用户名: 密码: 验证码:
陕西、甘肃部分矿区重金属抗性根瘤菌的筛选鉴定及对重金属污染修复的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从陕西、甘肃部分矿区收集到野豌豆、大豆、白三叶草、小冠花、杭子梢、花生、草木樨等豆科植物根瘤,经分离纯化得到98株根瘤菌。重金属筛选试验结果表明,四株菌对不同重金属具有抗性,鉴定其系统发育地位,之后研究了FX4-3及接入该菌后的草木樨植物对Ni~(2+)的吸收能力,为重金属吸附提供菌种资源和矿区重金属污染的生态恢复奠定了理论基础。
     重金属筛选试验表明,菌株HX34-2、CX74对Zn~(2+)的抗性较强,为2.0mM,NQ65-1对Cu~(2+)的抗性达2.0mM,FX4-3在Ni~(2+)2.4 mM时生长状况良好。
     16S rDNA全序列系统发育学分析表明,NQ65-1与B. liaoningense USDA 3622相似性为100%,属于慢生根瘤菌属(B. liaoningense)。菌株FX4-3与S. meliloti LMG 6133全序列相似性达到100%,属于中华根瘤菌属(S. meliloti)。HX34-2、CX74与Ag. tumefaciens IAM 13129相似性均为99.93% ,属于土壤杆菌属(Ag. tumefaciens)。
     不同条件下FX4-3对溶液中Ni~(2+)吸附试验结果表明,在水溶液中Ni~(2+)浓度为1.4mM,pH值为7,加入菌量1.0mg/l时,吸附值最大,可达23.04mg/g。
     用不同浓度Ni~(2+)的营养液处理草木樨8周后,接菌后的草木樨植物在根长、根部颜色、结瘤数等方面均优于未接菌的;并且对Ni~(2+)的吸收均是未接菌的6-7倍,可见根瘤菌为植物提供氮素的同时,还提高了草木樨对Ni~(2+)的吸收能力。因此,可将草木樨作为重金属污染、氮素缺乏的矿区植被恢复的先锋植物。
98 rhizobial strains isolated from some leguminous plants: Vicia sepium, Glycine max, Trifolium repens, Coronilla varia, Campylotropis macrocarpa, Arachis hypogaea and Melilotus growing in mining tailings of Shaanxi and Gansu province, were used to screen resistant strains to heavy metal. The result showed that 4 strains had the resistance to different heavy metal, and studied the phylogeny.The adsorption of Ni~(2+) by strain FX4-3 and its host plant Melilotus after infected with FX4-3 were studied, which laid a theoretical basis for strain resources of heavy metal adsorption and ecological restoration of mining areas.
     Heavy metal screening test showed that strain HX34-2 and CX74 had better resistance to2.0mM Zn~(2+), strain NQ65-1 was resistant to 2.0mM Cu~(2+), and strain FX4-3 could grow well in medium containing 2.4 mM Ni~(2+).
     16S rDNA sequences of the 4 resistant strains screened were analyzed. Strains NQ65-1 and FX4-3 shared 100%sequence homology with B. liaoningense USDA 3622 and S. meliloti LMG 6133, and belong to B. liaoningense and S. meliloti, respectively. Strains HX34-2 and CX74 were highly related to Ag. tumefaciens IAM 13129 at the similarity level of 99.93%, belong to Ag. tumefaciens.
     The adsorption of Ni~(2+) by strain FX4-3 under different conditinons were studied, showed that the adsorption of optimal pH was at about 7.The adsorption reached maximum 23.04mg/g at pH7, 1.4mM Ni~(2+), biosorbent dosage 1.0mg/l in solution.
