional 3D Ferroelectric and NLO-Active Porous Metal-Organic Framework[J]. J. Am. Chem. Soc.,2009,131:6894-6895
    [27]Wen L. L., Dang D. B., Duan C. Y., et al. 1D Helix,2D Brick-Wall and Herringbone, and 3D Interpenetration d10 Metal-Organic Framework Structures Assembled from Pyridine-2,6-dicarboxylic Acid N-Oxide[J]. Inorg. Chem.,2005,44:7161-7170
    [28]Xiao D. R., Li Y. G., Wang E. B., et al. Exceptional Self-Penetrating Networks Containing Unprecedented Quintuple-Stranded Molecular Braid,9-Fold Meso Helices, and 17-Fold Interwoven Helices[J]. Inorg Chem.,2007,46:4158-4166
    [29]Tian Z. F., Duan H., Xuan F., et al. A novel heterostranded double-helical coordination polymer with chiral channels emitting blue fluorescence[J]. Inorg. Chem. Commun.,2009,12: 417-419
    [30]Wu J., Hou H. W., Han H. Y., et al. Highly Selective Ferric Ion Sorption and Exchange by Crystalline Metal Phosphonates Constructed from Tetraphosphonic Acids[J]. Inorg. Chem., 2007,46:7960-7970
    [31]Wang H., Wang Y. Y., Yang G. P., et al. A series of intriguing metal-organic frameworks with 3,3',4,4'-benzophenonetetracarboxylic acid:structural adjustment and pH-dependence[J]. CrystEngComm.,2008,10:1583-1594
    [32]Ma L. F., Wang L. Y., Lu D. H., et al. Structural Variation from 1D to 3D:Effects of Temperature and pH Value on the Construction of Co(Ⅱ)-H2tbip/bpp Mixed Ligands System[J]. Cryst. Growth Des.,2009,9:1741-1749
    [33]Liang K., Zheng H., Song Y., et al. Self-Assembly of Interpenetrating Coordination Nets Formed from Interpenetrating Cationic and Anionic Three-Dimensional Diamondoid Cluster Coordination Polymers[J]. Angew. Chem., Int. Ed.2004,43:5776-5779
    [34]Zhang J. P., Lin Y. Y., Huang X. C., et al. Copper(Ⅰ) 1,2,4-Triazolates and Related Complexes:Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties [J]. J. Am. Chem. Soc.,2005,127:5495-5506
    [35]Ma B. Q., Sun H. L., Gao S., The design and synthesis of a non-centric diamond-like network based NH4+ ion[J]. Chem. Commun.,2003,17:2164-2165
    [36]Bu X. H., Tong M. L., Chang H. C., et al. A Neutral 3D Copper Coordination Polymer Showing 1D Open Channels and the First Interpenetrating NbO-Type Network[J]. Angew. Chem., Int. Ed.2004,43:192-195
    [37]Lu T. B., Xiang H., Luck R. L., et al. Molecular architecture via coordination and multi-intermolecular interactions:Synthesis, structures and magnetic properties of one-dimensional coordination polymers of macrocyclic nickel(II) complexes with terephthalate and trans-butene dicarboxylate[J]. Inorg. Chim. Acta.,2003,355,229
    [38]Millange F., Serre C., Marrot J., et al. Synthesis, structure and properties of a three-dimensional porous rare-earth carboxylate MIL-83(Eu):Eu2(O2C-C10H14-CO2)3[J]. J. Mater. Chem.,2004,14:642-645
    [39]Nielsen R. B., Kongshaug K. O., Fjellvag H., Delamination, synthesis, crystal structure and thermal properties of the layered metal-organic compound Zn(C12H14O4) [J]. J. Mater. Chem.,2008,18:1002-1007
    [40]Han X. Y., Ren Y. T., Zheng Y. Q., Syntheses, crystal structures and magnetic properties of two adamantane-1,3-dicarboxylato bridged cobalt(Ⅱ) phenanthroline complexes [J]. Inorg. Chim. Acta.,2010,363:353-359
