用户名: 密码: 验证码:
携带人mda-7/IL-24基因的溶瘤腺病毒SG600-IL24靶向治疗肝癌的体内外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分携带人mda-7/IL-24基因的溶瘤腺病毒SG600-IL24载体的构建及表达鉴定
     目的:本文通过构建携带人MDA-7/IL-24基因的溶瘤腺病毒SG600-IL24载体,观察其在肝癌细胞和正常肝细胞中的表达,探讨其对肝癌基因治疗的理论价值。
     方法:酶切质粒ZD55-IL24得到IL24连接到pClon9-INS-IL24,将pClon9-INS-IL24共酶切得到INS+IL24片段,装入SG502-△CR2载体中,获得重组质粒pSG600-IL24,以Polyfect介导将其与腺病毒骨架质粒ppE3共转染293细胞,通过细胞内同源重组,生成携带人MDA-7/IL-24基因的溶瘤腺病毒SG600-IL24,同样的方法构建空载体SG600-EGFP。将其感染人肝癌细胞株HepG2、Hep3B、SMMC7721和正常的肝细胞L02, RT-PCR验证mda-7/IL-24基因的表达。
     结果:可见感染后的HEK293细胞出现特征性CPE,细胞变大、变圆、漂浮,呈葡萄串聚集。取克隆1和克隆2的病毒DNA各2μ1为模板,通过PCR方法扩增出约640bp的特异性片段,其大小与阳性对照相符,而阴性对照SG600-EGFP则无片段扩增。RT-PCR结果提示该载体能介导外源基因mda-7/IL-24在人肝癌细胞和正常肝细胞中高效表达。
     结论:成功构建了携带人mda-7/IL-24基因的溶瘤腺病毒SG600-IL24载体,该载体能介导mda-7/IL-24基因在人肝癌细胞和正常肝细胞中高效表达。
     目的:观察携带人:mda-7/IL-24基因的溶瘤腺病毒SG600-IL24对肝癌细胞株HepG2. Hep3B、SMMC7721、MHCC97L、HCCLM3和正常的肝细胞L02的选择性抗肿瘤作用,为肝癌的基因治疗提供理论基础。
     方法:将携带人mda-7/IL-24基因的溶瘤腺病毒SG600-IL24感染肝癌细胞株HepG2、Hep3B、SMMC7721、MHCC97L、HCCLM3和正常的肝细胞L02。通过逆转录-聚合酶链式反应(RT-PCR)、酶联免疫吸附试验(ELISA)、Western-blot观察MDA-7/IL-24基因的表达,四甲基偶氮哩蓝染色法(MTT)观察肝癌细胞的生长抑制,Hoechst33258染色观察其对肝癌细胞的抗肿瘤作用,Annexin-V和PI双染后流式细胞仪检测细胞的凋亡,以及利用PI单染法流式细胞仪检测SG600-IL24对细胞周期的影响。
     结果:RT-PCR及Western-blot提示溶瘤腺病毒SG600-IL24能介导外源基因MDA-7/IL-24在肝癌细胞株HepG2、Hep3B、SMMC7721、MHCC97L、HCCLM3和正常的肝细胞L02中高效表达,ELISA检测结果提示细胞培养上清液中MDA-7/IL-24蛋白也明显增加,MTT结果表明SG600-IL24能明显抑制各种肝癌细胞的生长,Hoechst33258染色提示SG600-IL24促进肝癌细胞的凋亡,流式细胞仪提示SG600-IL24能选择性杀伤肝癌细胞,细胞周期分析提示MDA-7/IL-24阻滞肝癌细胞在G2/M期,而对正常的肝细胞没有明显的促凋亡作用和增殖阻滞作用。
     结论:携带人mda-7/IL-24基因的溶瘤腺病毒SG600-IL24能特异性杀伤不同转移潜能的肝癌细胞和诱导凋亡,促进肝癌细胞增殖阻滞,而对正常肝细胞无明显的促进凋亡和增殖阻滞作用。
     第三部分溶瘤腺病毒SG600-IL24选择性杀伤肝癌细胞的机理探讨
     目的:探讨携带人mda-7/IL-24基因的溶瘤腺病毒SG600-IL24对肝癌细胞株HepG2、HCCLM3的杀伤机制,为肝癌的基因治疗提供理论基础。
     方法:用溶瘤腺病毒SG600-IL24干预肝癌细胞株HepG2、HCCLM3和正常肝细胞株LO2。通过RT-PCR和Western-blot蛋白印迹检测SG600-IL24干预后,肝癌细胞株HepG2、HCCLM3和正常肝细胞株LO2内不同时间点总STAT3以及信号通路下游信号分子C-myc、bax. bcl-2、bcl-xl、CyclinD2、Survivin、XIAP、OPN、MMP-2、MMP-9和VEGF基因和蛋白的表达变化,同时检测各细胞株在溶瘤腺病毒SG600-IL24处理后,磷酸化STAT3蛋白的表达变化。
     结果:RT-PCR和Western-blot结果提示STAT3以及信号通路下游信号分子C-myc、Bcl-xl、bcl-2、CyclinD2、Survivin、MMP-2、MMP-9、XIAP、OPN、VEGF基因和蛋白表达水平下调,而Bax基因和蛋白表达水平在溶瘤腺病毒SG600-IL24感染后上调。而磷酸化STAT3蛋白在感染后先上升后下降,在感染2小时达到峰值。
     .结论:溶瘤腺病毒SG600-IL24可能通过抑制STAT3及下游的信号通路来达到抗肝癌的作用,而正常肝细胞几乎不受此影响,使得溶瘤腺病毒SG600-IL24具有显著的选择性抗肿瘤效应。
     第四部分溶瘤腺病毒SG600-IL24和干扰素联合治疗裸鼠肝癌的研究
     目的:利用携带人mda-7/IL-24基因的溶瘤腺病毒SG600-IL24与干扰素(Interferon, IFN)联合治疗肝癌裸鼠移植瘤,探讨病毒基因治疗和新辅助治疗相结合治疗肝癌的新方法。
     方法:首先建立裸鼠皮下种植肝癌模型,当肿瘤体积生长至100-150mm3,计为第0天,并将裸鼠随机分为4组,每组8只:(1)对照组:正常荷瘤裸鼠,每只裸鼠给予生理盐水0.3ml,右侧腹腔内注射,每天一次,共3次。(2)新辅助治疗组(IFN组):IFN1.5×104IU/g/只,注射于右侧腹腔,每天一次,共10次。(3)基因治疗组(SG600-IL24组):给予溶瘤腺病毒(SG600-IL24)治疗,肿瘤局部多点注射,每只2×108PFU/次,共5次,隔日一次。(4)基因治疗+新辅助治疗组(SG600-IL24+IFN组):IFN的用法同前,SG600-IL24在IFN治疗结束后一天进行,SG600-IL24的用法同基因治疗组。并在干预30d后检测肿瘤组织中mda-7/IL-24基因和蛋白的表达,随后观察各组裸鼠生存时间及肿瘤体积的变化。
     结果:溶瘤腺病毒SG600-IL24介导的外源基因MDA-7/IL-24在基因治疗组和联合治疗组裸鼠体内表达明显增高,SG600-IL24+IFN联合治疗组裸鼠有3只生存时间超过120d,达到长期生存,与其他三组比较生存期明显延长(P<0.01); SG600-IL24+IFN组裸鼠肝癌体积也明显小于SG600-IL24组或IFN(P<0.01)。
     结论:溶瘤腺病毒SG600-IL24联合干扰素对裸鼠人肝癌种植模型有很好的协同抗肿瘤作用,为肝癌的基因病毒治疗提供了很好的前景。
Construction and identification of Oncolytic Adenovirus SG600-IL24 Expressing Human MDA-7/IL-24
     Objective:We constructed oncolytic adenovirus SG600-IL24 vector which carrying human MDA-7/IL-24, and observed its expression in hepatocellular carcinoma cell lines and the normal liver cell lines, in order to investigate its theoretical value of gene therapy in hepatocellular carcinoma.
     Methods:Digesting pZD55-IL24 to get IL24, then connected to pClon9-INS-IL24, and digesting pClon9-INS-IL24 to get INS+IL24, loading into SG502-ACR2 vector, and then to get recombinant plasmid pSG600-IL24, Using pSG600-IL24 and adenovirus plasmid backbone ppE3 to polyfect mediated cotransfected into 293 cells, to obtain oncolytic adenovirus SG600-IL24 vector which carrying human MDA-7/IL-24 by intracellular homologous recombination. The vector SG600-EGFP was constructed using the same methods. The human hepatocullular carcinoma lines HepG2, Hep3B, SMMC7721 and normal liver cell line L02 were infected with oncolytic adenovirus SG600-IL24, the expression of mda-7/IL-24 gene was verified by RT-PCR.
     Results:HEK293 cells was appeared characteristic CPE after infection, HEK293 Cells become large and round, floating, were gathered like grapes. To take the virus DNA in Clone 1 and clone 2 each 2μl as a template, the specific fragments of PCR amplification is about 640bp, and its size is consistent with the positive control, while the negative control SG600-EGFP has no PCR amplification products. RT-PCR results suggest that the exogenous MDA-7/IL-24 gene was highly expressed in hepatocullular carcinoma lines HepG2, Hep3B, SMMC7721 and normal liver cell line L02 after infected with SG600-IL24.
     Conclusion:We constructed oncolytic adenovirus SG600-IL24 vector which carrying human MDA-7/IL-24 successfully. SG600-IL24 vector which carrying MDA-7/IL-24 gene was highly expressed in human hepatocullular carcinoma lines and normal liver cell line.