     Melilotus was treated with nutrient solution containing Ni~(2+) in the test. 8 weeks later, the plant infected with FX4-3 grew better in root length, colour, nodules and so on than the uninfected, and the amount of Ni~(2+) is all 6-7 times that of the uninfeced, which showed that rhizobial not only provided nitrogen for melilotus, but promoted the absorption of Ni~(2+), so melilotus could be used as the pioneer plant for the vegetation restoration of mining areas lack of nitrogen and polluted by heavy metal.
引文
[1]陈红艳,王继华.受污染土壤的微生物修复[J].环境科学与管理, 2008, 33 (8):114-117.
    [2]张秋芳.土壤重金属污染治理方法概述[J].福建农业学报, 2000, (15):200-203.
    [3]廖国礼.典型有色金属矿山重金属迁移规律与污染评价研究[D].长沙:中南大学资源与安全工程学院, 2005.
    [4]陈静生,邓宝山,陶澍,等.环境地球化学[M].北京:海洋出版社, 1990:1-71.
    [5]王红新.矿区土壤重金属污染的修复技术研究[J].池州师专学报, 2006, 20 (5):93-95.
    [6]马彦卿.微生物复垦技术在矿区生态重建中的应用[J].采矿技术, 2001, 1(2):66-68.
    [7]邬建中,黄爱珠.浈水水体的重金属迁移与吸附特性[J].人民珠江, 1996(1):45- 48.
    [8] Fliepbach A1, Martens R1, Peber H.Soil microbial biomass and activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol. Biochem1, 1994, 26:1201-1205.
    [9] Kandeler E1, Kyftebegger G1, Schwarz S. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils, 1997, 23:299-306.
    [10]黄益宗,朱永官.森林生态系统镉污染研究进展[J].生态学报, 2004, 24 (1):101-108.
    [11]王振中,张友梅,胡觉莲,等.土壤重金属污染对蚯蚓影响的研究.环境科学学报, 1994, 14(2): 236-243.
    [12] Briat L R, LebrunM.Plan responses to metal toxicity.Plant Biology and Pathology, 1999, 322:4-54.
    [13]朱贤英.论有毒重金属污染对人体健康的危害及饮水安全[J].湖北教育学院学报, 2006, 23(2):72-74.
    [14]陈明,甘一如.重金属的生物吸附[J].化学工业与工程, 1999, 16 (1):19-25.
    [15] MiguelA.The adsorption of mercuricions by chitosan[J].Appl Microbiol Biotechnol, 1995, 22:355-366.
    [16]李洪强,刘成伦,徐龙君.微生物吸附剂及其在重金属废水处理中的应用[J].材料保护, 2006, 11:48-52.
    [17]冯咏梅,王文华,常秀莲,等.生物吸附剂—海黍子吸附镍[J].城市环境与城市生态, 2003, 16(6):4-6.
    [18] Li S. China’s mining affected land reclamation and utilization techniques. In Mined Land Reclamation and Ecological Restoration for the 21st Century, Proceedings of Beijing International Symposiumon Land Reclamation. Beijing, 2000, 139-146.
    [19] Ye Z H, Wong J WC, WongM H, et al. Revegetation of Pb/ Zn mine tailings[J].Guangdong Province, China. Restor. Ecol, 2000, 8:87-92.
    [20] Bradshaw A D, Chadiwick MJ. The Restoration of Land.Blackwell[J]. Oxford, 1980.
    [21] Wong M H. Reclamation of wastes contaminated by copper, lead and zinc[J]. Environ. Manage, 1986 , 10:707-713.
    [22]孙永强,李富平,崔少东.应用生物修复技术治理矿区生态环境[J].矿业快报, 2006, 441:39-42.
    [23]陈志良,仇荣亮,等.重金属污染土壤的修复技术[J].工程与技术, 2001, 8:17-19.
    [24]蒋先军,等.重金属污染土壤的植物修复研究[J].土壤, 2000, 32(2):71-74.
    [25]刘云国,等.土壤污染生物整治研究[J].湖南大学学报, 2000, 27(3):34-38.
