用户名: 密码: 验证码:
转移癌和其原发癌的比较研究及其在肿瘤转移预测和治疗的意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一.研究背景和研究目的
     转移是导致癌症患者死亡的根本原因,目前尚无有效的措施可以阻止转移。阐明癌症转移的机制是干预或控制肿瘤转移的基础,目前对于肿瘤转移认识有不同的学说,但是这些学说尚不能解释全部肿瘤转移的现象。现代生物技术和纳米制药技术的进步为发现新的抗肿瘤转移的靶点和实现药物商品化提供了可能,但是现有对肿瘤转移的认识是建立在细胞和动物实验基础上,很少有开展原发肿瘤和转移肿瘤的配对比较研究的。研究同一病人原发癌和转移癌为加深认识肿瘤转移的机制、发现新的药物靶点提供了可能。已有文献开展的对原发癌和转移癌的研究则主要集中在乳腺癌和结肠癌,而对肺癌报道的文献仅占少部分,并且主要集中在EGFR和其调节通路上。
     肺癌是世界上发病率最高的恶性肿瘤之一,就诊时70%左右的患者已处于中晚期,即使手术切除后患者2年内也多死于复发或转移,研究肺癌转移有望解决肺癌目前治疗困境。乳腺癌转移机制研究比较深入,现在已经发现一些关键的基因有可能成为新的抗转移的靶点,由于这些关键基因和分子在癌症中普遍发挥重要作用,这为研究肺癌转移机制提供了研究基础。分子靶向治疗是目前癌症治疗的组成部分,但是分子靶向治疗的疗效与其分子表达状态有关,比较肺癌原发灶和转移灶分子状态的异同性可以为临床医生在选择分子靶向治疗时提供参考意见。肺癌肺内转移和肺多原发癌一直是困扰临床医生的主要难题,由于多原发肺癌和肺内转移预后不同,比较原发和转移首先是确定的肺癌转移灶,因此区分肺内原发和转移是进行肺癌原发灶和转移灶比较研究的基础。一些关键分子蛋白的表达与肺癌的转移和预后密切相关,癌基因EGFR已经作为分子靶点用于治疗肺癌,血管生成因子VEGF抑制剂正在进行临床试验,MET、HIF-1 a、TGF-β1是癌症潜在的治疗靶点。但是对于这些基因的研究在肺癌主要集中在原发肿瘤的研究,在肺癌转移中发挥怎样的作用还没有文献报告。p53作为肺癌的关键抑癌基因,其突变和多态性和肺癌易感性密切相关,有研究者通过p53基因突变鉴别肺内原发和转移,其理论基础是建立在p53基因突变发生在肿瘤转移之前,转移和原发灶有共同的克隆来源和分子基础,一致的为肺内转移,不一致的为肺内原发,但是其他研究者在乳腺癌和结肠癌研究p53基因突变在原发灶和转移灶存在一定的差异。这就使得需要寻找更好的鉴别肺内原发和转移的工具。单核苷酸多态性(SNP)是第三代基因多态性,是更好地反映个体遗传差异的分子标记,在肿瘤研究中有广泛用途,p53的72密码子SNP与肺癌个体易感性已有相关研究,本课题意在比较原发肺癌和其转移癌的p53的72密码子SNP状态并且探讨作为鉴别肺内原发和肺内转移的可能性。
     因此,本课题研究目的是:
     1.比较肺癌原发和转移的肿瘤干细胞标记物CD133、血管生成因子VEGF、缺氧诱导因子HIF-α、在器官选择性转移发挥重要作用的TGF-β1、参与肿瘤微环境的肿瘤坏死因子TNF-α、抑癌基因p53、间质上皮转化因子MET和参与肿瘤特异性转移的COX2的蛋白的表达,为认识肺癌转移机制、丰富和发展肿瘤转移学说、预测肺癌转移、发现可能的抗肺癌转移的靶点奠定研究基础。
     2.通过p53的72密码子SNP鉴别肺内原发和肺内转移,研究p53的72密码子的多态性作为鉴别肺癌肺内原发和转移的工具的可能性。
     二.临床资料和方法
     在病理库中收集2002年-2009年期间在山东省立医院住院的原发肺癌和转移肺癌均切除的石蜡标本,共有11例为确认的肺癌原发和转移,3例其转移灶从现有标准不能确认是肺内原发和转移,其中1例肺癌原发灶有2个石蜡标本。共收集29个石蜡标本进行下列实验:
     1.常规HE染色:确认肺癌原发和转移来自同一标本
     2.SP方法免疫组化实验步骤按照说明书进行,并设阳性对照和阴性对照。
     3.提取石蜡标本中的DNA采用凯杰生物技术有限公司石蜡标本提取试剂盒,严格按照说明书操作。
     4.设计p53的72密码子的多态性引物,提取的DNA样本进行聚合酶连反应扩增,反应产物进行限制酶内切反应,图像仪下观察p53的72密码子基因型。
     5.蛋白表达强度在原发癌和转移癌的比较采用Marginal Homogeneity统计检验。
     三.结果
     1.临床资料:14例临床标本中11例明确诊断为转移的病例,肿瘤分级均为中低分化,9例分级相同(81.8%),其余2例患者,原发癌为中分化和低分化,转移癌仅为中分化。3例不能确定转移的患者,均为肺癌术后再次发现肺占位。
     2.免疫组化结果
     VEGF:11对组织标本中,5例样本低表达(占22.7%),14个样本中度表达(63.6%),3例高度表达(13.6%)。原发癌与转移癌表达一致9例,不一致2例,转移较原发表达增强。一致性比例为81.8%。VEGF在肺癌原发肿瘤和转移瘤表达差异未达到统计学意义,P值=0.157>0.05。不能确认转移的3例中有2例一致,1例不一致。
     COX2:22个样本9个低表达(40.9%),9个样本中度表达(40.9%),4个样本高度表达(18.2%)。比较原发癌和转移癌的表达情况,11个病例10例原发癌和转移癌表达一致,不一致的1例,一致性占90.9%,肺癌原发肿瘤和转移瘤表达差异未达到统计学意义P值=0.317>0.05。3例不能确认转移的2例一致,1例不一致。
     MET:13个样本强阳性(59.1%),6个样本呈中度表达(27.2%),低表达的为3个样本(13.6%)。9例表达一致(占81.8%),2例表达不一致(占18.2%),主要发生在肺癌脑转移,脑转移癌相对原发癌表达增强。两者比较,差异未达到统计学意义,P值=0.157>0.05。3例不能确定转移的,2例一致,1例不一致。
     HIF-1α:肿瘤细胞浆和核均可见到HIF-1α表达,4个低度表达(18.2%),15个中度表达(68.2%),高表达的3例(13.6%)。11例病例中,2例原发癌和转移癌表达情况不一致,转移癌HIF-1α较原发癌表达增强,9例表达一致,一致性占81.8%。两者比较,差异未达到统计学意义P值=0.180>0.05。3例不能确定转移的,原发和转移表达一致。
     CD133:CD133与病理类型有关,在腺癌中不表达,4例鳞癌及含有鳞癌成分的标本有少数细胞阳性表达,1例腺鳞癌中原发灶阳性细胞约2%,但是脑转移灶腺癌未发现表达。而另一例含有部分腺鳞癌成分的,其皮肤转移灶也为腺癌,均未见表达。考虑CD133可能表达与病理类型有关两者。样本阳性数目太少未进行统计学比较。3例不能确定转移的7个标本中5个腺癌标本未见表达,2个鳞癌标本有表达。
     TGF-β1:在肺癌原发灶和转移灶表达较弱,13个样本肿瘤无表达,9个样本虽呈阳性,但肿瘤细胞普遍染色较弱。而在间质中17个标本可见间质细胞阳性表达较高,并可排除非特异性染色,5个标本间质表达细胞较少,阳性细胞主要是间质炎症细胞和成纤维细胞。。对于肺癌肿瘤细胞而言,1例表达差异,原发肿瘤细胞表达为阴性,转移瘤为阳性。以肿瘤间质而言,3例在转移表达增强。TGF-β1可能与肿瘤间质和促进转移有关。实验时假设TGF-β1主要在肿瘤细胞表达,实际发现肿瘤细胞中表达病例较少,因此两者未进行统计学比较。3例不能确定的转移肿瘤2例不一致,1例表达一致
     TNF-α:在肿瘤细胞和间质炎症细胞中均有表达,22个样本中有2个标本原发癌和转移癌为阴性,6个标本低表达(27.2%),11个标本中度表达(50%),3个样本高表达(13.6%)。在肺癌原发灶和转移灶,表达一致的为10例(90.9%),1例表达有差异,原发癌呈高表达,脑转移癌阳性表达下降,为中度表达,差异未达到统计学意义P值=0.317>0.05。3例不能确定转移的表达一致。
     p53:p53蛋白在肿瘤细胞核和浆中均有表达,9个样本低表达(40.9%),9个样本中度表达(40.9%),4个样本高表达(18.2%),一致有8例(72.7%),不一致3例(27.3%),差异未达到统计学意义,P值=0.564>0.05。3例不能确定转移的2例患者一致,1例患者不一致。
     3.DNA提取结果3个病例未能从对应的石蜡标本中提取出有效的DNA。11例23标本中DNA质量在lOug-15ug之间,纯度经测定符合PCR反应标准
     4. p53codon 72 SNP:9例确认为转移的8例一致,不一致的1例原发肿瘤为基因型纯合子,脑转移肿瘤为杂合子。另外3例不能确认是否转移的,原发肿瘤一致的基因型一致,通过对照同一病例不同标本和原发转移SNP的状态确定这3例为转移瘤。
     5.14例原发和转移的功能蛋白表达COX2不一致的2例,P值=0.157;MET不一致3例,P值=0.564;VEGF不一致的3例,P值=0.083;、HIF-1α不一致的2例,P值=0.180、TNFα不一致的1例,P值=0.317;p53表达不一致4例,P值=0.317,差异均未达到显著性统计学意义,均大于0.05。
     四.结论
     1.肺癌原发灶和转移灶在病理分级方面存在一些差异,这种差异主要见于原发癌具有多种分化程度的,而转移癌只有一种分化程度,没有观察到肿瘤演进过程中转移分化程度降低,提示转移癌和原发癌有共同的克隆来源。肺癌原发和转移在功能蛋白表达具有一定的差异性,但无明显统计学差异,原发癌和转移癌具有较高的一致性,提示转移癌保持了原发癌的关键生物学特征。
     2.CD133是否可以作为肺癌干细胞的标记还需要进一步研究,VEGF、COX2原发灶和转移灶表达具有高度的相似性,在应用贝伐单抗和赛来昔布治疗肺癌时如果不能获得转移癌组织可以通过原发癌的表达预测其抑制剂的疗效。MET、HIF-1α是肺癌抗转移潜在的有效靶点,TGF-β1和TNFα在肿瘤间质和肿瘤细胞均有表达,是否可以作为抗转移的靶点需要进一步研究。
     3.p53的密码子72的SNP是区分原发肺癌和肺内转移的有效工具,原发肺癌和肺内转移以及其他部位的转移灶存在高度一致性,反映原发肺癌和转移癌在遗传背景上高度一致,但仍然有1例不一致,提示p53在转移过程中可能发生了突变。
     4.转移癌和原发癌在细胞形态和分级、功能蛋白表达和p53的72密码子多态性的高度相似性,提示转移癌和原发癌有共同的克隆来源,转移癌保持了原发癌的关键生物学特征。而功能蛋白表达及p53 condon72 SNP在转移和原发存在的微小差异可能是由于癌细胞DNA基因组的不稳定性,基因表达从复制到转录会经历一系列变化,可能是导致变异的主要原因。
Background and Aims
     Metastasis is the major cause of death in cancer patients, and there are currently no therapeutic agents available to prevent this disease.It would be useful to clarify the mechanism of metastasis for prediction or prevention of metastasis. Several model hypotheses try to explain the mechanism of metastasis, but there are some limitations in them. Modern molecular technologies and nanotechnology offer the possibilities of discovering new biomarkers for prevention metastasis and the feasibility of producing drugs on these new biomarkers. Current studies on the mechanism of metastasis are mostly based on cells in ex vivo experiments and animal models design, which are often artifical. Few studies focused on comparsion of primary cancer and their metastasis in a same patient. However, it is very important to further develop the theory of metastasis mechanism and discovering new target drugs.The papers that have been reported on comparison of primary cancer and matched metastasis maily focused on breast cancer and colon cancer. Few data have been published on primary lung cancer and their metastases.