    [41]Bertelli M., Carlucci L., Ciani G., et al. Structural studies of molecular-based nanoporous materials. Novel networks of silver(I) cations assembled with the polydentate N-donor bases hexamethylenetetramine and 1,3,5-triazine[J]. J. Mater. Chem.1997,7:1271-1276
    [42]Moulton B., Zaworotko M. J., From Molecules to Crystal Engineering:Supramolecular Isomerism and Polymorphism in Network Solids [J].Chem. Rev.,2001,101:1629-1658
    [43]Chen X. M., Tong M. L., Solvothermal in Situ Metal/Ligand Reactions:A New Bridge between Coordination Chemistry and Organic Synthetic Chemistry[J]. Acc. Chem. Res.2007, 40:162-170
    [44]Han L., Hong M. C., Wang R. H., et al. A novel nonlinear optically active tubular coordination network based on two distinct homo-chiral helices[J]. Chem. Commun.,2003, 2580-2581
    [45]Abrahams B. F., Batten S. R., Hoskins B. F., et al. AgC(CN)3-Based Coordination Polymers[J]. Inorg. Chem.2003,42:2654-2664
    [46]Braden D. A., Parrack E. E., Tyler D. R., Solvent cage effects. Ⅰ. Effect of radical mass and size on radical cage pair recombination efficiency. Ⅱ. Is geminate recombination of polar radicals sensitive to solvent polarity?[J]. Coord. Chem. Rev.,2001,211:279-294
    [47]Khan M. I., Cevik S., Doedens R. J., Inorganic-organic hybrids derived from oxovanadium sulfate motifs:synthesis and characterization of [VⅣO(μ3-SO4)(2,2'-bpy)]n [J]. Chem. Commun.,2001,1930-1931
    [48]Pan L., Frydel T., Sander M. B., et al. The Effect of pH on the Dimensionality of Coordination Polymers[J]. Inorg. Chem.,2001,40:1271-1283
    [49]Che C. M., Tse M. C., Chan M. C. W., et al. Spectroscopic Evidence for Argentophilicity in Structurally Characterized Luminescent Binuclear Silver(Ⅰ) Complexes[J]. J. Am. Chem. Soc.2000,122:2464-2468
    [50]Tong M. L., Kitagawa S., Chang H. C., et al. Temperature-controlled hydrothermal synthesis of a 2D ferromagnetic coordination bilayered polymer and a novel 3D network with inorganic Co3(OH)2 ferrimagnetic chains[J]. Chem. Commun.,2004,418-419
    [51]Stoica C., Verwer P., Meekes H., et al. Understanding the Effect of a Solvent on the Crystal Habit[J]. Cryst. Growth. Des.,2004,4:765-768
    [52]Sheldrich G. M., Acta. Crystallogr. Sect. A.,1990,46:467-473
    [53]Sheldrick G M. Program for the Solution of Crystal Structures[M]. SHELXS, University of Gottingen, Germany,1997
    [54]Madison W., Bruker APEX2 Software, Bruker AXS Inc. V2.0-1 [M]. USA,2005
    [55]Sheldrick G. M., SADABS, Program for Empirical Absorption Correction of Area Detector Data [M]. University of Gottingen, Germany,1997
    [56]Sheldrick G. M., SHELXL, Program for the Refinement of Crystal Structures[M]. University of G ttingen, Germany,1997
    [57]Omary M. A., Patterson H. H., Temperature-Dependent Photoluminescence Properties of Tl[Ag(CN)2]:Formation of Luminescent Metal-Metal-Bonded Inorganic Exciplexes in the Solid St[J]. Inorg. Chem.1998,37:1060-1066
    [58]Fan J., Sun W. Y., Okamura T., et al. Novel Metal-Organic Frameworks with Specific Topology from New Tripodal Ligands:1,3,5-Tris(1-imidazolyl)benzene and 1,3-Bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene[J].Inorg. Chem.,2003,42:3168-3175