    [26]张丛等.污染土壤生物修复技术[M].北京:中国环境科学出版社, 2000.
    [27]陶红群,李晓林,张俊伶.丛枝根菌丝对重金属元素和吸收的研究[J].环境科学学报, 1998, 18(5):545-548.
    [28] WHITING S N. Rhizosphere bacterial Mobilize Zn for Hyper accumulation by Thlaspi Caerule scens[J].Environ.Sci.Technol, 2001, 35(15):3144-3150.
    [29]宋书巧,周永章.矿业废弃地及其生态恢复与重建[J].矿产保护与利用, 2001, 5:43-49.
    [30]马彦卿.微生物复垦技术在矿区生态重建中的应用[J].采矿技术, 2001, 1(2):66- 68.
    [31]王建林,刘芷宇.水稻根际中铁的形态转化[J].土壤学报, 1992, 29(4):358-363.
    [32]滕云,黄昌勇.重金属污染土壤的微生物生态效应及其修复研究进展[J].土壤与环境, 2002, 11(1):85-89.
    [33]耿春女,李培军,陈素华等.菌根生物修复技术在沈抚污水灌区的应用前景[J].环境污染治理技术与设备, 2002, 3(7):51-55.
    [34] Guo X J, Huang Q Y, et a1.Efect of microorganisms On the mobility of heavy metals in soil environments.Chin J Appl Environ Biol, 2001, 8(i ):105-110.
    [35]王升,吉颖,姚立强.富磷土壤大麦高产栽培磷肥的增产效应与施用技术[J].大麦科学, 1995, (4):21-2.
    [36] Carrasco JA, Armario P, Pajuelo E, Burgos A, et al. Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine[J].Soil Biology & Biochemistry, 2005, 37:1131–1140.
    [37]李荣林,李优琴,等.重金属污染的微生物修复技术[J].江苏农业科学, 2005, 4:1-3.
    [38] Compoau GC Bartha R.Sulfate—reducing bacteria:Principal methylators of mercury in anoxic estuarine sediment[J].Appl Environ Microbiol, 1985, 50:498-502.
    [39] Chanmugathas P,Bollag JM.Microbial role in immobilization and subsequent mobilization of cadmium in soil[J].Arch Environ Contamin Toxicat, 1988, 17:229-235.
    [40] Francis AJ, Dodge CJ. Anaerobic microbial dissolution of transition and heavy metal oxdides[J].Appl Environ Microbio1.1988, 54(4):1009-1014.
    [41]孙晋伟,黄益宗,等.土壤重金属生物毒性研究进展[J].生态学报, 2008, 28(6):2861-2867.
    [42] Auge R M, Foster J G, Loescher W H, et al. Sym-plastic mobility of free amino acid and sugars in Rosa root with regard to VA mycorrhizae and drought[J].Symbiosis, 1992, 12:1-17.
    [43]王树和,王晓娟,王茜,等.丛枝菌根及其宿主植物对根际微生物作用的响应[J].草业学报, 2007, 16(3):108-113.
    [44] Abalel-Aziz RA, Radwan SMA, Dahdon MS, et al. Reducing the metals toxicity in sludge amended soil using VA mycorrhizae [J].Egypt J Microbiol, 1997, 32(2):217-234.
    [45] Ricken Barbara, Hoefner Werner. Effect of arbuscular mycorrhizal fungi on heavy metal tolerance of alfalfa and oat on a sewage sludge2treated soil [J].I.Pflanzenernaehr Bodenkd, 1996, 159 (2):189-194.
    [46] Lambert DH, Weidensaul TC.Element uptake by mycorrhizal soybean from sewage-treated soil [J]. Soil Sci Soc Am J, 1991, 55(2):393-398.
    [47] Joner EJ, Leyval C. Uptake of 109Cd by roots and hyphae of a Glomus mosseae/ Trifolium subterraneum mycorrhiza from soil amended with high and low concentration of cadmium[J].New Phytol, 1997, 135(2):353-360.