     Oncolytic adenovirus SG600-IL24 selectively kills hepatocellular carcinoma cell lines in vitro
     Objective:We investigate the selective antitumor activity of oncolytic adenovirus SG600-IL24 vector which carrying human MDA-7/IL-24 on human hepatocullular carcinoma lines HepG2, Hep3B, SMMC7721, MHCC97L, HCCLM3 and normal liver cell line L02 in vitro, to provide a theoretical basis for hepatocullular carcinoma gene therapy.
     Methods:The human hepatocullular carcinoma lines HepG2, Hep3B, SMMC7721, MHCC97L, HCCLM3 and normal liver cell line L02 were infected with oncolytic adenovirus SG600-IL24. MDA-7/IL-24 mRNA and protein expressions in infected cells were detected by reverse transcription-polymerase chain reaction (RT-PCR), enzymelinked immunosorbent assay (ELISA), and Western-blot respectively. MTT assay was used to investigate the proliferation of HCC cell lines and normal liver cell lines. Antitumor activity of SG600-IL24 on HCC cell lines was detected by Hoechst33258 staining. Annexin-V and PI staining was studied to indicate the apoptosis effect and the flow cytometry was used to assess the cell cycle.
     Results:RT-PCR and Western blotting showed that the exogenous MDA-7/IL-24 gene was highly expressed in hepatocullular carcinoma lines HepG2, Hep3B, SMMC7721, MHCC97L, HCCLM3 and normal liver cell line L02 after infected with SG600-IL24. The protein product was confirmed by assay the supernatant with ELISA. MTT and Hoechst33258 staining indicated that SG600-IL24 induced growth suppression, promoted apoptosis, and blocked cancer cell lines in the G2/M phase in hepatocellular carcinoma cell lines but not in the normal liver cell line.
     Conclusion:Oncolytic adenovirus SG600-IL24 vector which carrying human MDA-7/IL-24 can selectively kill different metastatic potential HCC cell lines and induce apoptosis, block cell proliferation but not normal liver cell line L02.
     The mechanism of Oncolytic adenovirus SG600-IL24 selectively kills hepatocullular carcinoma cell lines
     Objective:To explore the mechanism of oncolytic adenovirus SG600-IL24 selectively kills hepatocullular carcinoma cell lines HepG2 and HCCLM3 in vitro, and in order to provide a theoretical basis for hepatocullular carcinoma gene therapy.
     Methods:The human hepatocullular carcinoma cell lines HepG2, HCCLM3 and normal liver cell line L02 were intervened by oncolytic adenovirus SG600-IL24. RT-PCR and Western-blot were used to detected the protein expressions of total STAT3 and the its signaling pathway downstream signal molecule C-myc, bax, bcl-2, bcl-xl, CyclinD2, Survivin, XIAP, OPN, MMP-2, MMP-9 and VEGF in HepG2, HCCLM3 and normal liver cell line L02 after intervened by oncolytic adenovirus SG600-IL24, also examined the expression of p-STAT3 after infection with SG600-IL24.
     Results:It was confirmed by RT-PCR and western-blot method that the STAT3 and the its signaling pathway downstream signal molecule C-myc, Bcl-xl, bcl-2, CyclinD2, Survivin, MMP-2, MMP-9, XIAP, OPN, VEGF were downregulated while upregulation of Bax. The phosphorylation of STAT3 after infection was increased and then decreased, and reach to the peak in 2 hours.
     Conclusion:Oncolytic adenovirus SG600-IL24 may achieve the role of anti-hepatoma through inhibiting STAT3 and the its signaling pathway downstream signal molecule while not normal liver cell line, which make oncolytic adenovirus SG600-IL24 has significant selectively antitumor effects. p-STAT3.
     Treatment of hepatoma in nude mice combined oncolytic adenovirus SG600-IL24 with Interferon
     Objective:To study the effects of oncolytic adenovirus SG600-IL24 which carrying human MDA-7/IL-24 and Interferon on hepatoma xenografts in nude mice and explore a new way for hepatoma gene therapy combined with neoadjuvant therapy.
     Methods:First established subcutaneous hepatoma nude mice model, when the tumors had grown to 100-150 mm3(day 0), the animals were randomized into four groups(each group has eight nude mice) as follows:(1) Control group:Saline 0.3 ml, intraperitoneal injection to the right side,1/d,3 times. (2) Neoadjuvant therapy group (IFN group):IFN 1.5 x104 IU/g, intraperitoneal injection to the right side,1/d,10 times. (3) SG600-IL24 group:SG600-IL24 2 x 108 PFU, multi-point injection to the local tumor,5 times every other day. (4) SG600-IL24+IFN group:IFN 1.5 x104 IU/g, intraperitoneal injection to the right side,1/d, 10 times, and the next day SG600-IL242x108 PFU, multi-point injection to the local tumor, 5 times every other day. And the expression of mda-7/IL-24 gene and protein was detected in tumor tissue after intervented for 30d, the survival time and the tumor volume of the nude mice were observed in each group subsequently.
     Results:The exogenous MDA-7/IL-24 gene was highly expressed in nude mice after treatment with SG600-IL24 or SG600-IL24 plus IFN. The mice treated with SG600-IL24 plus Interferon had significantly longer survival time (3 mice>120) days and smaller tumor volume than in other groups(P<0.01).
     Conclusion:Oncolytic adenovirus SG600-IL24 has stronger synergistic antitumor effect on metastastic hepatoma nude mice model combined with Interferon, and pave a new way for HCC virus gene therapy.
引文
[1]Pestka S, Krause CD, Sarkar D, et al. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol.2004; 22:929-979.
    [2]Liang J, Huang RL, Huang Q, et al. Adenovirus-Mediated Human Interleukin 24 (MDA-7/IL-24) Selectively Suppresses Proliferation and Induces Apoptosis in Keloid Fibroblasts. Ann Plast Surg.2011; 66(6):660-666.
    [3]Wang CJ, Zhang H, Chen K, et al.Ad.mda-7 (IL-24) selectively induces apoptosis in hepatocellular carcinoma cell lines, suppresses metastasis, and enhances the effect of doxorubicin on xenograft tumors. Oncol Res.2010; 18(11-12):561-574.
    [4]Yacoub A, Hamed HA, Allegood J, et al. PERK-Dependent Regulation of Ceramide Synthase 6 and Thioredoxin Play a Key Role in mda-7/IL-24-Induced Killing of Primary Human Glioblastoma Multiforme Cells. Cancer Res.2010; 70(3):1120-1129.
    [5]Hamed HA, Yacoub A, Park MA, et al.OSU-03012 enhances Ad.mda-7-induced GBM cell killing via ER stress and autophagy and by decreasing expression of mitochondrial protective proteins. Cancer Biol Ther.2010; 9(7):526-536.
    [6]Su Z Z, Lebedeva, Sarkar D, et al. Melanoma differentiation associated gene 7,mda-7/IL-24,selectively induces growth surpression,apoptosis,and radiosensitization in malignant gliomas in a p53 independent manner, oncogene. 2003;22(8):1164-1180.
    [7]Zhang ZL, Zou WG, Luo CX, et al. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res. 2003;13(16):481-489.
    [8]Luo J J, Xia Q, Zhang R, et al. Treatment of cancer with a novel dual-targeted conditionally Replicative adenovirus armed with mda-7/IL-24 gene. Clinical Cancer Research.2008; 14(8):2450-2457.
    [9]Liu TC, Kirn D. Gene therapy progress and prospects cancer:oncolytic viruses. Gene Ther.2008;15(12):877-884.
    [10]Liu XY, Gu JF. Targeting gene-virotherapy of cancer. Cell Res.2006; 16(8):740.
    [11]Kirn D, Martuza R L, Zwiebel J. Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat Med.2001;7(7): 781-787.
    [12]Yoo JY, Ry u J, Gao R, et al. Tumor suppression by apoptotic and anti-angiogenic effects of mortal in targeting adeno-oncolytic virus. J Gene Med.2010; 12(7):586-595.
    [13]Kim J, Lee B, Kim J S, et al. Antitumoral effects of recombinant adenovirus YKL-1001, conditionally replicating in alpha-fetoprotein-producing human liver cancer cells. Cancer Lett.2002;180 (1):23-32.
    [14]Kurihara T, Brough D E, Kovesdi I, et al. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest.2000;106(6):763-771.
    [15]Dav is W Jr, Ronai Z, T ew K D. Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther.2001; 296(1):1-6.
    [16]Huaire LC. Telomere and Telomerase:Brief review of a history initiated by Hermann Muller and Barbara McClintock.Colomb Med.2006;37(4):336-339.
    [17]Cairney CJ, Keith WN. Telomerase redefined:Integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity. Biochimie.2008; 90(1):3-23.
    [18]Artandi SE. Telomeres, telomerase and human disease. N Engl J Med.2006;355(12): 1195-1197.
    [19]Butts S, Riethman H, Ratcliffe S, et al. Correlation of Telomere Length and Telomerase Activity with Occult Ovarian Insufficiency. Clin Endocrinol Metab.2009; 94(12):4835-4843.
    [20]Jang JS, Choi YY, Lee WK, et al. Telomere length and the risk of lung cancer. Cancer Sci.2008;99(7):1385-1389.
    [21]Harrington L, McPhail T, Mar V, Zhou W, Oulton R, Bass MB, Arruda I, Robinson MO. A mammalian telomerase-associated protein. Science.1997; 275 (5302):973-977.