     Lung cancer is one of the most common malignant tumors in the world, especially in China. About 70% of lung cancer patients are in late stages at the time of primary diagnose. Even if these patients who had been completely removed primary tumors, most of them would develop metastasis. Researchers should devote themselves to study lung cancer metastasis to resolve the puzzle of lung cancer treatment. Some key genes play important roles in many cancers. The mechanism of breast cancer had been clear clarified in some extent. The molecules that exert their effects on breast cancer metastasis maybe play the same role in lung cancer metastasis. Therefore, it may be helpful for research of lung cancer metastasis. Molecular target therapy is becoming available in treatment of lung cancer. Howerver, the efficiency of target therapy is related to their molecules status. Now the molecule status is mainly based on primary lung cancer tissue. Few data reveals whether changes in lung cancer metastasis tissues on expressions of these key genes. Some genes have been reported that their expressions are related to prognosis of lung cancer,such as VEGF, MET、HIF-1α、TGF-β1. These molecules inhibitors are in clinical trial or becoming possible target therapies in lung cancer. But we don't know whether expression on metastasis tissue. Doctors are often puzzled by diagnosed of pulmonary metastasis or double primay lung cancer in some patients. Reseachers hold the idea that the gene background between parimay cancer and metastasis are identical while it is heterogeneity among multiprimary lung cancer. Based on this, p53 mutation that often occur in lung cancer, had been used to discriminate pulmonary metasis from multiprimary lung cancer. However, there is heterogeneity of p53 mutation between breast cancer and matched metastasis. It is urgent to search for a more powerful tool to discriminate metastasis or primary cancer. Single nucleotide polymorphisms is the most advanced of polymorphisms, which may reflect heterogeneity of genetic background of individual. P53 72 codon poly-morphisms is reported to induce susceptibility of lung cancer. We hypothsized P53 72 codon polymorphisms can discriminate pulmonary metastasis from second primary lung cancer.
     Therefore, there are two major goals in this paper. One is to evaluate the similarities and differences on proteins expressions of CD133(Lung cancer stem cell marker), COX2, VEGF, MET, HIF-la, TNFa, TGF-betal and p53 between primary lung cancer and their metastases. The other is to discriminate pulmonary metastasis from multiprimary lung cancer through detection of p53 codon 72 SNP under RFSCP.
     Patients and Methods
     14 patients had been removed primay lung cancer tissues and metastasis tissues between 2002 and 2009.11 patients are diagnosed of metastasis.3 cases aren't certain according to current criteria on diagnosed of pulmonary metastasis. Their paired paraffin sections were collected to conduct the following procedure. 1. Paraffin sections were cut into microsections to conduct routine HE staining and SP immunohistochemistry.
     2.DNA were extracted from archived, paraffin-embedded sections under the guidelines of QiAGEN kits. The purification of DNA were examined on a special mechanism.
     3. PCR of p53 condon 72 was proceed on the valid DNA of samples.The productions were proceed to the method of restriction fragment length polymor-phism. The gene type were identified under a laser photo instrument.
     4. Non-parameter method were used to compare proteins expression insentity between paried tissues through Marginal Homogeneity test. P value<0.05 of two sides test were considered statistically significant.
     Results
     1. Clinical data Tumor grades are identical in 9 cases of 11 cases. Tumor grades of the other two cases were G1 and G2 in primary lung cancer but were only G2 in metastasis. The three cases who cann't be clearly diagnosed of metastasis showed masses again in pulmonary.
     2. Immunohistochemical Results
     VEGF:In the 11 paried primary and metastasis tissues, low expression was in 5 sections(22.7%), moderate expression in 14 sections(63.6%), high expression in 3 sections(13.6%). The expression scores of primary lung cancer were consistent with that of metastasis in 9 cases(81.8%). The differences don't show significantly statistical (P value=0.157>0.05).There are two cases who showed more intensity in metastases of lung and brain than in primary lung cancder. In the three cases who cann't be clearly diagnosed of metastasis, there are two cases concordance and one inconcordance.
     COX-2:In the 11 paried primary and metastasis tissues, the low, moderate and high expressions were respectively 9 sections(40.9%),9sections(40.9%),4 sections (18.2%). There is one cases incordance(9.1%). The differences don't show significantly statistical (P value=0.317>0.05). In the three cases who cann't be clearly diagnosed of metastasis, there are two cases concordance and one inconcordance.
     MET: In the 11 paried primary and metastasis tissues, the low, moderate and high expressions were respectively 3 samples (13.6%),6 samples (27.2%),13 samples(59.1%). There are two cases incordance(9.1%). The differences don't show significantly statistical (P value=0.157>0.05). In the three cases who cann't be clearly diagnosed of metastasis, there are two cases concordance and one inconcordance.
     HIF-la:In the 11 paried primary and metastasis tissues, the low, moderate and high expressions were respectively 4 samples (18.2%),15 samples(68.2%),3 samples (13.6%). There are two cases incordance(18.2%). The differences don't show significantly statistical (P value=0.180>0.05). In the three cases who cann't be clearly diagnosed of metastasis, they are concordance.
     CD 133:CD 133 showed membrane positive in only squamous tissues. The percent of positive cell was very low. CD 133 expression may be relation to the histological type.
     TGF-β1:The intensity was weak in tumor cell but strong in stromal cell. The positive cells are inflammations cells and fibroblast. TGF-β1 showed stronger in metastatis stromal than primay stromal, which maybe play a role in interaction of stromal and metastasis.
     TNFa: In the 11 paried primary and metastasis tissues, there is one case who show negative in both primary and metastasis lung cancer, the low, moderate and high expressions were respectively 6 samples (27.2%),11 samples(50%),3 samples (13.6%). There is one cases incordance(9.1%). The differences don't show significantly statistical (P value=0.317>0.05). In the three cases who cann't be clearly diagnosed of metastasis, they are concordance.