    [59]Sinzger K., Hunig S., Jopp M., et al. The organic metal (Me2-DCNQI)2Cu:Dramatic changes in solid-state properties and crystal structure due to secondary deuterium effects[J]. J. Am. Chem. Soc.,1993,115,7696-7705
    [60]Hoskins B. F., Robson R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)3][Cu(I)Zn(II)(CN)4] and Cul [4,4',4",4'"-tetracyanotetraphenylmethane]BF4.XC6H5NO2[J]. J. Am. Chem. Soc.,1990,112: 1546-1554
    [61]Yaghi O. M., Li G., Angew. Chem., Int. Ed. Engl.,1995,34:207-209
    [62]Lopez S., Kahraman M., Harmata M., Keller S. W., Novel 2-fold Interpenetrating Diamondoid Coordination Polymers:[Cu(3,3'-bipyridine)2]X (X= BF4-, PF6-)[J].Inorg. Chem.,1997,36:6138-6140
    [63]Carlucci L., Ciani G., Moret M., et al. Monitoring the Crystal Growth and Interconversion of New Coordination Networks in the Self-assembly of MCl2 Salts (M=Co, Ni, Cu, Cd) and 1,3-Bis(4-pyridyl)propane[J]. Chem. Mater.,2002,14:12-16
    [64]Hu Y., Li G., Liu X., et al. Hydrothermal synthesis and characterization of metal-organic networks with helical units in a mixed ligand system[J]. CrystEngComm.,2008,10:888-893
    [65]Martin D. P., Supkowski R. M., LaDuca R. L. Self-Catenated and Interdigitated Layered Coordination Polymers Constructed from Kinked Dicarboxylate and Organodiimine Ligands[J]. Inorg. Chem.,2007,46:7917-7922
    [66]Wang X. L., Qin C., Wang E. B., et al. An unprecedented fivefold interpenetrated lvt network containing the exceptional racemic motifs originated from nine interwoven helices[J]. Chem. Commun.,2005,5450-5452
    [67]Chen X.-D., Mak T. C. W. Single-strand helical complexes constructed from 2-pyridinyl-3-pyridinylmethanone:tuning the helical pitch length by variation of metal cation and/or counter anion[J]. Dalton Trans.,2005,3646-3652
    [68]Mondal R., Basu T., Sadhukhan D., et al. Influence of Anion on the Coordination Mode of a Flexible Neutral Ligand in Zn(Ⅱ) Complexes:From Discrete Zero-Dimensional to Infinite 1D Helical Chains,2D Nanoporous Bilayer Networks, and 3D Interpenetrated Metal-Organic Frameworks[J]. Cryst. Growth Des.,2009,9:1095-1105
    [69]Braden D. A., Parrack E. E., Tyler D. R. Solvent cage effects. Ⅰ. Effect of radical mass and size on radical cage pair recombination efficiency. Ⅱ. Is geminate recombination of polar radicals sensitive to solvent polarity?[J]. Coord. Chem. Rev.,2001,211:279-294
    [70]Pan L., Frydel T., Sander M. B., et al. The Effect of pH on the Dimensionality of Coordination Polymers[J]. Inorg. Chem.,2001,40:1271-1283
    [71]Moulton B., Zaworotko M. J., From Molecules to Crystal Engineering:Supramolecular Isomerism and Polymorphism in Network Solid[J]. Chem. Rev.2001,101:1629-1658
    [72]Tong M. L., Kitagawa S., Chang H. C., et al. Temperature-controlled hydrothermal synthesis of a 2D ferromagnetic coordination bilayered polymer and a novel 3D network with inorganic Co3(OH)2 ferrimagnetic chains[J]. Chem. Commun.,2004,418-419
    [73]Stoica C., Verwer P., Meekes H., et al. Understanding the Effect of a Solvent on the Crystal Habit[J]. Cryst. Growth Des.,2004,4:765-768