    [48]徐东强,等.马兰庄铁矿尾矿复垦实践[J].唐山工程技术学院学报, 1995, 17 (4):99-104.
    [49]张雪华.废弃金矿区生物工程复垦技术研究[J].苏州城建环保学院学报, 2000, 13 (3):74-79.
    [50]张文敏,冯道永,等.平果铝土矿复垦技术研究[J]冶金矿山设计与建设, 2000, 32 (5):34-38.
    [51]束文圣,等.凡口铅锌尾矿影响植物定居的主要因素分析[J].应用生态学报, 1997, 8 (3):314-318.
    [52]陈灵芝,陈伟烈.中国退化生态系统研究[M].北京:中国科学出版社, 1995.
    [53] Thatoi, H. et al. Comparative growth nodulation and total nitrogen content of six tree legume species grown in iron mine waste soil[J].Journal of Tropical Forest Science, 1995, (81):107-115.
    [54] Piha MI, Vallack HW, Reeler BM, Michael N. A low input approach to vegetation establishment on mine and coal ash waste in semi-arid regionsⅡLagooned pulverized fuel in Zmbabwe[J].Journal of Applied Ecology, 1995, 32:382-390.
    [55] Obbard J P, et al.The effect of heavy metals on nitrogen fixation by Rhizobium white clover in a range of long– term sewage sludge amended andmetal - contaminated soils[J].Environmental Pollution, 1993, 79:105-112.
    [56] Chu L M, et al.The value of pulverized refuse fines as a substitute for top soil in land reclamation [J]. Journal of App lied Ecology, 1996, 33:851-857.
    [57]何新华,陈力耕,胡西琴,等.杨梅根瘤Frankia菌对重金属的抗性[J].水土保持学报, 2003, 17(3):127-130.
    [58]何容,杜佳佳,许波峰,等.土壤重金属污染研究概况[J].山东林业科技, 2008, 1:85-87.
    [59] Luna C M, Gonzalez C A, Trippi V S. Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol, 1994, 35:l1-15.
    [60]蔡锦辉,吴明光,汪雄武,等.广东大宝山多金属矿山环境污染问题及启示[J].华南地质与矿产, 2005, (4):50-54.
    [61]张忠,张宝贵,龙江平,等.中国铊矿床开发过程中铊环境污染研究[J].中国科学(D), 1997, 27 (4):331-336.
    [62]何兴元,等.固氮树种在混交林中的作用研究Ⅲ.固氮树种凋落物分解及N的释放[J].应用生态学报, 1999, 10 (4):404-406.
    [63] Sale ma a M, Uotila T. Seed bank composition and seedling survival in forest soil polluted with heavy metals[J].Basic and Applied Ecology, 2001, 2 (3):251-263.
    [64]代宏文,等.杨山冲尾矿库复垦建立植被技术研究[J].资源产业, 2000, 7:26-29.
    [65]吴攀,刘丛强,杨元根,等.矿山环境中重金属的释放迁移地球化学及环境效应[J].矿物学报, 2001, 21:213-218.
    [66] Matti ?yr?s, Heikki Niskavaara, Igor Bogatyrev, et al. 1997.Regional patterns of heavy metals (Co, Cr, Cu, Fe, Ni, Pb, V and Zn) and sulphur in terrestrial moss samples as indication of airborne pollution in a 188,000km area in northern Finland, Norway and Russia[J].Journal of Geochemical Exploration, 58:269-281 .
    [67] Castro-L arrgo itia J, Kramar U and Puchelt H.200 years of mining activities at L a Paz/San Luis Poto si?/Moxico-Consequences for environment and geochemical exploration[J].Geochem. Explor, 1997, 58:81-91.
    [68]A.Bradshaw.Restoration of mined lands—using natural processes[J].Ecological Engineering, 1997, 8:255-269.