     P53:In the 11 paried primary and metastasis tissues, the low, moderate and high expressions were respectively 9 samples(40.9%),9 samples(40.9%),4 samples (18.2 %). There are three cases incordance(27.2%). The differences don't show significantly statistical (P value=0.564>0.05). In the three cases who cann't be clearly diagnosed of metastasis, there are one cases concordance and one inconcordance.
     3. The results of DNA extraction Three cases fail to extract poor DNA. The quality and purity of DNA in the other 11 cases can meet the demand of PCR.
     4. SNP of p53 condon 72:In the 9 cases who diganosed of primay and metastatis lung cancer, there is one cases inconcordance in gene type. The other three cases were all identical. Taking into account of positive control and metastatic control, they are paired primay and metastatis tissues.
     5. The proteins expressions in 14 cases. There are respectively inconcordance in 2 cases of COX2 expression,3 cases expression of MET,3 cases expression of VEGF,2 cases expression of HIF-la,1 cases of TNF-a,4cases of p53. Their P valles are more than 0.05.
     Conclusions:
     There are high concordance in selected protein expression and p53 SNP status between primay lung cancer and matched metastatis, suggest there are common clonal origin between them. However, there are still minor differences between them. The VEGF, COX2 expression in metastasis maybe depend on primay lung cancer tissue when their inhibitors were used in lung cancer. The Met, HIF-1αwere potential targets in prevent metastasis.
     P53 condon 72 polymorphism was a useful tool to discriminate pulmonary metastasis from multiprimay lung cancer.Although there is minor difference, high concordance of gene type prevails in between primay and metastasis. The variations exist between primay and metastasis, which may be caused by genome DNA instability of cancer cells which developed in the process of metastasis.
引文
1. Michael M, Jemal MJ,Siegel R, et al.Cancer Statistics, CA Cancer J Clin 2008,58:71-96. 2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000,100(1):57-70. 3. Memorial Sloan-Kettering Cancer Center.How A Signaling Molecule Orchestrates Breast Cancer's Spread. ScienceDaily 2008. http://www. sciencedaily.com/releases/2008/04/080403 131932.htm 4. Carney DN. Lung cancer-time to move on from chemotherapy. N Engl J Med 2002; 346(2):126-128. 5. Sawyers C. Targeted cancer therapy. Nature 2004,432:294-297 6. Ebos JM, Lee CR, Cruz-Munoz W, et al.Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 2009; 15:232-239。 7. Paez-Ribes M,Allen E,Hudock J, et al。 Antiangiogenic therapy elicits malignant progression of tumors toincreased local invasion and distant metastasis.Cancer Cell 2009; 15:220-31 8. Klein CA.Cancer.The metastasis cascade.Science 2008; 321:1785-787. 9. Gupta GP,Massague J.Cancer metastasis:building a framework.Cell 2006; 127:679-695.
    10. PaduaD,ZhangXH,WarigQ,etal. TGF beta primes breast tumors for lung metastasis seedingthrough angiopoietin-like4. Cell 2008; 133:66-77.
    11. HasebeT, ImotoS, YokoseT, IshiiG, IwasakiM, Wada N.Histopathologic factors significantly associated with initial organ-specific metastasis by invasive ductalcarcinoma of the breast:a prospective study. Hum Pathol 2008; 39:681-93.
    12. Minn AJ, Gupta GP, Siegel PM, et al. Genes that mediate breast cancer metastasis to lung. Nature,2005,436(7050):518-24.
    13. Gupta GP, Perk J, Acharyya S et al. ID genes mediate tumor reinitiation during breast cancer lung metastasis.Proc Natl Acad Sci USA.2007.104 (49):19506-11.
    14. Calvo A, Catena R, Noble MS, et al. Identification of VEGF-regulated genes associated with increased lung metastatic potential:functional involvement of tenascin-C in tumor growth and lung metastasis. Oncogene 2008; 27 (40): 5373-84.
    15. Gril B, Evans L, Palmieri D, Steeg PS. Translational research in brain metastasis is identifying molecular pathways that may lead to the development of new therapeutic strategies. Eur J Cancer 2010, [Epub ahead of print]
    16. Hu G, Kang Y, Wang XF. From breast to the brain:unraveling the puzzle of metastasis organotropism. J Mol Cell Biol 2009, 1(1):3-5.
    17. Bos PD, Zhang XH, Nadal C, et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009,459(7249):935-943.
    18. Cawthorn TR, Amir E, Broom R, et al. Mechanism and pathways of bone metastasis:challenges and pitfall of performing molecular research on patient samples.Clin Exp Metastasis,2009; 26(8):935-943.
    19. Futakuchi M, Nannuru KC, Varney ML, et al. Transforming growth factor-beta at the tumor-bone interface promotes mammary tumor growth and osteoclast activation.Cancer Sci 2009; 100(1):71-81.
    20. Valsecchi Me, Pomerantz SC, Jaslow R, et al. Reduced risk of bone metastasis for patients with breast cancer who use COX-2 inhibitors. Clin Breast Cancer 2009; 9(4):225-230.
    21. Fidler IJ.The pathogenesis of cancer metastasis:the'seed and soil' hypothesis revisited.Nat Rev Cancer 2003; 3:453-458.
    22. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites。Nat Rev Cancer,2002,2(8):563-572.
    23. Nowell PC.The clonal evolution of tumor cell populations.Science 1976; 194: 23-28.
    24. Talmadge JE, Wolman SR, Fidler IJ. Evidence for the clonal origin of spontaneous metastases. Science 1982;217:361-363.
    25. Wang X,Wang M,MacLennan GT.Evidence for common clonal origin of multifocal lung cancers.J Natl Cancer Inst 2009; 101:560-570.
    26. Merlo LM, Pepper JW, Reid BJ, Maley CC.Cancer as an evolutionary and ecological process. Nat Rev Cancer 2006;6:924-935.
    27. Weiss L. Metastatic inefficiency.Adv Cancer Res 1990;54:159-211.
    28. Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor.Science 1977; 197:893-895.
    29. Minn AJ, Kang Y, Serganova I et al. Distinct organ-specific metastatic potential of individual breast cancercells and primary tumors.J Clin Invest 2005; 115:44-55.
    30. Dunn GP,Bruce AT,Ikeda H,et al.Cancer immunoediting from immuno-surveillance to tumor escape. Nat Immunol 2002; (3):991-998.
    31. Coussens LM, Raymond WW, Bergers G, et al. Inflammatory mast cells up regulate angiogenesis during squamous epithelial carcinogenesis. Genes 2005; (13):1382
    32. Leek RD,Harris AL. Tumor associated macrophages in breast cancer.J Mamm Gland Biol Neoplasia,2002; (7):177-189.
    33. Pawelek JM,Chakraborty AK. The cancer cell-eukocyte fusion theory of metastasis.Adv Cancer Res 2008;101:397-444.
    34. Pawelek JM,Chakraborty AK.Fusion of tumour cells with bone marrow-derived cells:a unifying explanation for metastasis.Nat Rev Cancer 2008;8:377-86.
    35. Pawelek JM.Tumour-cell fusion as a source of myeloid traits in cancer. Lancet Oncol 2005;6:988-93.
    36. Jordan CT, Guzman ML, Noble M..Cancer Stem Cells. N Engl J Med 2006,
    355:1253-1261.
    37. Reya T, Morrison SJ, Clarker MF, et al. Stem cells, cancer, and cancer stem cells. Nature.2001,414(6859):105-111.
    38. Martinez-Climent JA, Andreu EJ, Prosper F。Somatic stem cells and the origin of cancer. Clin Transl Oncol 2006; 8(9):647-663.
    39. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003; 100:3983-3988.
    40. Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population.Cell Death Differ2008, 15(3):504-514.
    41. Tirino V, Camerlingo R, Franco R et al.The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer.Eur J Cardiothorac Surg.2009 36(3):446-453.
    42. Li F, Tiede B, Massaque J, et al. Beyond tumorigenesis:cancer stem cells in metastasis. Cell Res,2007,17(1):3-14.
    43. Wicha MS. Cancer stem cells and metastasis:lethal seeds.Clin Cancer Res 2006;12:5606-5607.
    44. Balic M,Lin H,Young L, et al.Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype.Clin Cancer Res 2006; 12:5615-5621.
    45. Hermann P C, Huber S L, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell,2007,1(3):313-323
    46. Ling LJ, Wang S, Liu XA, et al. A novel mouse model of human breast cancer stem-like cells with high CD44+CD24-/lower phenotype metastasis to human bone. Chin Med J(Engl) 2008; 121(20):1980-1986.
    47. Shipitsin M, Campbell LL, Argani P, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell.2007;11(3):259-273.
    48. Boyer B, Valles AM, Edme N. Induction and regulation of epithelial-mesenchymal transitions.Biochem Pharmacol 2000;60:1091-1099.
    49. Thompson EW, Williams ED. EMT and MET in carcinoma-clinical observations,regulatory pathways and new models.Clin Exp Metastasis 2008;
    25:591-592.