    [74]Evans R. C., Douglas P., Winscom C. J. Coordination complexes exhibiting room-temperature phosphorescence:Evaluation of their suitability as triplet emitters in organic light emitting diodes[J]. Coord. Chem. Rev.,2006,250:2093-2126
    [75]Wang S. N., Luminescence and electroluminescence of Al(Ⅲ), B(Ⅲ), Be(Ⅱ) and Zn(Ⅱ) complexes with nitrogen donors[J]. Coord. Chem. Rev.,2001,215:79-98
    [76]Barbieri A., Accorsi G., Armaroli N., Luminescent complexes beyond the platinum group:the d10 avenue[J]. Chem. Commun.,2008,2185-2193
    [77]Liu J. Q., Zhang Y. N., Wang Y. Y, et al. Lermontova E. K., Shi Q.-Z., Interplay of coordinative and supramolecular interactions in formation of a series of metal-organic complexes bearing diverse dimensionalities [J]. Dalton Trans.,2009,5365-5378
    [78]Wu W. P., Wang Y. Y., Wu Y. et al. Hydro(solvo)thermal synthesis, structures, luminescence of 2-D zinc(II) and 1-D copper(II) complexes constructed from pyridine-2,6-dicarboxylic acid N-oxide and decarboxylation of the ligand[J]. CrystEngComm., 2007,9:753-757
    [79]Huang Y. Q., Ding B., Song H. B., et al. A novel 3D porous metal-organic framework based on trinuclear cadmium clusters as a promising luminescent material exhibiting tunable emissions between UV and visible wavelengths [J]. Chem. Commun.,2006,4906-4908
    [80]Chen X. L., Gou L., Hu H. M., et al. New Examples of Metal Coordination Architectures of 4,4'-Sulfonyldibenzoic Acid:Syntheses, Crystal Structure and Luminescence[J]. Eur. J. Inorg. Chem.,2008,239-250
    [1]Xiao D. R., Wang E. B., An H. Y., et al. Metal Nuclearity Modulated Four-, Six-, and Eight-Connected Entangled Frameworks Based on Mono-, Bi-, and Trimetallic Cores as Nodes[J]. Chem. Eur. J.,2006,12:6528-6541
    [2]Han L., Zhou Y., Zhao W. N., et al. Assembly of Metal-Organic Frameworks with Helical Layer:From 2D Parallel Interpenetrated Layer to 3D Self-Penetrating Network[J]. Cryst.Growth Des.,2009,9:660-662
    [3]Wei K. J., Xie Y. S., Ni J., et al. Syntheses, Crystal Structures, and Photoluminescent Properties of a Series of M(Ⅱ) Coordination Polymers Containing M-X2-M Bridges:From 1-D Chains to 2-D Networks[J]. Cryst.Growth Des.,2006,6:1341-1350
    [4]Zhang X. J., Zhou X. P.. Li D. Anion-Directed Assembly of Macrocycle and Helix [J].Cryst.Growth Des.,2006,6:1440-1444
    [5]Luan X. J., Wang Y. Y., Li D. S., et al. Self-Assembly of an Interlaced Triple-Stranded Molecular Braid with an Unprecedented Topology through Hydrogen-Bonding Interactions[J]. Angew. Chem., Int. Ed.2005,44:3864-3867
    [6]Hosseini M. W. Molecular Tectonics:From Simple Tectons to Complex Molecular Networks[J]. Acc. Chem. Res.,2005,38:313-323
    [7]Huang X. C., Zhang J. P., Lin Y. Y., et al. Triple-stranded helices and zigzag chains of copper(Ⅰ) 2-ethylimidazolate:solvent polarity-induced supramolecular isomerism[J]. Chem. Commun.,2005,2232-2234
    [8]Zhang Q. C., Bu X. H., Lin Z. E., et al. Metal-Complex-Decorated Homochiral Heterobimetallic Telluride Single-Stranded Helix[J]. Inorg. Chem.,2007,46:7262-7264
    [9]Wen L. L., Dang D. B., Duan C. Y., et al. ID Helix,2D Brick-Wall and Herringbone, and 3D Interpenetration d10 Metal-Organic Framework Structures Assembled from Pyridine-2,6-dicarboxylic Acid N-Oxide[J]. Inorg. Chem.,2005,44:7161-7170