    [22]Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR. Telomerase catalytic subunit homologs from fission yeast and human. Science.1997;277(5328):955-959.
    [23]Avilion AA, Piatyszek MA, Gupta J, Shay JW, Bacchetti S, Greider CW. Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues.Cancer Res.1996;56(3):645-650.
    [24]Kyo S, Takakura M, Taira T, et al. SP1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene(hTERT).Nucleic Acids Res.2000; 28(3):669-677.
    [25]Shay J W, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33 (5):787-791.
    [26]Kim NW, PiatyszekM A, Prowse K R, et al. Specific association of human telomerase activity with immortal cells and cancer. Science.1994;266(5193):2011-2015.
    [27]Su C Q, Sham J, Xue H B, et al. Potent antitumoral efficacy of a novel replicative adenovirus CNHK300 targeting telomerase-positive cancer cells. J Cancer Res Clin Oncol.2004;130(10):591-603.
    [28]Kawashima T, Kagawa S, Naoya K, et al. Telomerase-specific replication-selective virotherapy for human cancer. Clin Cancer Res.2004; 10(1 Ptl):285-292.
    [29]Su C Q, Wang X H, Chen J, et al. Antitumor activity of an hTERT promoter-regulated tumor-selective oncolytic adenovirus in human hepatocellular carcinoma. World J Gastroentrtol.2006; 12(47):7613-7620.
    [30]Horikawa, P.L.Cable, S.J.Mazur, et al. Downstream E-Box-mediated regulation of the human telomerase reverse transcriptase(hTER) gene transcription:evidence for an endogenous mechanism of transcriptional repression. Mol.Biol.Cell.2002;13(8):2585-2597.
    [31]Takakwa M, Kyo S, Hirano H, et al. Cloning of Human Telomerase Catalytic Subunit (hTERT) Gene Promoter and Identification of Proximal Core Promoter Sequences Essential for Transcriptional Activation in Immortalized and Cancer Cells. Cancer Res.1999;59(3):551-557.
    [32]Dachs GU, Tozer GM. Hypoxia modulated gene expression:angiogenesis,metastasis and t herapeutic exploitation. Eur J Cancer.2000;36 (13):1649-1660.
    [33]Binley K, Askham Z, Martin L, et al. Hypoxia mediated tumour targeting. Gene Ther. 2003;10(7):540-549.
    [34]Fuerer C, Iggo R. Adenoviruses with Tcf binding sites in multiple early promoters show enhanced selectivity for tumour cells with constitutive activation of the wnt signalling pathway. Gene Ther.2002; 9(4):270-281.
    [35]Ahmed A,Thompson J, Emiliusen L, et al.A conditionally replicating adenovirus targeted to tumor cells through activated RAS/P-MAPK-selective mRNA stabilization.Nat Biotechnol.2003;21(7):771-777.
    [36]Fukuda K, Abei M, Ugai H, et al. ElA,EIB double-restricted adenovirus for oncolytic gene therapy of gallbladder cancer. Cancer Res.2003; 63(15):4434-4440.
    [1]Mahasreshti PJ, Kataram M, Wu H, Yalavarthy LP, Carey D, Fisher PB, et al. Ovarian cancer targeted adenoviral-mediated mda-7/IL-24 gene therapy. Gynecol Oncol.2006;100(3):521-532.
    [2]Gopalan B, Litvak A, Sharma S, Mhashilkar AM, Chada S, Ramesh R. Activation of the Fas-FasL signaling pathway by MDA-7/IL-24 kills human ovarian cancer cells. Cancer Res.2005; 65(8):3017-3024.
    [3]Kawabe S, Nishikawa T, Munshi A, Roth JA, Chada S, Meyn RE. Adenovirus-mediated mda-7 gene expression radiosensitizes non-small cell lung cancer cells via TP53-independent mechanisms. Mol Ther.2002; 6(5):637-644.
    [4]Ramesh R, Ito I, Gopalan B, Saito Y, Mhashilkar AM, Chada S. Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells. Mol Ther. 2004; 9(4):510-518.
    [5]McKenzie T, Liu Y, Fanale M, Swisher SG, Chada S, Hunt KK. Combination therapy of Ad-mda7 and trastuzumab increases cell death in Her-2/neu-overexpressing breast cancer cells. Surgery.2004; 136(2):437-442.
    [6]Lebedeva IV, Su ZZ, Sarkar D, Gopalkrishnan RV, Waxman S, Yacoub A, et al. Induction of reactive oxygen species renders mutant and wild-type K-ras pancreatic carcinoma cells susceptible to Ad.mda-7-induced apoptosis. Oncogene.2005; 24(4):585-596.
    [7]Yacoub A, Mitchell C, Hong Y, Gopalkrishnan RV, Su ZZ, Gupta P,et al. MDA-7 Regulates Cell Growth and Radiosensitivity In Vitro of Primary (Non-Established) Human Glioma Cells. Cancer Biol Ther.2004; 3(8):739-751.
    [8]Lebedeva IV, Su ZZ, Sarkar D, Kitada S, Dent P, Waxman S, et al. Melanoma differentiation associated gene-7, mda-7/interleukin-24, induces apoptosis in prostate cancer cells by promoting mitochondrial dysfunction and inducing reactive oxygen species. Cancer Res.2003; 63(23):8138-8144.
    [9]Zhao L, Gu J, Dong A, Zhang Y, Zhong L, He L,et al. Potent antitumor activity of oncolytic adenovirus expressing mda-7/IL-24 for colorectal cancer. Hum Gene Ther. 2005; 16(7):845-858.
    [10]Zhang G, Wang Q, Xu R. Therapeutics Based on microRNA:A New Approach for Liver Cancer. Curr Genomics.2010; 11 (5):311-325.
    [11]Foka P, Pourchet A, Hernandez-Alcoceba R, Doumba PP, Pissas G, Kouvatsis V, Dalagiorgou G, Kazazi D, Marconi P, Foschini M, Manservigi R, Konstadoulakis MM, Koskinas J, Epstein AL, Mavromara P. Novel tumour-specific promoters for transcriptional targeting of hepatocellular carcinoma by herpes simplex virus vectors. J Gene Med.2010;12(12):956-967.
    [12]Wang Y, Huang F, Cai H, Wu Y, He G, Tan WS. The efficacy of combination therapy using adeno-associated virus-TRAIL targeting to telomerase activity and cisplatin in a mice model of hepatocellular carcinoma. J Cancer Res Clin Oncol. 2010;136(12):1827-1837.
    [13]Lebedeva IV, Su ZZ, Chang Y, Kitada S, Reed JC, Fisher PB. The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells. Oncogene.2002; 21(5):708-718.
    [14]Huang EY, Madireddi MT, Gopalkrishnan RV, Leszczyniecka M, Su Z, Lebedeva IV, et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7)gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene.2001; 20(48):7051-7063.
    [15]Gopalkrishnan RV, Sauane M, Fisher PB. Cytokine and tumor cell apoptosis inducing activity of mda-7/IL-24. Int Immunopharmacol.2004; 4(5):635-647.
    [16]Sauane M, Gopalkrishnan RV, Lebedeva I, et al. Mda-7/IL-24 induces apoptosis of diverse cancer cell lines through JAK/STAT-independent pathways.J Cell Physiol. 2003;196(2):334-345.
    [17]Sauane M,Lebedeva IV,Su ZZ, et al. Melanoma differentiation associated gene-7/interleukin-24 promotes tumor cell-specific apoptosis through both secretory and nonsecretory pathways.Cancer Res.2004;64(9):2988-2993.
    [18]Sauane M, Gopalkrishnan RV, Lebedeva I, Mei MX, Sarkar D,Su ZZ, Kang DC, Dent P, Pestka S and Fisher PB:Mda-7/IL-24 induces apoptosis of diverse cancer cell lines through JAK/STAT-independent pathways. J Cell Physiol.2003;196(2):334-345.
    [19]Wang M, Tan Z, Zhang R, Kotenko SV, Liang P. Interleukin-24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J Biol Chem.2002;277(9):7341-7347.
    [20]Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC. Cutting edge:STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol.2001;167(7):3545-3549.
    [21]Chada S, Mhashilkar AM, Ramesh R, Mumm JB, Sutton RB, Bocangel D, Zheng M, Grimm EA, Ekmekcioglu S. Bystander activity of Ad-mda7:human MDA-7 protein kills melanoma cells via an IL-20 receptor-dependent but STAT3-independent mechanism. Mol Ther.2004; 10(6):1085-1095.
    [22]Su Z, Emdad L, Sauane M, Lebedeva IV, Sarkar D, Gupta P, James CD, Randolph A, Valerie K, Walter MR, Dent P, Fisher PB. Unique aspects of mda-7/IL-24 antitumor bystander activity:establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene.2005;24(51):7552-7566.
    [23]Su ZZ, Madireddi MT, Lin JJ, Young CS, Kitada S, Reed JC, Goldstein NI, Fisher PB. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci USA. 1998;95(24):14400-14405.
    [24]Madireddi MT, Su ZZ, Young CS, Goldstein NI, Fisher PB. Mda-7, a novel melanoma differentiation associated gene with promise for cancer gene therapy. Adv Exp Med Biol.2000;465:239-261.
    [25]Lebedeva IV, Sarkar D, Su ZZ, Kitada S, Dent P, Stein CA, Reed JC, Fisher PB. Bcl-2 and Bcl-x(L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene. 2003;22(54):8758-8773.