    50. Cardiff RD. Epithelial to mesenchymal transition tumors:fallacious or snail's pace? Clin Cancer Res,2005,11(24):8534-8553.
    51. Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition?. Cancer Res,2005,65(14): 5991-5995
    52. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis.Cell 2004; 117(7):927-939.
    53. Cowin P, Rowlands T M, Hatsell S J. Cadherins and catenins in breast cancer. Curr Opin Cell Biol 2005,17(5):499-508.
    54. Martin T A, Goyal A, Watkins G, et al. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol,2005,12(6):488-496
    55. Savagner P.Leaving the neighborhood:molecular mechanisms involved during epithelial-mesenchymal transition.Bioessays 2001;23:912-23.
    56. Wu JM, Fackler MJ, Halushka MK, et al. Heterogeneity of breast cancer metastases:comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases.Clin Cancer Res.2008; 14(7):1938-1946.
    57. Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells. Science 2004,306(5701):1568-1571.
    58. Kaplan RN,Riba RD,Zacharoulis S, et al.VEGFRl-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche.Nature 2005;438:820-7.
    59. Kim S, Takahashi H, Lin WW, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 2009; 457(7225):102-106.
    60. Klein CA.Parallel progression of primary tumours and metastases.Nat Rev Cancer 2009;9:302-12.
    61. From The Editors. Nature Reviews Cancer 20099,225 doi:10.1038/nrc2638
    62. Simone NI, Bonner RF, Gillespie JW, et al. Laser capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet 1998,
    14(7):272-276.
    63. Adib TR, Henderson S, Perrett C, et al. Predicting biomarkers for ovarian cancer using gene-expression microarrays. Br J Cancer 2004,90(3);686-692.
    64. Praetorius NP, Mandal TK. Engineered Nanoparticles in Cancer Therapy. Recent Pat Drug Deliv Formul.2007;1(1):37-51.
    65. Van't Veer LJ, Dai H, Van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer.nature 2002; 415 (6871):530-536.
    66. Van de Vijver MJ, He YD, Van't Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer.N Engl J Med 2002,19; 347 (25):1999-2009.
    67. Webb T. Microarray studies challenge theories of metastasis. J Natl Cancer Inst 2003,95(5):350-351.
    68. Gupta GP, Nquyen DX, Chiang AC, et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 2007,446 (71 27): 765-770.
    69. Dolgin E. Cancer metastasis scrutinized. Nature 2009,461(7266):854-855.
    70. Ramaswamy S, Ross KN, Lander ES, et al. A molecular signature of metstasis in primary solid tumors.Nat Genet 2003,33(1):49-54.
    71. Nishizaki T, DeVies S, Chew k, et al. Genetic alternations in primary breast cancers and their metastases:direct compasion using. Gen, Chromo & Cancer 1997; 19:267-272.
    72. Korn WM, Yasutake T, Kuo WL, et al. Chromosome arm 20q gains and other genomic alternations in colorectal cancer metastatic to liver, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Gen, Chromo & Cancer 1999; 25(2):82-90
    73. Knosel T, Schluns K, Dietel M, Petersen I. Chromosomal alterations in lung metastases of colorectal carcinomas:associations with tissue specific tumor dissemination. Clin Exp Metastasis.2005;22(7):533-538.
    74. Qin LX. Chromosomal aberrations related to metastasis of human solid tumors.World J Gastroenterol 2002; 8(5):769-776
    75. Schmid K, Oehl N, Pirker C, Filipits M 。 EGFR/KRAS/BRAF mutations in primary lung adenocarcinomas and corresponding locoregional lymph node metastases.Clin Cancer Res 2009 Jul 15 15 (14):4554-60
    76. Park S, Park B, Hwang I, Lee S.Comparison of the epidermal growth factor receptor gene mutation in matched primary tumor and lymph node metastasis of non-small cell lung cancer。JCO 2007 25(18):7614Supple
    77. Tsutsui S, Ohno S, Murakami S, Kataoka A, Kinoshita J, Hachitanda Y.EGFR, c-erbB2 and p53 protein in the primary lesions and paired metastatic regional lymph nodes in breast cancer. Eur J Surg Oncol. 2002;28(4):383-7.
    78. Cho EY, Han JJ, Choi YL, Kim KM, Oh YL. Comparison of Her-2, EGFR and cyclin D1 in primary breast cancer and paired metastatic lymph nodes: an immunohistoche-mical and chromogenic in situ hybridization study.J Korean Med Sci.2008; 23 (6):1053-61.
    79. Kalikaki A, Koutsopoulos A, Trypaki M, et al. Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC.Br J Cancer.2008 Sep 16;99(6):923-9.
    80. Rodriguez-Antona C, Pallares J, Montero-Conde C, Inglada-Perez L。 Overexpression and activation of EGFR and VEGFR2 in medullary thyroid carcinomas is related to metastasis. Endocr Relat Cancer.2010 29; 17 (1):7-16.
    81. Andrea M,Limiti M, Pamela M, Correlation between genetic and biological aspects in primary non-metastatic breast cancers and corresponding synchronous axillary lymphnodemetastasis Breast Cancer Res Treat 2007 101:279-284.
    82. Bibeau, F. Boissiere-Michot, F. Sabourin, J. Ychou, M. Assessment of epidermal growth factor receptor (EGFR) expression in primary colorectal carcinomas and their related metastases on tissue sections and tissue microarray. Virchows Arch.2006 September; 449(3):281-287.
    83. Ye QH, Qin LX, Forgues M, He P et al。 Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning.Nat Med.2003;9(4):416-23.17.
    84. Li J, Gromov P, Gromova I, Moreira JM, Timmermans-Wielenga V, Rank F, et al。Omics-based profiling of carcinoma of the breast and matched regional lymph node metastasis.Proteomics.2008 Dec;8(23-24):5038-52.
    85. Montel V, Huang TY, Mose E, Pestonjamasp K, Tarin D.Expression profiling of primary tumors and matched lymphatic and lung metastases in a xenogeneic breast cancer model. Am J Pathol.2005; 166(5):1565-79.
    86. Paris PL, Hofer MD, Albo G, Kuefer R, et al. Genomic profiling of hormone-naive lymph node metastases in patients with prostate cancer.Neoplasia.2006;8(12):1083-9.
    87. Weigelt B, Glas AM, Wessels LF et al. Gene expression profiles of primary breast tumors maintained in distant metastases.Proc Natl Acad Sci U S A. 2003; 100 (26):15901-5.
    88. Bueno-de-Mesquita JM, Linn SC, Keijzer R.Validation of 70-gene prognosis signature in node-negative breast cancer. Breast Cancer Res Treat.2009; 117 (3):483-95.
    89. Karlsson E, Delle U, Danielsson A. Gene expression variation to predict 10-year survival in lymph-node-negative breast cancer. BMC Cancer.2008; 8:254.
    90. Buyse M, Loi S, van't Veer L, Viale G, Delorenzi MValidation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. Natl Cancer Inst.2006;98(17):1183-92.
    91. Desmedt C, Piette F, Loi S, Wang Y.Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series.Clin Cancer Res.2007 Jun 1;13(11):3207-14.
    92. Foekens JA, Atkins D, Zhang Y, Sweep FC, Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol.2006;24(11):1665-1671.
    93. Chua W, Moore MM, Charles KA, Clarke SJ.Predictive biomarkers of clinical response to targeted antibodies in colorectal cancer. Curr Opin Mol Ther.2009;11(6):611-22.
    94. .Shimato S, Mitsudomi T, Kosaka T, Yatabe Y, et al. EGFR mutations in patients with brain metastases from lung cancer:association with the efficacy of gefitinib. Neuro Oncol.2006;8(2):137-44.
    95. Scartozzi M, Bearzi I, Berardi R, Mandolesi A.Epidermal growth factor receptor (EGFR) status in primary colorectal tumors does not correlate with EGFR expression in related metastatic sites: implications for treatment with EGFR-targeted monoclonal antibodies. J Clin Oncol.2004;22 (23):4772-8.
    96. Italiano A, Saint-Paul MC, Caroli-Bosc FX.Epidermal growth factor receptor (EGFR) status in primary colorectal tumors correlates with EGFR expression in related metastatic sites:biological and clinical implications. Ann Oncol.2005; 16(9):1503-7.
    97. Floriani I, Santini D, Torri V, Cremolini C. Do we need biopsies of metastases for colorectal cancer patients? Br J Cancer.2009 Jul 21;101(2):374-5
    98. van Agthoven T, Timmermans M, Dorssers LC, Expression of estrogen, progesterone and epidermal growth factor receptors in primary and metastatic breast cancer. Int J Cancer.1995;63(6):790-793
    99. Zheng WQ, Lu J, Zheng JM, Hu FX.Variation of ER status between primary and metastatic breast cancer and relationship to p53 expression*.Steroids.2001;66 (12):905-910.
    100.Park IH, Kwon Y, Ro JY, Lee KS, Ro J.Concordant HER2 status between metastatic breast cancer cells in CSF and primary breast cancer tissue. Breast Cancer Res Treat.2009 Nov 15. [Epub ahead of print]
    101.Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med.2008 Sep 25;359(13):1367-80.