    [10]Xiao D. R., Li Y. G., Wang E. B., et al. Exceptional Self-Penetrating Networks Containing Unprecedented Quintuple-Stranded Molecular Braid,9-Fold Meso Helices, and 17-Fold Interwoven Helices[J]. Inorg Chem.,2007,46:4158-4166
    [11]Tian Z.-F., Duan H., Xuan F., et al. A novel heterostranded double-helical coordination polymer with chiral channels emitting blue fluorescence[J]. Inorg. Chem. Commun.,2009,12: 417-419
    [12]Ma L. F., Wang L. Y., Du M., et al. Unprecedented 4-and 6-Connected 2D Coordination Networks Based on 44-Subnet Tectons, Showing Unusual Supramolecular Motifs of Rotaxane and Helix[J]. Inorg. Chem.,2010,49:365-367
    [13]Kitagawa S., Kitaura R., Noro S. Functional Porous Coordination Polymers[J]. Angew. Chem., Int. Ed.,2004,43:2334-2375
    [14]Schmidt G. M J. Photodimerization in the Solid State[J]. Pure Appl Chem.,1971,27: 647-678
    [15]Qi Y., Luo F., Batten S. R., et al. Syntheses and Crystal Structures of a Series of Novel Helical Coordination Polymers Constructed from Flexible Bis(imidazole) Ligands and Metal Salts[J]. Cryst.Growth Des.,2008,8:2806-2813
    [16]Moulton B., Lu J. J., Hajndl R., et al. Crystal Engineering of a Nanoscale Kagome Lattice[J]. Angew. Chem., Int. Ed.,2002,41(15):2821-2824
    [17]Fennir H., Mathivanan P., Vidale K. L., et al. Helical Rosette Nanotubes:Design, Self-Assembly, and Characterization[J]. J. Am. Chem. Soc.,2001,123:3854-3855
    [18]Kraus T., Budesinsky M., Cisarova I., et al. Per(6-amino-2-O-carboxymethyl-6-deoxy-3-O-methyl)-α-cyclodextrin:Helical Self-Assembly of a Polyionic Amino Acid into Nanotubes[J]. Angew. Chem., Int. Ed.2002, 41:1715-171
    [19]Hong B. H., Lee J. Y., Lee C. W., et al. Self-Assembled Arrays of Organic Nanotubes with Infinitely Long One-Dimensional H-Bond Chains[J]. J. Am. Chem. Soc.,2001,123: 10748-10749
    [20]Hayashi H., Cote A. P., Furukawa H. M., et al. Zeolite A Imidazolate Frameworks[J]. Nat. Mater.,2007,6:501-506
    [21]Kitagawa S., Kitaura R., Noro S., Functional Porous Coordination Polymers[J]. Angew. Chem., Int. Ed.,2004,43:2334-2375
    [22]Zhang S.-Y., Lan J.-B., Mao Z.-H., et al. Crystal Water of Cadmium Acetate-Dependent Formation of One-Dimensional Channel Structure Based on 4,4'-bis(1-Imidazolyl)biphenyl[J]. Cryst.Growth Des.,2008,8:3134-3136
    [23]Kitagawa S., Kitaura R., Noro S. Functional Porous Coordination Polymers[J]. Angew. Chem., Int. Ed.,2004,43:2334-2375
    [24]Akhter Z., Ingham S. L., Lewis J., et al. [Os10(CO)24{Au(PPh2R)}4], A Tubular Heterobimetallic Carbonyl-Osmium[J]. Angew. Chem., Int. Ed.1996,35:992-993
    [25]Bonavia G., Haushalter R. C., O'Connor C. J., et al. Hydrothermal synthesis and structural characterization of a tubular oxovanadium organophosphonate, (H3O)[(V3O4)(H2O)(PhPO3)3]·xH2O(x=2.33)[J]. Chem. Commun.,1998,2187-2188
    [26]Aranda M. A. G., Cabeza A., Bruque S., et al. Polymorphism and Phase Transition in Nanotubular Uranyl Phenylphosphonate:(UO2)3(HO3PC6H5)2(O3PC6H5)2·H2O[J]. Inorg. Chem.,1998,37:1827-1832