    [26]Mhashilkar AM, Stewart AL, Sieger K, Yang HY, Khimani AH, Ito I, Saito Y, Hunt KK, Grimm EA, Roth JA, Meyn RE, Ramesh R, Chada S. MDA-7 negatively regulates the betacatenin and PI3K signaling pathways in breast and lung tumor cells. Mol Ther.2003; 8(2):207-219.
    [27]Saito Y, Miyahara R, Gopalan B, Litvak A, Inoue S, Shanker M, Branch CD, Mhashilkar AM, Roth JA, Chada S, Ramesh R. Selective induction of cell cycle arrest and apoptosis in human prostate cancer cells through adenoviral transfer of the melanoma differentiation associated 7 (mda-7)/interleukin 24 (IL-24) gene. Cancer Gene Ther.2005;12(3):238-247.
    [28]Yang J, Qin LX, Li Y, et al. Molecular cytogenetic characteristics of the human hepatocellular carcinoma cell line HCCLM3 with high metastatic potential: comparative genomic hybridization and multiplex fluorescence in situ hybridization. Cancer Genet Cytogenet.2005;158(2):180-183.
    [29]Tian B, Li Y, Ji XN, et al. Basement membrane proteins play an active role in the invasive process of human hepatocellular carcinoma cells with high metastasis potential. J Cancer Res Clin Oncol.2005;131(2):80-86.
    [30]Ding SJ, Li Y, Shao XX, Zhou H, Zeng R, Tang ZY, Xia QC. Proteome analysis of Hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics.2004; 4(44):982-994.
    [31]Wu X, Jia HL, Wang YF, Ren N, Ye QH, Sun HC, Wang L, Liu YK, Tang ZY, Qin LX. HTPAP gene on chromosome 8p is a candidate metastasis suppressor for human hepatocellular carcinoma. Oncogene.2006;25(12):1832-1840.
    [1]Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, Ambs S, Chen Y, Meltzer PS, Croce CM, Qin LX, Man K, Lo CM, Lee J, Ng IO, Fan J, Tang ZY, Sun HC, Wang XW. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med.2009;361(15):1437-1447.
    [2]Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,2002. CA Cancer J Clin.2005; 55:74-108.
    [3]Lebedeva IV, Sauane M, Gopalkrishnan RV, et al. Mda-7/IL-24:Exploiting Cancer's Achilles'Heel. Mol Ther.2005; 11(1):4-18.
    [4]Martinou JC, Green DR. Breaking the mitochondria barrier. Nat. Rev. Mol. Cell. Biol. 2001;2(1):63-67
    [5]Huang DC, Strasser A. BH3-only proteins-essential initiators of apoptotic cell death. Cell.2000; 103(6):839-842
    [6]Li J, Zheng R, Li J, Wang Z Mechanisms of the induction of apoptosis in human hepatoma cells by tumour necrosis factor-alpha.Cell Biol Int.2001;25(12):1213-9.
    [7]Makin GW, Corfe BM, Griffiths GJ, Thistlethwaite A, Hickman JA, Dive C. Damage-induced Bax N-terminal change, translocation to mitochondria and formation of Bax dimers/complexes occur regardless of cell fate. EMBO J. 2001;20(22):6306-15.
    [8]Antonsson B. Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Mol Cell Biochem.2004;256-257(1-2):141-55.
    [9]Mikhailov V, Mikhailova M, Pulkrabek DJ, Dong Z, Venkatachalam MA, Saikumar P. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem.2001; 276(21):18361-74.
    [10]Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene.2000;19(21):2548-2556.
    [11]Valentino L, Pierre J. JAK/STAT signal transduction:regulators and implication in hematological malignancies.Biochem Pharmacol.2006;71(6):713-721.
    [12]Al Zaid Siddiquee K, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res.2008;18(2):254-267.
    [13]Klampfer L.Signal transducers and activators of transcription (STATs):Novel targets of chemopreventive and chemotherapeutic drugs. Curr Cancer Drug Targets. 2006;6(2):107-121.
    [14]Sun X, Zhang J, Wang L, Tian Z. Growth inhibition of human hepatocellular carcinoma cells by blocking STAT3 activation with decoy-ODN. Cancer Lett.2008; 262(2):201-213.
    [15]Bromberg JF, Wrzeszczynska MH, Devgan G, et al. Stat3 as an oncogene. Cell.1999;98:295-303.
    [16]Sinibaldi N, Wharton W, Turkson J, Bowman T, Pledger WJ, Jove R. Induction of p21 WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts: role of activated STAT3 signaling. Oncogene.2000;19(48):5419-5427.
    [17]Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity. 1999;10(1):105-115.
    [18]Niu G, Bowman T, Huang M, et al. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene.2002;21(46):7001-7010.
    [19]Epling-Burnette PK, Lui JH, Catlette-Falcone R, et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest.2001;107(3):351-362.
    [20]Iwamaru A, Szymanski S, Iwado E, et al. A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene.2007;26(17):2435-2444.
    [21]Bhattacharya S, Ray RM, Johnson LR. STAT3-mediated transcription of Bcl-2, Mcl-1 and c-IAP2 prevents apoptosis in polyamine-depleted cells. Biochem J.2005;392(Pt 2):335-344.
    [22]Gritsko T, Williams A, Turkson J, et al. Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res.2006;12(1):11-19.
    [23]Diaz N, Minton S, Cox C, et al. Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin Cancer Res.2006; 12(1):20-28.
    [24]Niu G, Wright KL, Huang M, et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene.2002;21(13):2000-2008.
    [25]Xu Q, Briggs J, Park S, et al. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene.2005;24(36): 5552-5560.
    [26]Yu H, Jove R. The STATs of cancer-new molecular targets come of age. Nat Rev Cancer.2004;4(2):97-105.
    [27]Turkson J, Jove R. STAT proteins:novel molecular targets for cancer drug discovery. Oncogene.2000; 19(56):6613-6626.
    [28]Liu B, Ren Z, Shi Y, Guan C, Pan Z, Zong Z. Activation of signal transducers and activators of transcription 3 and overexpression of its target gene CyclinD1 in laryngeal carcinomas. Laryngoscope.2008;118(11):1976-1980.
    [29]M. Upreti, R. Chu, E. Galitovskaya, S.K. Smart, T.C. Chambers. Key role for Bak activation and Bak-Bax interaction in the apoptotic response to vinblastine. Mol. Cancer Ther.2008;7(7):2224-2232.
    [30]Deveraux QL,Reed JC.IAP family proteins-suppressors of apoptosis. Genes Dev. 1999;13(3):239-252.
    [31]Kleinberg L, Lie A K, Florenes VA, et al. Expression of inhibitor-of-apoptosis protein family members in malignant mesothelioma. Human Pathology.2007;38(7):986-994.
    [32]Eckelman BP, Salvesen GS, Scott FL. Human inhibitor of apoptosis proteins:why XIAP is the black sheep of the family. EMBO Rep.2006;7(10):988-994.
    [33]Ambrosini G, Adida C, Ahieri DC, et al. A novel antiapoptosisgene, survivin, expressed in cancer and lymphoma. Nat Med.1997;3(8):917-921.
    [34]Lee JL, Wang M J, Sud ir PR, et al. Osteopontin promotes integrin activation through outside-in and inside out mechanisms:OPN-CD44V interaction enhances survival in gastrointestinal cancer cells. Cancer Res.2007;67(5):2089-2097.
    [35]Petrik D, Lavori PW, Cao H, et al. Plasma osteopontin is an in-dependent prognostic marker for head and neck cancers. J Clin Oncol.2006;24(33):5291-5297.
    [36]Pan HW, Ou YH, Peng SY, et al. Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer.2003;98(1):119-127.
    [37]Ye QH, Qin LX, Forgues M, et al. Predicting hepatitis B virus positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med.2003; 9(4):416-423.
    [38]Xie TX, Wei D, LiuM, et al. Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene.2004;23(20): 3550-3560.
    [39]McKenna GJ, Chen Y, Smith RM, et al. A role for matrix metalloproteinases and tumor host interaction in hepatocellular carcinomas. Am J Surg.2002;183(5):588-594.
    [40]Wei QY, WuYQ, FanSQ. Expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in the hepatocellular carcinomas. Hunan Yi Ke Da Xue Xue Bao.2003;28(3):212-216.
    [41]Yamaguchi R, Yano H, Iemura A, Ogasawara S, Haramaki M, Kojiro M. Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology. 1998;28:68-77.
    [42]Wei D, Le X, Zheng L, et al. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene.2003;22(3):319-329.
    [43]Kerbel, R.S. Tumor angiogenesis. N. Engl. J. Med.2008; 358:2039-2049.
    [44]Inoue, S, Hartman, A, Branch, C.D, Bucana, C.D, Bekele, B.N, Stephens, L.C, Chada, S, Ramesh, R. MDA-7 In combination with bevacizumab treatment produces a synergistic and complete inhibitory effect on lung tumor xenograft. Mol Ther. 2007;15(2):287-294.
    [45]Chada S, Mhashilkar AM, Ramesh R, Mumm JB, Sutton RB, Bocangel D, Zheng M, Grimm EA, Ekmekcioglu S. Bystander activity of Ad-mda7:human MDA-7 protein kills melanoma cells via an IL-20 receptor-dependent but STAT3-independent mechanism. Mol Ther.2004;10(6):1085-1095.
    [46]Nicholson SE, Willson TA, Farley A, et al. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J.1999;18(2):375-385.
    [47]Horiguchi A, Oya M, Shimada T, et al. Activation of signal transducer and activator of transcription 3 in renal cell carcinoma:a study of incidence and its association with pathological features and clinical outcome. J Urol.2002;168(2):762-765.