    102. Schwartz AG, Prysak GM, Bock H, et al. The molecular epidemiology of lung cancer. Carcinogenesis,2007,28 (3):507-518.
    103.Chen YC, Hunter DJ. Molecular Epidemiology of Cancer. CA Cancer J Clin 2005,55:45-54.
    104.Chen H-Y, Yu S-L, Chen C-H, et al. A five-gene signature and Clinical outcome in non-small-cell lung cancer. N Engl J Med2007;356:11-20。
    105.Herbst et al. Molecular Signatures of Lung Cancer -Toward Personalized Therapy. N Engl J Med 2007,4:356
    106.Zhu, Shih, Ling, et al, Immunohistochemical markers of prognosis in non-small cell lung cancer: a review and proposal for a multiphase approach to marker evaluation.J Clin Pathol.2006,59;790-800.
    1. Sobie LH, Wittekind C. TNM Classification of Malignant Tumors. New York: Wiley-Liss 2002。
    2. TravisWD, BrambillaE, Muller-Hermelink HK, HarrisCC.Pathologyand Genetics of TumorsoftheLung,Pleura,ThymusandHeart.Lyon:IARCPress 2004.
    3. Tanvetyanon, Tawee, Robinson, et al。 Outcomes of Adrenalectomy for Isolated Synchronous Versus Metachronous Adrenal Metastases in Non-Small-Cell Lung Cancer: A Systematic Review and Pooled Analysis J Clin Oncol 2008 26:1142-1147.
    4. Girard N, Deshpande C, Azzoli CG, Valerie W. Use of Epidermal Growth Factor Receptor/Kirsten Rat Sarcoma 2 Viral Oncogene Homolog Mutation Testing to Define Clonal Relationships Among Multiple Lung Adenocarcinomas Comparison With Clinical Guidelines. Chest 2010; 137:46-52.
    5. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med.2008;359 (13):1367-80.
    6. Makrilia N, Lappa T, Xyla V, Nikolaidis I, Syrigos K. The role of angiogenesis in solid tumours:an overview. Eur J Intern Med.2009;20(7):663-71.
    7. Yano T, Tanikawa S, Fujie T, et al. Vascular endothelial growth factor expression and neovascularisation in non-mall cell lung ancer. Eur J Cancer 2000 36 (5):601-609.
    8. Dive C, Jayson GC.Biomarkers of angiogenesis and their role in the development of VEGF inhibitors. Br J Cancer.2010 5;102(1):8-18.
    9. Longo R, Gasparini G Anti-VEGF therapy: the search for clinical biomarkers.
    Expert Rev Mol Diagn.2008;8(3):301-14.
    10. Kim SJ, Rabbani ZN, Dewhirst MW.Expression of HIF-1 alpha, CAIX, VEGF, and MMP-9 in surgically resected non-small cell lung cancer. Lung Cancer 2005; 49(3):325-335.
    11. Liao D, Corle C, Seagroves TN, et al. Hypoxia-inducible factor-1 alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression.Cancer Res.2007 67(2):563-572.
    12. Nardinocchi L, Puca R, Sacchi A, Rechavi G. Targeting hypoxia in cancer cells by restoring homeodomain interacting protein-kinase 2 and p53 activity and suppressing HIF-1 alpha. PLoS One.2009;4(8):e6819.
    13. Dikmen ZG, Gellert GC, Dogan P. In vivo and in vitro effects of a HIF-1 alpha inhibitor, RX-0047.J Cell Biochem.2008;104(3):985-94.
    14. Kim ES, Salgia R.MET pathway as a therapeutic target. J Thorac Oncol.2009; 4 (4):444_447.
    15. Stellrecht CM, Gandhi V. MET receptor tyrosine kinase as a therapeutic anti-cancer target.Cancer Lett.2009;280(1):1-14.
    16. Pardali K, Moustakas A.Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta.2007; 1775 (1): 21-62.
    17. PaduaD, ZhangXH, WangQ, etal. TGF beta primes breast tumors for lung metastasis seedingthrough angiopoietin-like4. Cell 2008; 133:66-77.
    18. Bennett WP, el-Deiry WS, Rush WL。p21waf1/cip1 and transforming growth factor beta 1 protein expression correlate with survival in non-small cell lung cancer. Clin Cancer Res 1998;4(6):1499-506.
    19. Gupta GP, Nquyen DX, Chiang AC, et al. Mediators of vascular remodelling coopted for sequential steps in lung metastasis. Nature 2007,446 (71 27):765-770.
    20. Valsecchi ME, Pomerantz SC, Jaslow R, Tester W.Reduced risk of bone metastasis for patients with breast cancer who use COX-2 inhibitors. Clin Breast Cancer.2009;9(4):225-30.
    21. Li F, Tiede B, Massaque J, et al. Beyond tumorigenesis:cancer stem cells in metastasis. Cell Res,2007,17(1):3-14.
    22. Ling LJ, Wang S, Liu XA, et al. A novel mouse model of human breast cancer stem-like cells with high CD44+CD24-/lower phenotype metastasis to human bone. Chin Med J(Engl) 2008; 121(20):1980-1986.
    23. Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population.Cell Death Differ2008,15(3):504-514.
    24. Tirino V, Camerlingo R, Franco R et al.The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer.Eur J Cardiothorac Surg.2009 36(3):446-453.
    25. Chao D, Hou M, Guan YS, et al. Expression of HIF-lalpha and VEGF in colorectal cancer: association with clinical outcomes and prognostic implications. BMC cancer.2009,10:1-9
    26. Kurokawa T, Miyamoto M, Kato K, et al.Overexpression of hypoxia-inducible-factor 1 alpha (HIF-1alpha) in oesophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Br J Cancer.2003; 89(6):1042-7.
    27. Zhong H, De Marzo AM, Laughner, E, et al. Overexpression of hypoxia-inducible factor 1 alpha in common human cancers and their metastases. Cancer Res.1999, 15;59(22):5830-5835.
    28. Faoro L, Cervantes GM, Ferguson BD, Seiwert TY, Yala S, MET/PKCss expression correlate with metastasis and inhibition is synergistic in lung cancer.J Carcinog 2009; 8 (15):1-6..
    29. Wu JM, Fackler MJ, Halushka MK, Molavi DW, et al. Heterogeneity of breast cancer metastases:comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases. Clin Cancer Res.2008,14(7):1938-1946.
    30. Zolota V, Batistatou A, Tsamandas AC, et al.Immunohistochemical expression of TGF-betal, p21WAF1, p53, Ki67, and angiogenesis in gastric carcinomas:a clinicopathologic study.Int J Gastrointest Cancer.2002; 32 (2-3):83-89
    31. Coppola D, Lu L, Fruehauf JP, Kyshtoobayeva A。 Analysis of p53, p21WAF1, and TGF-betal in human ductal adenocarcinoma of the pancreas: TGF-betal protein expression predicts longer survival.Am J Clin Pathol.1998;110(1):16-23.
    32. Erichsen HC, Chanock SJ..SNPs in cancer research and treatment. Br J Cancer. 2004 Feb 23;90(4):747-51
    33. Takahashi T, Carbone D, Nau MM, Hida T. Wild-type but not mutant p53 suppresses the growth of human lung cancer cells bearing multiple genetic lesions.Cancer Res.1992 Apr 15;52(8):2340-3.
    34.张健慧,李琰,王瑞,等.中国人食管癌及肺癌发病风险与p53基因多态性.中华肿瘤杂志,2003,25:365-367.。
    35. Fan R, Wu MT, Miller D, et al. The p53 codon 72 polymorphism and lung cancer risk. Cancer Epidemiol Biomarkers Prev,2000,9:1037-1042.
    36. Wang YC, Chen CY, Chen SK, et al. p53 codon 72 polymorphism in Taiwanese lung cancer patients:association with lung cancer susceptibility and prognosis..Clin Cancer Res
    37. Discordance of p53 status in matched primary tumours and metastases in head and neck squamous cell carcinoma patients. Eur J Cancer B Oral Oncol.1996; 32B (6):388-93.
    38. Kropveld A, van Mansfeld AD, Nabben NC et al. comparison of p53 mutations in patients with localized osteosarcoma and metastatic osteosarcoma.Cancer.2001 92(8):2181-9
    39. Tjebbes GW, Leppers vd Straat FG, Tilanus MG. p53 tumor suppressor gene as a clonal marker in head and neck squamous cell carcinoma: p53 mutations in primary tumor and matched lymph node metastases. Oral Oncol.1999; 35(4):384-9.
    40. Meyers FJ, Gumerlock PH, Chi SG, et al. Very frequent p53 mutations in metastatic prostate carcinoma and in matched primary tumors. Cancer. 1998;83(12):2534-9.
    41. Peller S, Halevy A, Slutzki S, Kopilova Y, Rotter V. p53 mutations in matched primary and metastatic human tumors.Mol Carcinog.1995; 13(3):166-72.
    42. Matsuzoe D, Hideshima T, Ohshima K, et al.Discrimination of double primary lung cancer from intrapulmonary metastasis by p53 gene mutation. Br J Cancer. 1999 Mar;79(9-10):1549-52.