    [27]Ghosh S., Bharadwaj P. K., Coordination Polymers of La(Ⅲ) as Bunched Infinite Nanotubes and Their Conversion into an Open-Framework Structure[J]. Inorg. Chem.,2005, 44:3156-3161
    [28]Benmerad B., Clair P., Armspach D., et al. Sulfur-capped cyclodextrins:a new class of cavitands with extroverted as well as introverted donor functionalities [J]. Chem. Commun., 2006,2678-2680
    [29]Zhang H. T., Li Y. Z., Wang T. W., et al. A ZnⅡ-Based Chiral Crystalline Nanotube[J]. Eur. J. Inorg. Chem.,2006,3532-3536
    [30]Lauge G., Graf E., Hosseini M. W., et al. Molecular tectonics:on the formation of tubular coordination networks[J]. New J. Chem.,2006,30:1340-1346
    [31]Wang R. H., Hong M. C., Luo J. H., et al. A new type of three-dimensional framework constructed from dodecanuclear cadmium(Ⅱ) macrocycles[J]. Chem. Commun.,2003, 1018-1019
    [32]Hong M. C.,Zhao Y. J., Su W. P., et al. A Silver(Ⅰ) Coordination Polymer Chain Containing Nanosized Tubes with Anionic and Solvent Molecule Guests [J]. Angew. Chem., Int. Ed.2000,39:2468-2470
    [33]Su C. Y., Goforth A. M., Smith M. D., et al. Exceptionally Stable, Hollow Tubular Metal-Organic Architectures:Synthesis, Characterization, and Solid-State Transformation Study[J]. J. Am. Chem. Soc.,2004,126:3576-3586
    [34]Zhao B., Cheng P., Dai Y., et al. A Nanotubular 3D Coordination Polymer Based on a 3d-4f Heterometallic Assembly[J]. Angew. Chem., Int. Ed.2003,42:934-936
    [35]Su C. Y., Smith M. D., zur Loye H. C., Columnar Supramolecular Architecture Self-Assembled from S4-Symmetric Coordination Nanotubes Encapsulating Neutral Guest Molecules[J]. Angew. Chem., Int. Ed.2003,42:4085-4089
    [36]Xia J., Shi W., Chen X.-Y., et al. A CNT-like coordination tube with cyano-bridges[J]. Dalton Trans.,2007,2373-2375
    [37]Jensen P., Batten S. R., Moubaraki B., et al. Infinite molecular tubes:structure and magnetism of M(dca)2(apym) [M=Co, Ni, apym=2-aminopyrimidine, dca=dicyanamide, N(CN)2-][J]. Chem. Commun.,2000,793-794
    [38]Wang X. L., Qin C., Wang E. B., et al. Entangled Coordination Networks with Inherent Features of Polycatenation, Polythreading, and Polyknotting[J]. Angew. Chem., Int. Ed. 2005,44:5824-5827
    [39]Cao X. Y., Zhang J., Cheng J. K., et al. Co-chelation of a scorpion-shaped carboxylate ligand and phenanthroline lead to a 2-D interpenetratively tubular architecture[J]. CrystEngComm.,2004,6:315-317
    [40]Dai F. N., He H. Y., Sun D. F., A Metal-Organic Nanotube Exhibiting Reversible Adsorption of (H2O)12 Cluster[J]. J. Am. Chem. Soc.,2008,130:14064-14065
    [41]Huang K. L., Liu X., Chen X., et al. Spontaneous Assembly of 63 Topological Metal-Organic Nanotubes with Distinct Asymmetric Subunits for the Construction of Hydrophilic Intertube Channels Encapsulating Rare Helical Water-Chains[J]. Cryst.Growth Des.,2009,9:1646-1650
    [42]Dong Y. B., Jiang Y. Y., Li J., et al. Temperature-Dependent Synthesis of Metal-Organic Frameworks Based on a Flexible Tetradentate Ligand with Bidirectional Coordination Donors[J]. J. Am. Chem. Soc.,2007,129:4520-4521
    [43]Qin C., Wang X.L., Carlucci L., et al. From arm-shaped layers to a new type of polythreaded array:a two fold interpenetrated three-dimensional network with a rutile topology[J]. Chem. Commun.2004,1876