    [48]Bartoli, M., Platt, D.,Lemtalsi, T., Gu, X., Brooks, S.E., Marrero, M.B.,Caldwell, R.B. VEGF differentially activates STAT3 in microvascular endothelial cells. FASEB J. 2003;17:1562-1564.
    [49]Yahata, Y., Shirakata, Y, Tokumaru, S, Yamasaki, K, Sayama, K, Hanakawa, Y, Detmar, M, Hashimoto, K. Nuclear translocation of phosphorylated STAT3 is essential for vascular endothelial growth factor-induced human dermal microvascular endothelial cell migration and tube formation. J. Biol. Chem. 2003;278(41):40026-40031.
    [50]Lin, L.; Amin, R, Gallicano, G.I, Glasgow, E, Jogunoori, W, Jessup, J.M, Zasloff, M, Marshall, J.L, Shetty, K, Johnson, L, Mishra, L, He, A.R. The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-beta signaling. Oncogene.2009; 28(7):961-972.
    [51]Berasain, C, Castillo, J, Perugorria, M.J, Latasa, M.U, Prieto, J, Avila, M.A. Inflammation and liver cancer:new molecular links. Ann. N. Y. Acad. Sci.2009; 1155:206-221.
    [52]Xu, Q, Briggs, J, Park, S, Niu, G, Kortylewski, M, Zhang, S, Gritsko, T, Turkson, J, Kay, H, Semenza, G.L, Cheng, J.Q, Jove, R, Yu, H. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene.2005; 24(36):5552-5560.
    [53]Li, W.C, Ye, S.L, Sun, R.X, Liu, Y.K, Tang, Z.Y, Kim, Y, Karras, J.G, Zhang, H. Inhibition of growth and metastasis of human hepatocellular carcinoma by antisense oligonucleotide targeting signal transducer and activator of transcription 3. Clin Cancer Res.2006; 12(23):7140-7148.
    [1]Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, Ambs S, Chen Y, Meltzer PS, Croce CM, Qin LX, Man K, Lo CM, Lee J, Ng IO, Fan J, Tang ZY, Sun HC, Wang XW. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med.2009;361(15):1437-1447.
    [2]Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,2002. CA Cancer J Clin.2005; 55:74-108.
    [3]Sun HC, Tang ZY, Wang L, Qin LX, Ma ZC, Ye QH, Zhang BH, Qian YB, Wu ZQ, Fan J, Zhou XD, Zhou J, Qiu SJ, Shen YF. Postoperative interferon alpha treatment postponed recurrence and improved overall survival in patients after curative resection of HBV-related hepatocellular carcinoma:a randomized clinical trial. J Cancer Res Clin Oncol.2006;132(7):458-465.
    [4]Murakami M, Kobayashi S, Marubashi S, Tomimaru Y, Noda T, Wada H, Eguchi H, Takeda Y, Tanemura M, Umeshita K, Doki Y, Mori M, Nagano H. Tyrosine Kinase Inhibitor PTK/ZK Enhances the Antitumor Effects of Interferon-alpha/5-Fluorouracil Therapy for Hepatocellular Carcinoma Cells. Ann Surg Oncol.2011;18(2):589-596.
    [5]Hagiwara S, Kudo M, Ueshima K, Chung H, Yamaguchi M, Takita M, Haji S, Kimura M, Arao T, Nishio K, Park AM, Munakata H. The cancer stem cell marker CD 133 is a predictor of the effectiveness of S1+pegylated interferon alpha-2b therapy against advanced hepatocellular carcinoma. J Gastroenterol.2011;46(2):212-221.
    [6]Xue XB, Xiao CW, Zhang H, Lu AG, Gao W, Zhou ZQ, Guo XL, Zhong MA, Yang Y, Wang CJ. Oncolytic adenovirus SG600-IL24 selectively kills hepatocellular carcinoma cell lines. World J Gastroenterol.2010;16(37):4677-4684.
    [7]Xiao CW, Xue XB, Zhang H, Gao W, Yu Y, Chen K, Zheng JW, Wang CJ. Oncolytic adenovirus-mediated MDA-7/IL-24 overexpression enhances antitumor activity in hepatocellular carcinoma cell lines. Hepatobiliary Pancreat Dis Int.2010;9(6):615-621.
    [8]Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol.2004; 22:929-979.
    [9]Liang J, Huang RL, Huang Q, et al. Adenovirus-Mediated Human Interleukin 24 (MDA-7/IL-24) Selectively Suppresses Proliferation and Induces Apoptosis in Keloid Fibroblasts. Ann Plast Surg.2011; 66(6):660-666.
    [10]Wang CJ, Zhang H, Chen K, et al.Ad.mda-7 (IL-24) selectively induces apoptosis in hepatocellular carcinoma cell lines, suppresses metastasis, and enhances the effect of doxorubicin on xenograft tumors. Oncol Res.2010; 18(11-12):561-574.
    [11]Yacoub A,Hamed HA, Allegood J, Mitchell C, Spiegel S, Lesniak MS, et al. PERK-Dependent Regulation of Ceramide Synthase 6 and Thioredoxin Play a Key Role in mda-7/IL-24-Induced Killing of Primary Human Glioblastoma Multiforme Cells. Cancer Res.2010; 70(3):1120-1129.
    [12]Hamed HA, Yacoub A, Park MA, Eulitt P, Sarkar D, Dimitriev IP, Chen CS, Grant S, Curiel DT, Fisher PB, Dent P. OSU-03012 enhances Ad.mda-7-induced GBM cell killing via ER stress and autophagy and by decreasing expression of mitochondrial protective proteins. Cancer Biol Ther.2010; 9(7):526-536.
    [13]Patani N, Douglas-Jones A, Mansel R, Jiang W, Mokbel K. Tumour suppressor function of MDA-7/IL-24 in human breast cancer. Cancer Cell Int.2010;10:29.
    [14]Park MA, Walker T, Martin AP, Allegood J, Vozhilla N, Emdad L, Sarkar D, Rahmani M, Graf M, Yacoub A, Koumenis C, Spiegel S, Curiel DT, Voelkel-Johnson C, Grant S, Fisher PB, Dent P. MDA-7/IL-24-induced cell killing in malignant renal carcinoma cells occurs by a ceramide/CD95/PERK-dependent mechanism. Mol Cancer Ther.2009; 8(5):1280-1291.
    [15]Germano IM, Emdad L, Qadeer ZA, Binello E, Uzzaman M. Embryonic stem cell (ESC)-mediated transgene delivery induces growth suppression, apoptosis and radiosensitization, and overcomes temozolomide resistance in malignant gliomas. Cancer Gene Ther.2010;17(9):664-674.
    [16]Maarof G, Bouchet-Delbos L, Gary-Gouy H, Durand-Gasselin I, Krzysiek R, Dalloul A. Interleukin-24 inhibits the plasma cell differentiation program in human germinal center B cells. Blood.2010; 115(9):1718-1726.
    [17]Los M. New, exciting developments in experimental therapies in the early 21st century. Eur J Pharma col.2009; 625(1-3):1-5.
    [18]Su Z Z, Lebedeva, Sarkar D, etal.Melanoma differentiation associated gene 7,mda-7/IL-24,selectively induces growth surpression,apoptosis,and radiosensitization in malignant gliomas in a p53 independent manner,oncogene.2003; 22(8):1164-1180.
    [19]Zhang ZL, Zou WG, Luo CX, et al. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res.2003; 13(16):481-489.
    [20]Baron S, Dianzani F. The interferons:a biological system with therapeutic potential in viral infections. Antiviral Res.1994;24(2-3):97-110.
    [21]Hertzog PJ, Hwang SY, Kola I. Role of interferons in the regulation of cell proliferation,differentiation, and development. Mol Reprod Dev 1994;39(2):226-232.
    [22]Gutterman JU. Cytokine therapeutics:lessons from interferon alpha. Proc Natl Acad Sci USA.1994;91(4):1198-1205.
    [23]Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science.1994;264: 1415-1421.
    [24]Patt YZ, Hassan MM, Lozano RD, Brown TD, Vauthey JN, Curley SA, Ellis LM. Phase II trial of systemic continuous fluorouracil and subcutaneous recombinant interferon Alfa-2b for treatment of hepatocellular carcinoma. J Clin Oncol. 2003;21(3):421-427.
    [25]Obi S, Yoshida H, Toune R, Unuma T, Kanda M, Sato S, Tateishi R, Teratani T, Shiina S,Omata M. Combination therapy of intraarterial 5-fluorouracil and systemic interferon-alpha for advanced hepatocellular carcinoma with portal venous invasion. Cancer.2006;106(9):1990-1997.
    [26]Sun HC, Tang ZY, Wang L, Qin LX, Ma ZC, Ye QH, Zhang BH, Qian YB, Wu ZQ, Fan J, Zhou XD, Zhou J, Qiu SJ, Shen YF. Postoperative interferon alpha treatment postponed recurrence and improved overall survival in patients after curative resection of HBV-related hepatocellular carcinoma:a randomized clinical trial. J Cancer Res Clin Oncol.2006;132(7):458-465.
    [27]Ravaud A, Dilhuydy MS. Interferon alpha for the treatment of advanced renal cancer. Expert Opin Biol Ther.2005;5(6):749-762.
    [28]von Marschall Z, Scholz A, Cramer T, Schafer G, Schirner M, Oberg K, Wiedenmann B, Hocker M, Rosewicz S. Effects of interferon alpha on vascular endothelial growth factor gene transcription and tumor angiogenesis. J Natl Cancer Inst.2003; 95(6):437-448.