    43. Filder IJ, Kripke ML. Metastasis results from preexisting variant cells withing a malignant tumor. Science,1977,197 (4306):8。
    44. Poste G, Fidler IJ. The pathogenesis of cancer metastasis. Nature,1980, 283(5743):139-141.
    45. Fidler IJ. Tumor heterogeneity in the biology of cancer invasion and metastasis. Cancer Res,1978,38,2651-2660.
    46. FILDER IJ. The organ microenviroment and cancer metastasis. Differentiation, 2002,70(9/10):498-500.
    47. Fidler IJ. The pathogenesis of cancer metastasis:the seed and soil hypothesis revisited. Nature Rew Cancer,2003,3(6):1-6.
    48. Talmandge JE, Wolman SR, Fidler IJ. Evidence for the clonal origin of spontaneous metastasis. Science,1982,217(4557):361-363.
    49. Eccles SA, Paon L. Breast cancer metastasis:when, where, how? Lancet 2005; 365:1006-0
    50. Korn WM. Moving Toward an Understanding of the Metastatic Process in Hepatocellular Carcinoma. World J Gastroenterol,2001,7(6):777-778
    51. Hynes RO. Metastatic potential:generic predisposition of the primary tumor or rare, metastatic variants-or both? Cell,200327;113(7):821-823.
    52. Khalique L, Ayhan A, Whittaker JC, et al. The clonal evolution of metastases from pimary serous epithelial ovarian cancers.Int J Cancer, 2009,124(7):1579-1586.
    53. Ikeda K, Tate G, Suzuki T, et al. Cytologic comparison of a primary parathyroid cancer and its metastatic lesions:a case report. Diagn Cytopathol,2006, 34(1):50-55
    54. Nakagawa K, Yasumitu T, Fukuhar K, et al。 Poor prognosis after lung resection for patients with adenosquamous carcinoma of the lung. Ann Thorac Surg,2003, 75(6):1740-4.
    55. Reichel MB. Ohgaki H Petersen L Kleihues P。p53 mutations in primary human lung tumors and their metastases。 Molecu Carcino 1994,9 (2):105-109
    56. Zhang SY, Bauer B, Mitsunaga SI, et al 。Lack of concordant p53 mutations in some paired primary and metastatic mouse squamous cell carcinomas induced by chemical carcinogenesis。 Molecu Carcino,1995,12 (2):77-81.
    57. Kase S, Sugio K, Yano T, Nishioka K.Rib metastasis appearing 8 years after surgery for lung cancer: report of a case. Surg Today.2000;30(5):462-4.
    58. Wang X, Wang M, MacLennan GT, Abdul-Karim FW. Evidence for common clonal origin of multifocal lung cancers. J Natl Cancer Inst.2009; 101 (8):560-70.
    59. Nakazato Y, Tanaka R, Seki E, Iijima M et al. Differential diagnosis of primary versus metastatic pulmonary adenocarcinomas using gene mutation analyses:a case report. J Thorac Oncol.2008;3(8):931-4.
    60. LaBarge MA, Bissell MJ. Is CD 133 a marker of metastatic colon cancer stem cells? J Clin Invest.2008 Jun; 118(6):2021-4.
    61. Meng X, Li M, Wang X, Wang Y。Both CD133+ and CD133-subpopulations of A549 and H446 cells contain cancer-initiating cells.Cancer Sci. 2009; 100(6):1040-6.
    62. Sung SY, Chung LW. Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation 2002,70(9-10):506-521.
    63. Gupta GP, Massague J. Cancer metastasis:building a framework. Cell,2006, 127(4):679-695.
    64. Hede K.Environmental protection:studies highlight importance of tumor microenvironment. J Natl Cancer Inst,2004,96(15):1120-1121.
    65. Fidler IJ.The pathogenesis of cancer metastasis:the'seed and soil' hypothesis revisited.Nat Rev Cancer 2003;3:453-458.
    66. Baselga J, Rothenberg ML, Tabernero J, Seoane J。TGF-beta signalling-related markers in cancer patients with bone metastasis.Biomarkers.2008;13(2):217-36.
    67. Giannelli G, Fransvea E, Marinosci F, Transforming growth factor-beta 1 triggers hepatocellular carcinoma invasiveness via alpha3 betal integrin. Am J Pathol. 2002 Jul;161(1):183-93.
    68. Lahn M, Kloeker S, Berry BS.TGF-beta inhibitors for the treatment of cancer. Expert Opin Investig Drugs.2005;14(6):629-43.
    69. Takahashi K, Kohno T, Matsumoto S, Nakanishi Y。 Clonal and parallel evolution of primary lung cancers and their metastases revealed by molecular dissection of cancer cells. Clin Cancer Res.2007; 13(1):111-20。
    70. Weigelt B, Glas AM, Wessels LF et al. Gene expression profiles of primary breast tumors maintained in distant metastases.Proc Natl Acad Sci U S A.2003; 100 (26):15901-5.
    71. Suzuki M, Tarin D.Gene expression profiling of human lymph node metastases and matched primary breast carcinomas:clinical implications.Mol Oncol. 2007; 1(2):172-80. Erratum in: Mol Oncol.2008 (4):440.
    72. Adib TR, Henderson S, Perrett C, et al. Predicting biomarkers for ovarian cancer using gene-expression microarrays. Br J Cancer 2004,90(3):686-692.
    73. Paris PL, Hofer MD, Albo G, Kuefer R, et al. Genomic profiling of hormone-naive lymph node metastases in patients with prostate cancer.Neoplasia.2006; 8 (12):1083-9.
    74. Rao C, Hu Q, Ma J, Li J, Zhang C, et al. Comparison of the epidermal growth factor receptor protein expression between primary non-small cell lung cancer and paired lymph node metastases:implications for targeted nuclide radiotherapy.J Exp Clin Cancer Res.2010;29:7.
    75. Monaco SE, Nikiforova MN, Cieply K, et al。A comparison of EGFR and KRAS status in primary lung carcinoma and matched metastases. Hum Pathol.2010 Jan;41(1):94-102.
    76. Gomez-Roca C, Raynaud CM, Penault-Llorca F, et al. Differential expression of biomarkers in primary non-small cell lung cancer and metastatic sites.J Thorac Oncol.2009 Oct;4(10):1212-20.
    77. Schmid K, Oehl N, Wrba F, Pirker R, Pirker C, Filipits M. EGFR/KRAS/BRAF mutations in primary lung adenocarcinomas and corresponding locoregional lymph node metastases. Clin Cancer Res.2009; 15(14):4554-60.
    78. Park S, Holmes-Tisch AJ, Cho EY, Shim YM Discordance of molecular biomarkers associated with epidermal growth factor receptor pathway between primary tumors and lymph node metastasis in non-small cell lung cancer. J Thorac Oncol.2009;4(7):809-15.
    79. Daniele L, Cassoni P, Bacillo E, Cappia S et al 。Epidermal growth factor receptor gene in primary tumor and metastatic sites from non-small cell lung cancer.J Thorac Oncol.2009;4(6):684-8.
    80. Kalikaki A, Koutsopoulos A, Trypaki M, Souglakos J。Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC.Br J Cancer.2008;99(6):923-9.
    81. Bozzetti C, Tiseo M, Lagrasta C, Nizzoli R, Guazzi A, et al 。Comparison between epidermal growth factor receptor (EGFR) gene expression in primary non-small cell lung cancer (NSCLC) and in fine-needle aspirates from distant metastatic sites.J Thorac Oncol.2008;3(1):18-22.
    82. Sun M, Behrens C, Feng L, Ozburn N。HER family receptor abnormalities in lung cancer brain metastases and corresponding primary tumors. Clin Cancer Res. 2009;15(15):4829-37.
    83. Bibeau, F. Boissiere-Michot, F. Sabourin, J. Ychou, M. Assessment of epidermal growth factor receptor (EGFR) expression in primary colorectal carcinomas and their related metastases on tissue sections and tissue microarray. Virchows Arch. 2006; 449(3):281-287.
    84. Bueno-de-Mesquita JM, Linn SC, Keijzer R.Validation of 70-gene prognosis signature in node-negative breast cancer. Breast Cancer Res Treat.2009 117(3):483-95.
    85. Karlsson E, Delle U, Danielsson A. Gene expression variation to predict 10-year survival in lymph-node-negative breast cancer. BMC Cancer.2008;8:254.
    86. Buyse M, Loi S, van't Veer L, Viale G, Delorenzi MValidation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. Natl Cancer Inst.2006;98(17):1183-92.
    87. Desmedt C, Piette F, Loi S, Wang Y.Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series.Clin Cancer Res.2007;13(11):3207-14.
    88. Foekens JA, Atkins D, Zhang Y, Sweep FC, Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol.2006;24(11):1665-1671.
    89. Hu Z, Fan C, Livasy C, He X, Oh DS, A compact VEGF signature associated with distant metastases and poor outcomes. BMC Med.2009 16;7:9.