    [69] Noyd RK, Pfleger FL, Norland MR. Field response to added organic matter, arbuscular mycorrhizal fungi, and fertilizer in reclamation of taconite iron ore tailing. Plant and Soil, 1996, 179:89-97.
    [70] Bradshaw A D, Chadwick MJ.The Restoration 0f Land [M]. Oxford:Blackwell Science publications, 1980:55-59.
    [71] Vangronsveld J, Colpaert JV, Van Tichelen KK.Reclamation of abare industrial area contaminated by nonferrous metals: physicochemical and biological evaluation of the durability of soil treatment and revegetation[J].Environ Pollut, 1996, 94 (2):131-140.
    [72]沈振国,刘友良.重金属超量积累植物研究进展[J].植物生理学通讯, 1998, 34(2):133-139.
    [73]薛生国,陈英旭,林琦,等.中国首次发现的锰超积累植物[J].生态学报, 2003, 23 (5):935-937.
    [74]刘秀梅,聂俊华,王庆仁.6种植物对铅的吸收与耐性研究[J].植物生态学报, 2002, 26 (5):533-537.
    [75]王亚平,鲍征宇,王苏明.矿山固体废物的环境效应研究进展及大冶铜绿山尾矿的环境效应[J].矿物岩石地球化学通报, 1998, 17 (2):97-100.
    [76]麦少芝,等.矿业废弃地的特点及其环境影响[J].云南地理环境研究, 2003, 17(3):23-27.
    [77]杨晓艳,姬长生,王秀丽.我国矿山废弃地的生态恢复与重建[J].矿业快报, 2008, 10:22-25.
    [78]黄铭洪,骆永明.矿区土地修复与生态恢复[J].土壤学报, 2003, 40(2):161-167.
    [79]聂湘平,蓝崇钰,束文圣,等.锌对大叶相思-根瘤菌共生固氮体系影响研究[J].植物生态学报, 2002, 26 (3):264-268.
    [80] Thomoson J D, Cibson T J, Plewnik F.The Clustal X windows interface:flexible strtegies for multiple sequence alignment aided by qulity analysis tool[J].Nucleic Acids Res., 1997, 24:4867-4882.
    [81] Van de peer Y, De Wachter Y.TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment[J].Comput.Appl.Biosci, 1994, 10:569-570.
    [82]闫爱民,陈文新.两个根瘤菌新群的系统发育学分析[J].微生物学报, 2000, 40(1):1-8.
    [83]WangJL, ChenC.Biosorption of heavy metals by Saccharomyces cerevisiae:Areview[J].Biotechnology Advances, 2006, 24:427-451.
    [84] Puranik P R, Paknikar K M, Biotechnol, 1997, 55:113-124.
    [85] Kratochvil D, Volesky B.Advances in the biosorption of heavy metals[J].Trends In Biotechnology, 1998, 16:291-300.
    [86]ǒzer A,ǒzer D.Comparative study of the biosorption of Pb (Ⅱ), Ni(Ⅱ) and Cr (Ⅵ) ions onto S. cerevisiae:determination of biosorptionheats[J].Journal of Hazardous Materials B, 2003, 100:219- 229.
    [87] Yan G Y, Viraraghavan T. Heavy- metal removal from aqueous solution by fungus Mucor rouxii [J]. Water Research, 2003, 37:4486-4496.
    [88] Komarova N N.Relationships of sorption of heavy metals (lead, nickel, cobalt) on biomass isolated fromproduction waste of megaterin enzyme preparation[J].Russian Journal of applied Chemistry, 2002, 75(3):509-510.
    [89]蔡信德,仇荣亮,陈桂珠,等.微生物在镍污染土壤修复中的作用[J].云南地理环境研究, 2005, 17(3):9-12.
    [90] Veglio F, Beolchini F.Removal of metals by biosorption:a review [J].Hydrometallurgy, 1997, 44: 301-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700