    [29]Huang SF, Kim SJ, Lee AT, Karashima T, Bucana C, Kedar D, Sweeney P, Mian B, Fan D, Shepherd D, Fidler IJ, Dinney CP, Killion JJ. Inhibition of growth and metastasis of orthotopic human prostate cancer in athymic mice by combination therapy with pegylated interferon-alpha-2b and docetaxel. Cancer Res. 2002;62(20):5720-5726.
    [30]Hancock BW, Wheatley K, Harris S, Ives N, Harrison G, Horsman JM, Middleton MR, Thatcher N, Lorigan PC, Marsden JR, Burrows L, Gore M. Adjuvant interferon in high-risk melanoma:the AIM HIGH Study--United Kingdom Coordinating Committee on Cancer Research randomized study of adjuvant low-dose extended-duration interferon Alfa-2a in high-risk resected malignant melanoma. J Clin Oncol.2004;22(1):53-61.
    [31]T. Nishikawa, R. Ramesh, A. Munshi, S. Chada and R.E. Meyn. Adenovirus-mediated mda-7 (IL-24) gene therapy suppresses angiogenesis and sensitizes NSCLC xenograft tumors to radiation. Mol Ther.2004; 9(6):818-828.
    [32]Ramesh R, Mhashilkar AM, Tanaka F, Saito Y, Branch CD, Sieger K, Mumm JB, Stewart AL, Boquoi A, Dumoutier L, Grimm EA, Renauld JC, Kotenko S, Chada S. Melanoma differentiation-associated gene 7/interleukin (IL)-24 is a novel ligand that regulates angiogenesis via the IL-22 receptor. Cancer Res.2003;63(16):5105-5113.
    [33]Ramesh R, Ito I, Gopalan B, Saito Y, Mhashilkar AM, Chada S. Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells, Mol Ther. 2004;9(4):510-518.
    [34]Saeki T, Mhashilkar A, Swanson X, Zou-Yang XH, Sieger K, Kawabe S, Branch CD, Zumstein L, Meyn RE, Roth JA, Chada S, Ramesh R. Inhibition of human lung cancer growth following adenovirusmediated mda-7 gene expression in vivo. Oncogene. 2002;21(29):4558-4566.
    [35]Xiao L, Li X, Niu N, Qian J, Xie G, Wang Y. Dichloroacetate (DCA) enhances tumor cell death in combination with oncolytic adenovirus armed with MDA-7/IL-24. Mol Cell Biochem.2010;340(1-2):31-40.
    [36]Inoue S, Branch CD, Gallick GE, Chada S, Ramesh R. Inhibition of Src kinase activity by Ad-mda-7 suppresses vascular endothelial growth factor expression in prostate carcinoma cells. Mol Ther.2005;12(4):707-715.
    [37]Nishikawa T, Ramesh R, Munshi A, Chada S, Meyn RE. Adenovirus-mediated mda-7 (IL-24) gene therapy suppresses angiogenesis and sensitizes NSCLC xenograft tumors to radiation. Mol Ther.2004;9(6):18-28.
    [38]Chada S, Mhashilkar AM, Ramesh R, et al. Bystander activity of Ad-mda7:human MDA-7 protein kills melanoma cells via an IL-20 receptor-dependent but STAT3-independent mechanism. Mol Ther.2004;10(6):1085-1095.
    [39]Oida Y, Gopalan B, Miyahara R, et al. Sulindac enhances adenoviral vector expressing mda-7/IL-24-mediated apoptosis in human lung cancer. Mol Cancer Ther. 2005;4(2):291-304.
    [40]McKenzie T, Liu Y, Fanale M, Swisher SG, Chada S, Hunt KK. Combination therapy of Ad-mda-7 and trastuzumab increases cell death in HER-2/neuoverexpressing breast cancer cells. Surgery.2004;136(2):437-442.
    [41]Small EJ, Carducci MA, Burke JM, Rodriguez R, Fong L, van Ummersen L, Yu DC, Aimi J, Ando D, Working P, Kirn D, Wilding G. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol Ther.2006;14(1):107-117.
    [42]Galanis E, Okuno SH, Nascimento AG, Lewis BD, Lee RA, Oliveira AM, Sloan JA, Atherton P, Edmonson JH, Erlichman C, Randlev B, Wang Q, Freeman S, Rubin J. Phase I-II trial of ONYX-015 in combination with MAP chemotherapy in patients with advanced sarcomas. Gene Ther.2005;12(5):437-445.
    [43]Hecht JR, Bedford R, Abbruzzese JL, Lahoti S, Reid TR, Soetikno RM, Kirn DH, Freeman SM. A phase Ⅰ/Ⅱ trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res.2003;9(2):555-561.
    [44]Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L, Gore M, Ironside J, MacDougall RH, Heise C, Randlev B, Gillenwater AM, Bruso P, Kaye SB, Hong WK, Kirn DH. A controlled trial of intratumoral ONYX-015, a selectivelyreplicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med.2000;6(8):879-885.
    [45]He LF, Gu JF, Tang WH, Fan JK, Wei N, Zou WG, Zhang YH, Zhao LL, Liu XY. Significant antitumor activity of oncolytic adenovirus expressing human interferon-beta for hepatocellular carcinoma. J Gene Med.2008;10(9):983-992.
    [46]Ikeda Y, Kojima T, Kuroda S, Endo Y, Sakai R, Hioki M, Kishimoto H, Uno F, Kagawa S, Watanabe Y, Hashimoto Y, Urata Y, Tanaka N, Fujiwara T. A novel antiangiogenic effect for telomerase-specific virotherapy through host immune system. J Immunol.2009; 182(3):1763-1769.
    [47]Shashkova EV, Kuppuswamy MN, Wold WS, Doronin K. Anticancer activity of oncolytic adenovirus vector armed with IFN-alpha and ADP is enhanced by pharmacologically controlled expression of TRAIL. Cancer Gene Ther. 2008;15(2):61-72.
    [48]Inoue S, Hartman A, Branch CD, Bucana CD, Bekele BN, Stephens LC, Chada S, Ramesh R. MDA-7 In combination with bevacizumab treatment produces a synergistic and complete inhibitory effect on lung tumor xenograft. Mol Ther.2007; 15(2):287-294.
    [49]Sarkar D, Lebedeva IV, Gupta P, Emdad L, Sauane M, Dent P, Curiel DT, FisherPB. Melanoma differentiation associated gene-7 (MDA-7)/IL-24:amagic bullet for cancer therapy? Expert Opin Biol Ther.2007;7(5):577-586.
    [50]Inoue S, Shanker M, Miyahara R, Gopalan B, Patel S, Oida Y, Branch CD, Munshi A, Meyn RE, Andreeff M, Tanaka F, Mhashilkar AM, Chada S, Ramesh R. MDA-7/IL-24-based cancer gene therapy:translation from the laboratory to the clinic. Curr Gene Ther.2006;6(1):73-91.
    [1]Los M. New, exciting developments in experimental therapies in the early 21st century. Eur J Pharmacol.2009;625(1-3):2-5.
    [2]Pestka S, Krause CD, Sarkar D, et al. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol.2004; 22:929-979.
    [3]Liang J, Huang RL, Huang Q, et al. Adenovirus-Mediated Human Interleukin 24 (MDA-7/IL-24) Selectively Suppresses Proliferation and Induces Apoptosis in Keloid Fibroblasts. Ann Plast Surg.2011; 66(6):660-666.
    [4]Wang CJ, Zhang H, Chen K, et al.Ad.mda-7 (IL-24) selectively induces apoptosis in hepatocellular carcinoma cell lines, suppresses metastasis, and enhances the effect of doxorubicin on xenograft tumors. Oncol Res.2010;18(11-12):561-574.
    [5]Yacoub A, Hamed HA, Allegood J, et al. PERK-Dependent Regulation of Ceramide Synthase 6 and Thioredoxin Play a Key Role in mda-7/IL-24-Induced Killing of Primary Human Glioblastoma Multiforme Cells. Cancer Res.2010; 70(3):1120-1129.
    [6]Hamed HA, Yacoub A, Park MA, et al. OSU-03012 enhances Ad.mda-7-induced GBM cell killing via ER stress and autophagy and by decreasing expression of mitochondrial protective proteins. Cancer Biol Ther.2010;9(7):526-536.
    [7]Chang C, Magracheva E, Kozlov S, Fong S, Tobin G, Kotenko S, Wlodawer A, Zdanov A. Crystal structure of interleukin-19 defines a new subfamily of helical cytokines. J. Biol. Chem.2003;278 (5):3308-3313.
    [8]Dumoutier L, Renauld JC. Viral and cellular interleukin-10 (IL-10)-related cytokines: from structures to functions. Eur. Cytokine Netw.2002; 13(1):5-15.
    [9]Fickenscher H, Hor S, Kupers H, Knappe A, Wittmann S, Sticht H. The interleukin-10 family of cytokines. Trends Immunol.2002; 23(2):89-96.
    [10]Madireddi MT, Dent P, Fisher PB. Regulation of mda-7 gene expression during human melanoma differentiation. Oncogene.2000; 19(10):1362-1368.
    [11]Madireddi MT, Dent P, Fisher PB. AP-1 and C/EBP transcription factors contribute to mda-7 gene promoter activity during human melanoma differentiation. J Cell Physiol. 2000; 185(1):36-46.