    90. Baselga J, Arteaga CL.Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol.2005;23(11):2445-59.
    91. Badalian G, Barbai T, Raso E, Derecskei K,et al.Phenotype of bone metastases of non-small cell lung cancer: epidermal growth factor receptor expression and K-RAS mutational status. Pathol Oncol Res.2007;13(2):99-104.
    92. Santini D, Loupakis F, Vincenzi B,et al.High concordance of KRAS status between primary colorectal tumors and related metastatic sites:implications for clinical practice. Oncologist.2008;13(12):1270-5.
    93. Floriani I, Santini D, Torri V, Cremolini C. Do we need biopsies of metastases for colorectal cancer patients? Br J Cancer.2009;101(2):374-5
    94. Kobayashi H, Sugihara K, Uetake H, et al.Messenger RNA expression of vascular endothelial growth factor and its receptors in primary colorectal cancer and corresponding liver metastasis. Ann Surg Oncol.2008; 15(4):1232-8.
    95. Mutter R, Lu B, Carbone DP, Csiki I, et al.A phase II study of celecoxib in combination with paclitaxel, carboplatin, and radiotherapy for patients with inoperable stage IIIA/B non-small cell lung cancer. Clin Cancer Res.2009; 15 (6): 2158-65.
    96. Ma PC, Jagadeeswaran R, Jagadeesh SFunctional expression and mutations of c-Met and its therapeutic inhibition with SU 11274 and small interfering RNA in non-small cell lung cancer. Cancer Res.2005 15;65(4):1479-88.
    97. Tabernero J.The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res.2007;5(3):203-20.
    98. Frederick B, Gustafson D, Bianco C, et al. ZD6474, an inhibitor of VEGFR and
    EGFR tyrosine kinase activity in combination with radiotherapy. nt J Radiat Oncol Biol Phys.2006;64(1):33-7.
    99. Wang X, Yang L, Chen ZG, Shin DM.Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin.2008;58(2):97-110. Epub 2008 Jan 28.
    100. Stenbygaard LE, S(?)rensen JB, et al. Metastatic pattern in non-resectable non-small cell lung cancer. Acta Oncol.1999;38(8):993-8.
    101. Tas F, Aydiner A, Topuz E, et al.Factors influencing the distribution of metastases and survival in extensive disease small cell lung cancer. Acta Oncol. 1999; 38(8):1011-5.
    102. Smith SC, Nicholson B, Nitz M et al. Profiling bladder cancer organ site-specific metastasis identifies LAMC2 as a novel biomarker of hematogenous dissemination. Am J Pathol.2009; 174(2):371-9.
    103. Tamura M, Oda M, Tsunezuka Y. Vascular endothelial growth factor expression in metastatic pulmonary tumor from colorectal carcinoma: utility as a prognostic factor.J Thorac Cardiovasc Surg.2004;128(4):517-22.
    104. Zhao T, Xia WH, Zheng MQ et al. Surgical excision promotes tumor growth and metastasis by promoting expression of MMP-9 and VEGF in a breast cancer model.Exp Oncol.2008;30(1):60-4.
    105. Schildberg FW, Meyer G, Piltz S, et al. Surgical treatment of tumor metastases:general considerations and results. Surg Today.1995;25(1):1-10.
    106. Selzner M, Morse MA, Vredenburgh JJ, Meyers WC, Clavien PALiver metastases from breast cancer:long-term survival after curative resection. Surgery. 2000;127(4):383-9.
    107. Maksan SM, Lehnert T, Bastert G, et al. Curative liver resection for metastatic breast cancer. Eur J Surg Oncol.2000;26(3):209-12.
    108. Han KN, Kim YT, Yoon JH, et al. Role of surgical resection for pulmonary metastasis of hepatocellular carcinoma.Lung Cancer.2010. [Epub ahead of print]
    109. Riquet M, Foucault C, Cazes A, Mitry E et al. Pulmonary resection for metastases of colorectal adenocarcinoma.Ann Thorac Surg.2010;89 (2):375-80.
    1. Kamby C, Andersen J, Ejlertsen B, Birkler NE, Rytter L, Zedeler K,et al. Pattern of spread and progression in relation to the characteristics of the primary tumour
    in human breast cancer. Acta Oncol 1991;30:301-8.
    2. Jain, S, Fisher, C, Smith, P, Millis RR, Rubens RD.Patterns of metastatic breast cancer in relation to histological type. Eur J Cancer1993;15:2155-57.
    3. Tomin R, Donegan WL. Screening for recurrent breast cancer-Its effectiveness and prognostic value. J Clin Oncol 1987,5:62-67.
    4. Schlappack OK, Baur M, Steger G, Dittrich C, Moser K. The clinical course of lung metastases from breast cancer.Klin Wochensch 1988; 66:790-5.
    5. Minn AJ, Gupta GP, Siegel PM, BoS PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature 2005;436:518-24.
    6. Gupta GP, Perk J, Acharyya S, de Candia P, Mittal V, Todorova-Manova K,et al. ID genes mediate tumor reinitiation during breast cancer lung metastasis.Proc Natl Acad Sci USA 2007; 104:19506-11.
    7. Calvo A, Catena R, Noble MS, Carbott D, Gil-Bazo I, Gonozales-Moreno O,et al. Identification of VEGF-regulated genes associated with increased lung metastatic potential:functional involvement of tenascin-C in tumor growth and lung metastasis.Oncogene 2008[Epub ahead of print].
    8. Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR,et al. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 2008; 133:66-77.
    9. Hasebe T, Imoto S, Yokose T, Ishii G, Iwasaki M, Wada N.Histopathologic factors significantly associated with initial organ-specific metastasis by invasive ductal carcinoma of the breast: a prospective study. Hum Pathol 2008;39:681-93. Epub 2008 Mar 10.
    10. Evans AJ, James JJ, Cornford EJ, Chan SY, Burrell HC, Pinder SE,et al. Brain metastases from breast cancer: identification of a high-risk group.Clin Oncol 2004;16:354-9
    11. Fulford LG, Reis-Fiho JS,Ryder K, Jones C, Gillett CE, Hanby A, et al.Basal-like grade III invasive ductal carcinoma of the breast:patterns of metastasis and long-term survival.Breast Cancer Res2007;9:R4.
    12. Maki DD, Grossman RI.Patterns of disease spread in metastatic breast carcinoma: influence of estrogen and progesterone receptor status. Am J Neuroradiol 2000;21:1064-66.
    13. James JJ,Evans AJ,Pinder SE, Gutteridge E, Cheung KL, Chan S, et al. Bone metastases from breast carcinoma: histopathological-radiological correlations and prognostic features.Br J cancer2003; 89:660-5
    14. Keshaviah A, Dellapasqua S, Rotmensz,N, Lindtner J, Crivellari D, Collins J, et al. CA15-3 and alkaline phosphatase as predictors for breast cancer recurrence:a combined analysis of seven International Breast Cancer Study Group trials.Ann Oncol 2007; 18:701-8.
    15. Sanuki-Fujimoto N, Takeda A, Amemiya A, Ofuchi T, Ono M, Yamagami R,et al. Pattern of tumor recurrence in initially nonmetastatic breast cancer patients: distribution and frequency of metastases at unusual sites.Cancer 2008, [Epub ahead of print]
    16. Dawood S, Broglio K,Gonzalez-Angulo AM, Kau SW, Islam R, Hortobagyi GN, et al.Prognostic value of body mass index in locally advanced breast cancer. Clin Cancer Res 2008.14:1718-25.
    17. Singletary SE, Connolly LL. Breast Cancer Staging:Working With the Sixth Edition of the AJCC Cancer Staging Manual. CA Cancer J Clin 2006; 56:37-47.
    18. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 2007; 19:403-10.
    19. Rabbani SA, Mazar AP. Evaluating distant metastases in breast cancer from biology to outcomes. Cancer Metastasis Rev 2007,26:663-74.
    20. Li CI; Uribe DJ, Daling JR. Clinical characteristics of different histologic types of breast cancer. Br J Cancer 2005,93:1046-52.
    21. Dent R Hanna WM, Trudeau M, Rawlinson E, Sun P, Narod SA. Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res Treat 2008. DOI 10.1007/s 10549-008-008-2
    22. Ihemelandu CU, Naab TJ, Mezghebe HM, Makambi KH, Siram SM, Leffall LD Jr, et al.Basal cell-like (triple-negative) breast cancer, a predictor of distant metastasis in African American women.Am J Surg2008; 195:153-8.
    23. Hacene K, Le Doussal V, Rouesse J. Predicting distant metastases in operable breast cancer patients.Cancer 1990,66:2034-43.
    24. Hasebe T, Sasaki S, Imoto S, Ochiai A. Prognostic significance of the intra-vessel tumor characteristics of invasive ductal carcinoma of the breast: a prospective study. Virchows Arch 2004,444:20-27.
    25. Haffty BG, Yang Q, Reiss M, Kearney T, Higgins SA, Weidhaas J, et al.Locoregional relapse and distant metastasis in conservatively managed TN early-stage breast cancer. J Clin Oncol 2006; 24:5652-57.
    26. Nishimura R Arima N. Is triple negative a prognostic factor in breast cancer?. Breast Cancer 2008,DOI 10.1007/s 12282-008-0042-3.