    [44]Huang K. L., He Y. T., Niu X. L., et al. Zigzag on a zigzag:Trap of hydrogen-bonded water molecules in a luminescent metal-organic network[J]. Inorg. Chem. Commun.,2006,9: 1243-1246
    [45]Wang X. L., Qin C., Wang E. B., et al. An unprecedented fivefold interpenetrated lvt network containing the exceptional racemic motifs originated from nine interwoven helices[J]. Chem. Commun.,2005,5450-5452
    [46]Chen X. D., Mak T. C. W. Single-strand helical complexes constructed from 2-pyridinyl-3-pyridinylmethanone:tuning the helical pitch length by variation of metal cation and/or counter anion[J]. Dalton Trans.,2005,3646-3652
    [47]Huang K. L., He Y. T., Liang G. M., et al. Photoluminescent metal(Ⅱ)-organic complexes with two distinct atropisomeric units from axially prochiral ligands through C-H…O hydrogen bonds (M=zinc, cobalt, nickel)[J]. Inorg. Chim. Acta.,2007,360: 2271-2276
    [48]Huang K. L., Hu C. W. Metal(Ⅱ)-organic coordination polymers with two distinct atropisomeric building units from an axially prochiral inner salt through interchain C-H…X hydrogen bonds (X=O, Cl;metal=cobalt, nickel)[J]. Inorg. Chim. Acta.,2007,360: 3590-3596
    [49]Huang K. L., Ligand-directed metal(Ⅱ) coordination polymers:Unusual disorder, and photoluminescence[J]. Inorg. Chim. Acta.,2008,361:241-247
    [50]Chen X. M., Tong M. L., Solvothermal in Situ Metal/Ligand Reactions:A New Bridge between Coordination Chemistry and Organic Synthetic Chemistry[J]. Acc. Chem. Res.2007, 40:162-170
    [51]Stang P. J., Cao D. H., Saito S., et al. Self-Assembly of Cationic, Tetranuclear, Pt(II) and Pd(II) Macrocyclic Squares. X-Ray Crystal Structure of [Pt2+(dppp)(4,4'-bipyridyl).cntdot.2-OSO2CF3]4[J]. J. Am. Chem. Soc.,1995,117:6273-6283
    [52]Ma B. Q., Sun H. L., Gao S., Formation of Two-Dimensional Supramolecular Icelike Layer Containing (H2O)12 Rings[J]. Angew. Chem., Int. Ed.2004,43:1374-1376
    [53]Luan X. J., Chu Y. C., Wang Y. Y., et al. Formation of Two-Dimensional Supramolecular Water Layer Containing (H2O)18 Morphology via Dianion Templating[J]. Cryst. Growth Des.,2006,6:812-814
    [54]Liu Q. Y., Xu L., (H2O)12-containing infinite chain encapsulated in supramolecular open framework built of cadmium(Ⅱ), 1,3-di(4-pyridyl)propane and 5-sulfoisophthalic acid monosodium salt[J]. CrystEngComm.,2005,7:87-89
    [55]Han L., Hong M. C., Wang R. H., et al. A novel nonlinear optically active tubular coordination network based on two distinct homo-chiral helices[J]. Chem. Commun.,2003, 2580-2581
    [56]Carlucci L., Ciani G., Proserpio D. M., et al. New polymeric networks from the self-assembly of silver(I) salts and the flexible ligand 1,3-bis(4-pyridyl)propane (bpp). A systematic investigation of the effects of the counterions and a survey of the coordination polymers based on bpp[J]. CrystEngComm.,2002,4:121-129
    [57]Gao X. M., Li D., Wang J. J., et al. A novel 1D armed-polyrotaxane chain constructed from a V-shaped tetracarboxylate ligand[J]. CrystEngComm.,2008,10:479
    [58]Ciurtin D. M., Pschirer N. G., Smith M. D., et al. Two Luminescent Coordination Polymers with a Triple-Helix Structure:HgX2(C31H24N2)·CH2Cl2 (X=Cl and Br)[J]. Chem. Mater.,2001,13:2743-2745