    [12]Huang EY,Madireddi MT,Gopalkrishnan RV,et al.Genomic structure,chromosomal localization and expression profile of a novel melanoma differentiation associated(mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties.Oncogene.2001;20(48):7051-7063.
    [13]Sauane M,Lebedeva Ⅳ,Su ZZ,et al.Melanoma differentiation associated gene-7/interleukin-24 promotes tumor cell-specific apoptosis through both secretory and nonsecretory pathways.Cancer Res.2004,64(9):2988-2993.
    [14]Sauane M,Gopalkrishnan RV,Lebedeva I,et al. Mda-7/IL-24 induces apoptosis of diverse cancer cell lines through JAK/STAT-independent pathways.J Cell Physiol. 2003;196(2):334-345.
    [15]Parrish-Novak J, Xu W, Brender T, Yao L, Jones C, West J, Brandt C, Jelinek L, Madden K, McKernan PA, Foster DC, Jaspers S, Chandrasekher YA. Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem.2002; 277(49):47517-47523.
    [16]Sauane M, Gopalkrishnan RV, Lebedeva I, Mei MX, Sarkar D,Su ZZ, Kang DC, Dent P, Pestka S, Fisher PB. Mda-7/IL-24 induces apoptosis of diverse cancer cell lines through JAK/STAT-independent pathways. J Cell Physiol.2003;196(2):334-345.
    [17]Wang M, Tan Z, Zhang R, Kotenko SV, Liang P. Interleukin-24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J Biol Chem.2002;277(9):7341-7347.
    [18]Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC. Cutting edge:STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol.2001;167(7):3545-3549.
    [19]Chada S, Mhashilkar AM, Ramesh R, Mumm JB, Sutton RB, Bocangel D, Zheng M, Grimm EA, Ekmekcioglu S. Bystander activity of Ad-mda7:human MDA-7 protein kills melanoma cells via an IL-20 receptor-dependent but STAT3-independent mechanism. Mol Ther.2004;10(6):1085-1095.
    [20]Su Z, Emdad L, Sauane M, Lebedeva IV, Sarkar D, Gupta P, James CD, Randolph A, Valerie K, Walter MR, Dent P, Fisher PB. Unique aspects of mda-7/IL-24 antitumor bystander activity:establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene.2005;24(51):7552-7566.
    [21]Su ZZ, Madireddi MT, Lin JJ, Young CS, Kitada S, Reed JC, Goldstein NI, Fisher PB. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci USA. 1998;95(24):14400-14405.
    [22]Madireddi MT, Su ZZ, Young CS, Goldstein NI, Fisher PB. Mda-7, a novel melanoma differentiation associated gene with promise for cancer gene therapy. Adv Exp Med Biol.2000;465:239-261.
    [23]Lebedeva IV, Sarkar D, Su ZZ, Kitada S, Dent P, Stein CA, Reed JC, Fisher PB. Bcl-2 and Bcl-x(L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene. 2003;22(54):8758-8773.
    [24]Yacoub A, Mitchell C, Lister A, Lebedeva IV, Sarkar D, Su ZZ, Sigmon C, McKinstry R, Ramakrishnan V, Qiao L, Broaddus WC, Gopalkrishnan RV, Grant S, Fisher PB, Dent P. Melanoma differentiation-associated gene 7 (IL-24) inhibits growth and enhances radiosensitivity of glioma cells in vitro and in vivo.Clin Cancer Res. 2003;9(9):3272-3299.
    [25]Yacoub A, Mitchell C, Brannon J, Rosenberg E, Qiao L, McKinstry R, Linehan WM, Su ZS, Sarkar D, Lebedeva IV, Valerie K, Gopalkrishnan RV, Grant S, Fisher PB, Dent P. MDA-7(interleukin-24) inhibits the proliferation of renal carcinoma cells and interacts with free radicals to promote cell death and loss of reproductive capacity. Mol.Cancer Ther.2003;2(7):623-632.
    [26]Lebedeva IV, Su ZZ, Chang Y, Kitada S, Reed JC, Fisher PB. The cancer growth suppressing geneMDA-7 induces apoptosis selectively in human melanoma cells.Oncogene.2002;21(5):708-718.
    [27]Lebedeva IV, Sarkar D, Su ZZ, Kitada S, Dent P, Stein CA, Reed JC, Fisher PB. Bcl-2 and Bcl-xL differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, MDA-7/IL-24. Oncogene. 2003;22(54):8758-8773.
    [28]Lebedeva IV,Su ZZ,Sarkar D,et al.Melanoma differentiation associated gene-7,mda-7/interleukin-24,induces apoptosis in prostate cancer cells by promoting mitochondrial dysfunction and inducing reactive oxygen species.Cancer Research. 2003;63(23):8138-8144.
    [29]Jacobson MD. Reactive oxygen species and programmed cell death. Trends in Biochemical Sciences.1996;21(3):83-86.
    [30]Gown AM. Current issues in ER and HER2 testing by IHC in breast cancer.Mod Pathol.2008;21Suppl 2:S8-S15.
    [31]Liu S, Mauvais-Jarvis F. Minireview:Estrogenic protection of beta-cell failure in metabolic diseases.Endocrinology.2010;151(3):859-864.
    [32]Serock MR,Wells AK, Khalil RA. Modulators of vascular sex hormone receptors and their effects in estrogen-deficiency states associated with menopause.Recent Pat Cardiovasc Drug Discov.2008;3(3):165-186.
    [33]Mhashilkar AM, Stewart AL, Sieger K, Yang HY, Khimani AH, Ito I, Saito Y, Hunt KK, Grimm EA, Roth JA, Meyn RE, Ramesh R, Chada S. MDA-7 negatively regulates the betacatenin and PI3K signaling pathways in breast and lung tumor cells. Mol Ther.2003; 8 (2):207-219.
    [34]Saito Y, Miyahara R, Gopalan B, Litvak A, Inoue S, Shanker M, Branch CD, Mhashilkar AM, Roth JA, Chada S, Ramesh R. Selective induction of cell cycle arrest and apoptosis in human prostate cancer cells through adenoviral transfer of the melanoma differentiation associated 7 (mda-7)/interleukin 24 (IL-24) gene. Cancer Gene Ther.2005; 12(3):238-247.
    [35]Pataer A, Vorburger SA, Chada S, Balachandran S, Barber GN, Roth JA, Hunt KK, Swisher SG. Melanoma differentiation associated gene-7 protein physically associates with the double stranded RNA activated protein kinase PKR. Mol Ther. 2005, 11(5):717-723.
    [36]Pataer A, Vorburger SA, Barber GN, Chada S, Mhashilkar AM, Zou-Yang H, Stewart AL, Balachandran S, Roth JA, Hunt KK, Swisher SG. Adenoviral transfer of the melanoma differentiationassociated gene 7 (mda-7) induces apoptosis of lung cancer cells via up-regulation of the double-stranded RNA-dependent protein kinase (PKR). Cancer Res.2002;62(8):2239-2243.
    [37]Emdad L, Lebedeva IV, Su Z-Z, Gupta P, Sarkar D, Settleman J, Fisher PB. Combinatorial treatment of non-small-cell lung cancers with gefitinib and Ad.mda-7 enhances apoptosis-induction and reverses resistance to a single therapy. J Cell Physiol.2006;210(2):549-559.
    [38]Chada S, Mhashilkar AM, Liu Y, Nishikawa T, Bocangel D, Zheng M, Vorburger SA, Pataer A, Swisher SG, Ramesh R, Kawase K, Meyn RE, Hunt KK. mda-7 gene transfer sensitizes breast carcinoma cells to chemotherapy, biologic therapies and radiotherapy:correlation with expression of bcl-2 family members. Cancer Gene Ther. 2006; 13(5):490-502.
    [39]Pataer A, Vorburger SA, Chada S, Balachandran S, Barber GN, Roth JA, Hunt KK, Swisher SG. Melanoma differentiationassociated gene-7 protein physically associates with the doublestranded RNA-activated protein kinase PKR. Mol Ther. 2005;11(5):717-723.
    [40]Sarkar D, Su ZZ, Lebedeva IV, Sauane M, Gopalkrishnan RV, Valerie K, Dent P,Fisher PB. Mda-7 (IL-24) mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci USA.2002; 99(15):10054-10059.
    [41]Fawcett TW, Martindale JL, Guyton KZ, Hai T,Holbrook NJ. Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J. 1999;339(Pt1):135-141.
    [42]Su ZZ, Lebedeva IV, Sarkar D, Gopalkrishnan RV, Sauane M, Sigmon C, Yacoub A, Valerie K, Dent P, Fisher PB. Melanoma differentiation associated gene-7, mda-7/IL-24,selectively induces growth suppression, apoptosis and radiosensitization in malignant gliomas in a p53-independent manner. Oncogene.2003;22(8): 1164-1180.
    [43]Yacoub A, Mitchell C, Lebedeva IV, Sarkar D, Su ZZ, McKinstry R, Gopalkrishnan RV, Grant S, Fisher PB, Dent P. Mda-7 (IL-24) inhibits growth and enhances radiosensitivity of glioma cells in vitro via JNK signaling. Cancer Biol Ther. 2003;2(4):347-353.
    [44]Su ZZ, Lebedeva IV, Sarkar D, Emdad L, Gupta P, Kitada S, Dent P, Reed JC, Fisher PB. Ionizing radiation enhances therapeutic activity of mda-7/IL-24:overcoming radiation-and mda-7/IL-24-resistance in prostate cancer cells overexpressing the antiapoptotic proteins bcl-xL or bcl-2. Oncogene.2006; 25(16):2339-2348.