    [59]Eddaoudi M., Kim J., O'Keeffe M., et al. Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2:A Framework Deliberately Designed To Have the NbO Structure Type[J]. J. Am. Chem. Soc.,2002,124:376-377
    [60]Qiu Y. C., Li Y. H., Peng G., et al. Cadmium Metal-Directed Three-Dimensional Coordination Polymers:In Situ Tetrazole Ligand Synthesis, Structures, and Luminescent Properties[J]. Cryst. Growth Des.,2010,10:1332-1340
    [61]Fang H. C., Yi X. Y., Gu Z. G., et al. Construction of Low-Dimensional Cadmium Compounds with N2O/N2S Donor Tridentate Schiff Base Ligands[J]. Cryst. Growth Des.,2009, 9:3776-3788
    [62]Liu C. S., Shi X. S., Li J. R., et al. Cd(Ⅱ) Coordination Architectures with Mixed Ligands of 3-(2-Pyridyl)pyrazole and Pendant Carboxylate Ligands Bearing Different Aromatic Skeletons:Syntheses, Crystal Structures, and Emission Properties [J]. Cryst. Growth Des., 2006,6:656-663
    [63]Liu H. J., Tao X. T., Yang J. X., et al. Three-Dimensional Metal-Organic Network Architecture with Large π-Conjugated Indolocarbazole Derivative:Synthesis, Supramolecular Structure, and Highly Enhanced Fluorescence [J]. Cryst. Growth Des.,2008,8:259-264
    [64]Lu W. G., Jiang L., Feng X. L., et al. Four 3D Porous Metal-Organic Frameworks with Various Layered and Pillared Motifs[J]. Cryst. Growth Des.,2008,8:986-994
    [65]Wang X. L., Bi Y. F., Lin H. Y., et al. Three Novel Cd(II) Metal-Organic Frameworks Constructed from Mixed Ligands of Dipyrido[3,2-d:2',3'-f]quinoxaline and Benzene-dicarboxylate:From a 1-D Ribbon,2-D Layered Network, to a 3-D Architecture [J]. Cryst. Growth Des.,2007,7:1086-1091
    [66]Chu Q., Liu G X., Huang Y. Q., et al. Syntheses, structures, and optical properties of novel zinc(Ⅱ) complexes with multicarboxylate and N-donor ligands[J]. J. Chem. Soc., Dalton Trans.,2007,4302-4311
    [67]Jin J. C., Wang Y. Y., Zhang W. et al. New Types of Di-, Tetra-, Hexa-and Octanuclear Ag(Ⅰ2) Complexes Containing 1,3-Adamantanedicarboxylic Acid[J]. Dalton Trans.,2009,10181-10191
    [68]Huang Y. Q., Ding B., Song H. B., et al. A novel 3D porous metal-organic framework based on trinuclear cadmium clusters as a promising luminescent material exhibiting tunable emissions between UV and visible wavelengths [J]. Chem. Commun.,2006,4906-4908
    [69]Hou L., Lin Y. Y., Chen X. M. Porous Metal-Organic Framework Based on μ4-oxo Tetrazinc Clusters:Sorption and Guest-Dependent Luminescent Properties [J]. Inorg. Chem., 2008,47:1346-1351
    [70]Altmann M., Bunz U. H. F. Polymers with Complexed Cyclobutadiene Units in the Main Chain:The First Example of a Thermotropic, Liquid Crystalline Organometallic Polymer[J]. Angew. Chem., Int. Ed.,1995,34:569-571
    [71]Bunz U. H. F., Poly(aryleneethynylene)s:Syntheses, Properties, Structures, and Applications[J]. Chem. Rev.,2000,100:1605-1644
    [72]Mahata P., Natarajan S. A New Series of Three-Dimensional Metal-Organic Framework, [M2(H2O)][C5NH3(COO)2]3·2H2O, M=La, Pr, and Nd:Synthesis, Structure, and Properties [J]. Inorg. Chem.,2007,46:1250-1258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700