    [45]Yacoub A, Mitchell C, Hong Y, Gopalkrishnan RV, Su ZZ, Gupta P, Sauane M, Lebedeva IV, Curiel DT, Mahasreshti PJ, Rosenfeld MR, Broaddus WC, James CD, Grant S, Fisher PB,Dent P. MDA-7 regulates cell growth and radiosensitivity in vitro of primary (non-established) human glioma cells. Cancer Biol Ther. 2004;3(8):739-751.
    [46]Kawabe S, Nishikawa T, Munshi A, Roth JA, Chada S, Meyn RE. Adenovirus-mediated mda-7 gene expression radiosensitizes non-small cell lung cancer cells via TP53-independent mechanisms. Mol Ther. 2002;6(5):637-644.
    [47]Mhashilkar AM, Stewart AL, Sieger K, Yang HY, Khimani AH, Ito I, Saito Y, Hunt KK, Grimm EA, Roth JA, Meyn RE, Ramesh R, Chada S. MDA-7 negatively regulates the beta-catenin and PI3K signaling pathways in breast and lung tumor cells. Mol Ther.2003; 8(2):207-219.
    [48]Gopalan B, Litvak A, Sharma S, Mhashilkar AM, Chada S, Ramesh R. Activation of the Fas-FasL signaling pathway by MDA-7/IL-24 kills human ovarian cancer cells. Cancer Res.2005;65(8):3017-3024.
    [49]Sauane M, Gopalkrishnan RV, Choo HT, Gupta P, Lebedeva IV, Yacoub A, Dent P, Fisher PB. Mechanistic aspects of mda-7/IL-24 cancer cell selectivity analysed via a bacterial fusion protein. Oncogene.2004;23(46):7679-7690.
    [50]Saito Y, Miyahara R, Gopalan B, Litvak A, Inoue S, Shanker M, Branch CD, Mhashilkar AM, Roth JA, Chada S, Ramesh R. Selective induction of cell cycle arrest and apoptosis in human prostate cancer cells through adenoviral transfer of the melanoma differentiation-associated-7 (mda-7)/interleukin-24 (IL-24) gene.Cancer Gene Ther.2005;12(3):238-247.
    [51]Gupta P, Walter MR, Su ZZ, Lebedeva IV, Emdad L, Randolph A, Valerie K, Sarkar D, Fisher PB. BiP/GRP78 is an intracellular target for MDA-7/IL-24 induction of cancerspecific apoptosis. Cancer Res.2006;66(16):8182-8191.
    [52]Sainz-Perez A, Gary-Gouy H, Portier A, Davi F, Merle-Beral H, Galanaud P, Dalloul A. High Mda-7 expression promotes malignant cell survival and p38 MAP kinase activation in chronic lymphocytic leukemia. Leukemia.2006;20(3):498-504.
    [53]Chen J, Chada S, Mhashilkar A, Miano JM. Tumor suppressor MDA-7/IL-24 selectively inhibits vascular smooth muscle cell growth and migration. Mol Ther. 2003;8(2):220-229.
    [54]Welch DR, Bisi JE, Miller BE, Conaway D, Seftor EA, Yohem KH, Gilmore LB, Seftor RE, Nakajima M, Hendrix MJ. Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line. Int J Cancer. 1991;47(2):227-237.
    [55]Ramesh R, Ito Ⅰ, Gopalan B, et al. Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells. Mol Ther.2004;9(4):510-518.
    [56]Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol.1992;3(2): 65-71.
    [57]Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27-31.
    [58]Fidler IJ, Ellis LM. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell.1994;79(2):185-188.
    [59]Cristofanilli M, Charnsangavej C, Hortobagyi GN. Angiogenesis modulation in cancer research:novel clinical approaches. Nat Rev Drug Discov.2002; 1(6):415-426.
    [60]Kerr DJ. Targeting angiogenesis in cancer:clinical development of bevacizumab. Nat Clin Pract Oncol.2004; 1(1):39-43.
    [61]O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin:a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell.1994;79(2):315-328.
    [62]O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin:an endogenous inhibitor of angiogenesis and tumor growth. Cell.1997;88(2):277-285.
    [63]Shaheen RM, Davis DW, Liu W, Zebrowski BK, Wilson MR, Bucana CD, McConkey DJ, McMahon G, Ellis LM. Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastasis and induces tumor and endothelial cell apoptosis. Cancer Res. 1999;59(21):5412-5416.
    [64]Moses MA, Sudhalter J,Langer R. Identification of an inhibitor of neovascularization from cartilage. Science.1990;248(4961):1408-1410.
    [65]Laird AD, Vajkoczy P, Shawver LK, Thurnher A, Liang C, Mohammadi M, Schlessinger J, Ullrich A, Hubbard SR, Blake RA, Fong TA, Strawn LM, Sun L, Tang C, Hawtin R, Tang F, Shenoy N, Hirth KP, McMahon G,Cherrington S. U6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res.2000;60(15):4152-4160.
    [66]Kumar CC, Malkowski M, Yin Z, Tanghetti E, Yaremko B, Nechuta T, Varner J, Liu M, Smith EM, Neustadt B, Presta M, Armstrong L. Inhibition of angiogenesis and tumor growth by SCH221153, a dual alpha(v)beta3 and alpha(v)beta5 integrin receptor antagonist. Cancer Res.2001;61(5):2232-2238.
    [67]Lingen MW, Polverini PJ, Bouck NP. Inhibition of squamous cell carcinoma angiogenesis by direct interaction of retinoic acid with endothelial cells. Lab Invest. 1996;74(2):476-483.
    [68]Voest EE, Kenyon BM, O'Reilly MS, Truitt G, D'Amato RJ, Folkman J. Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst.1995; 87(8):581-586.
    [69]Singh RK, Gutman M, Bucana CD, Sanchez R, Llansa N, Fidler IJ. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc Natl Acad Sci USA.1995; 92(10):4562-4566.
    [70]Ramesh R, Mhashilkar AM, Tanaka F, et al. MDA-7/IL-24 is a novel ligand that regulates angiogenesis via the IL-22 receptor. Cancer Res.2003;63(16):5105-5113.
    [71]Pataer A,Vorburger SA, Barber GN, et al.Adenoviral transfer of the melanoma differentiation-associated gene induces apoptosis of lung cancer cells via up-regulation of the double-stranded RNA-dependent protein kinase.Cancer Res. 2002;62(8):2239-2243.
    [72]Sauane M, Lebedeva IV, Su ZZ, Choo HT, Randolph A, Valerie K, Dent P, Gopalkrishnan RV,Fisher PB.Melanoma differentiation associated gene-7/interleukin-24 promotes tumor cell specific apoptosis through both secretory and nonsecretory pathways. Cancer Res.2004;64(9):2988-2993.
    [73]Su Z, Emdad L, Sauane M, Lebedeva IV, Sarkar D, Gupta P, James CD, Randolph A, Valerie K, Walter MR, Dent P, Fisher PB. Unique aspects of mda-7/IL-24 antitumor bystander activity:establishing a role for secretion of MDA-7/IL-24 by normal cells. Oncogene.2005;24(51):7552-7566.
    [74]Sauane M, Gupta P, Lebedeva IV, Su ZZ, Sarkar D, Randolph A, Valerie K, Gopalkrishnan RV, Fisher PB. Nglycosylation of MDA-7/IL-24 is dispensable for tumor cell-specific apoptosis and "bystander" antitumor activity. Cancer Res. 2006;66(24):11869-11877.
    [75]Sauane M, Su ZZ, Gupta P, Lebedeva IV, Dent P, Sarkar D, Fisher PB. Autocrine regulation of mda-7/IL-24 mediates cancer-specific apoptosis. Proc Natl Acad Sci USA.2008;105(28):9763-9768.
    [76]Lebedeva IV, Sauane M, Gopalkrishnan RV, Sarkar D, Su ZZ, Gupta P, Nemunaitis J, Cunningham C, Yacoub A, Dent P, Fisher PB. mda-7/IL-24:exploiting cancer's Achilles'heel. Mol Ther.2005;11(1):4-18.
    [77]Lebedeva IV, Emdad L, Su ZZ, Gupta P, Sauane M, Sarkar D, Staudt MR, Liu SJ, Taher MM, Xiao R, Barral P, Lee SG, Wang D, Vozhilla N, Park ES, Chatman L, Boukerche H, Ramesh R, Inoue S, Chada S, Li R, De Pass AL, Mahasreshti PJ, Dmitriev IP, Curiel DT, Yacoub A, Grant S, Dent P, Senzer N, Nemunaitis JJ, Fisher PB. mda-7/IL-24, novel anticancer cytokine:focus on bystander antitumor, radiosensitization and antiangiogenic properties and overview of the phase I clinical experience. Int J Oncol.2007;31(5):985-1007.
    [78]Eager R, Harle L, Nemunaitis J. Ad-MDA-7; INGN 241:a review of preclinical and clinical experience. Expert Opin Biol Ther.2008;8(10):1633-1643.
    [79]Noteborn MH. Proteins selectively killing tumor cells. Eur J Pharmacol.2009 25;625(1-3):165-173.
    [80]Dent P, Yacoub A, Hamed HA, Park MA, Dash R, Bhutia SK, Sarkar D, Gupta P, Emdad L, Lebedeva IV, Sauane M, Su ZZ, Rahmani M, Broaddus WC, Young HF, Lesniak M, Grant S, Curiel DT, Fisher PB. MDA-7/IL-24 as a cancer therapeutic: from bench to bedside. Anticancer Drugs.2010;21(8):725-731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700