    27. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA,et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clinical Cancer Research,2007,13:4429-34.
    28. Kamby C, Sengel(?)v L. Survival and Pattern of Failure Following Locoregional Re-currence of Breast Cancer. Clinical Onco1999;11:156-63.
    29. Reed W, Hannisdal E, Boehler PJ, Gundersen S, Host H, Marthin J. The prognostic value of p53 and c-erb B-2 immunostaining is overrated for patients with lymph node negative breast carcinoma: a multivariate analysis of prognostic factors in 613 patients with a follow-up of 14-30 years. Cancer 2000;88:804-13.
    30. O'Shaughnessy.Molecular Signatures Predict Outcomes of Breast Cancer. N Engl J Med 2006;355:615-7.
    31. Van de Vijver MJ, He YD, van't Veer LJ. A gene-expression signature as a predictor of survival in breast cancer.N Engl J Med 2002,347:1999-2009.
    1. Spira A, Ettinger DS.Multidisciplinary management of lung cancer. N Engl J Med.2004 Jan 22;350(4):379-92.
    2. Burris HA. Shortcomings of current therapies for non-small-cell lung cancer: unmet medical needs. Oncogene.2009 Aug;28 Suppl 1:S4-13.
    3. Sleeman J, Steeg PS.Cancer metastasis as a therapeutic target.Eur J Cancer.2010, 1177-1180.
    4. Tarin D.Comparisons of metastases in different organs:biological and clinical implications. Clin Cancer Res.2008 Apr 1; 14(7):1923-5.
    5. Wu JM, Fackler MJ, Halushka MK, et al. Heterogeneity of breast cancer metastases:comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases. Clin Cancer Res.2008,14(7):1938-1946.
    6. Scartozzi M, Bearzi I, Berardi R,et al.Epidermal growth factor receptor (EGFR) status in primary colorectal tumors does not correlate with EGFR expression in related metastatic sites:implications for treatment with EGFR-targeted monoclonal antibodies. J Clin Oncol.2004 Dec 1;22(23):4772-8.
    7. Italiano A, Saint-Paul MC, Caroli-Bosc FX.Epidermal growth factor receptor (EGFR) status in primary colorectal tumors correlates with EGFR expression in related metastatic sites:biological and clinical implications. Ann Oncol. 2005; 16(9):1503-7.
    8. Sun M, Behrens C, Feng L, Ozburn N。HER family receptor abnormalities in lung cancer brain metastases and corresponding primary tumors. Clin Cancer Res. 2009;15(15):4829-37.
    9. Park S, Holmes-Tisch AJ, Cho EY, et al.Discordance of molecular biomarkers associated with epidermal growth factor receptor pathway between primary tumors and lymph node metastasis in non-small cell lung cancer. J Thorac Oncol. 2009;4(7):809-15.
    10. Gattenlohner S, Etschmann B, Kunzmann V et al.Concordance of KRAS/BRAF Mutation Status in Metastatic Colorectal Cancer before and after Anti-EGFR Therapy. J Oncol.;2009:831626.
    11. Santini D, Loupakis F, Vincenzi B, et al.High concordance of KRAS status between primary colorectal tumors and related metastatic sites:implications for clinical practice. Oncologist.2008; 13(12):1270-5.
    12. Weigelt B, Glas AM, Wessels LF et al. Gene expression profiles of primary breast tumors maintained in distant metastases.Proc Natl Acad Sci U S A.2003; 100(26):15901-5.
    13. Rao C, Hu Q, Ma J, Li J, Zhang C, et al. Comparison of the epidermal growth factor receptor protein expression between primary non-small cell lung cancer and paired lymph node metastases: implications for targeted nuclide radiotherapy.J Exp Clin Cancer Res.2010;29:7.
    14. Monaco SE, Nikiforova MN, Cieply K, et al. A comparison of EGFR and KRAS status in primary lung carcinoma and matched metastases. Hum Pathol.2010 Jan;41(1):94-102.
    15. Gomez-Roca C, Raynaud CM, Penault-Llorca F, et al. Differential expression of biomarkers in primary non-small cell lung cancer and metastatic sites.J Thorac Oncol.2009 Oct;4(10):1212-20.
    16. Schmid K, Oehl N, Wrba F, Pirker R, Pirker C, Filipits M. EGFR/KRAS/BRAF mutations in primary lung adenocarcinomas and corresponding locoregional lymph node metastases. Clin Cancer Res.2009;15(14):4554-60.
    17. Daniele L, Cassoni P, Bacillo E, Cappia S et al。Epidermal growth factor receptor gene in primary tumor and metastatic sites from non-small cell lung cancer.J Thorac Oncol.2009;4(6):684-8.
    18. Kalikaki A, Koutsopoulos A, Trypaki M, Souglakos J. Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC.Br J Cancer.2008;99(6):923-9.
    19. Bozzetti C, Tiseo M, Lagrasta C, Nizzoli R, Guazzi A, et al。 Comparison between epidermal growth factor receptor (EGFR) gene expression in primary
    non-small cell lung cancer (NSCLC) and in fine-needle aspirates from distant metastatic sites.J Thorac Oncol.2008;3(1):18-22.
    20. Watters JW, Roberts CJ.Developing gene expression signatures of pathway deregulation in tumors.Mol Cancer Ther.2006;5(10):2444-9. Review.
    21. Virmani AK, Gazdar AF.Tumor suppressor genes in lung cancer.MethodsMol Biol.2003;222:97-115
    22. Schwartz AG, Prysak GM, Bock H, et al. The molecular epidemiology of lung cancer. Carcinogenesis,2007,28 (3):507-518.
    23. Makrilia N, Lappa T, Xyla V, et al. The role of angiogenesis in solid tumours:an overview. Eur J Intern Med.2009;20(7):663-71.
    24. Herbst RS, Heymach, JV, Lippman SM. Lung Cancer. N Engl J Med. 2008;359(13):1367-80.
    25. Yano T, Tanikawa S, Fujie T, et al. Vascular endothelial growth factor expression and neovascularisation in non-mall cell lung ancer. Eur J Cancer 2000; 36(5):601-609.
    26. Kim SJ, Rabbani ZN, Dewhirst MW.Expression of HIF-1 alpha, CAIX, VEGF, and MMP-9 in surgically resected non-small cell lung cancer. Lung Cancer 2005; 49(3):325-335.
    27. Zhu, Shih, Ling, et al, Immunohistochemical markers of prognosis in non-small cell lung cancer: a review and proposal for a multiphase approach to marker evaluation J. Clin Pathol.2006,59; 790-800.
    28. Ma PC, Jagadeeswaran R, Jagadeesh S.Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res.2005 15;65(4):1479-88.
    29. Herbst RS, Sandler A.Bevacizumab and erlotinib:a promising new approach to the treatment of advanced NSCLC. Oncologist.2008;13 (11):1166-76.
    30. Stellrecht CM, Gandhi V. MET receptor tyrosine kinase as a therapeutic anticancer target.Cancer Lett.2009;280(1):1-14.
    31. Dikmen ZG, Gellert GC, Dogan P. In vivo and in vitro effects of a HIF-1 alpha inhibitor, RX-0047.J Cell Biochem.2008;104(3):985-94.
    32. Longo R, Gasparini G. Anti-VEGF therapy: the search for clinical biomarkers. Expert Rev Mol Diagn.2008;8(3):301-14.
    33. Horak CE, Steeg PS.Metastasis gets site specific. Cancer Cell.2005;8(2):93-95.
    34. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis.Cell 2004; 117(7):927-939.
    35. Steeg PS.Tumor metastasis:mechanistic insights and clinical challenges.Nat Med. 2006;12(8):895-904.
    36. Nguyen, D. X. & Massague, J. Genetic determinants of cancer metastasis. Nature Rev. Genet.2007 8,341-352.
    37. Nguyen DX, Bos PD, Massague J.Metastasis:from dissemination to organ-specific colonization. Nat Rev Cancer.2009;9(4):274-84.
    38. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta.2007; 1775(1):21-62.
    39. PaduaD, ZhangXH, WangQ, etal. TGF beta primes breast tumors for lung metastasis seedingthrough angiopoietin-like4. Cell 2008; 133:66-77.
    40. Nature.2007 Apr 12;446(7137):765-70.Gupta GP, Nguyen DX, Chiang AC et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis.
    41. Bos PD, Zhang XH, Nadal C.Genes that mediate breast cancer metastasis to the brain. Nature.2009;459(7249):1005-9.
    42. Joyce JA, Pollard JW.Microenvironmental regulation of metastasis.Nat Rev Cancer.2009 Apr;9(4):239-52.
    43. Kim S, Takahashi H, Lin WW, et al.Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457(7225):102-6.
    44. Tanvetyanon, Tawee, Robinson, et al。 Outcomes of Adrenalectomy for Isolated Synchronous Versus Metachronous Adrenal Metastases in Non-Small-Cell Lung Cancer:A Systematic Review and Pooled Analysis J Clin Oncol 2008 26: 1142-1147
    45. Girard N, Deshpande C, Azzoli CG, Valerie W. Use of Epidermal Growth Factor Receptor/Kirsten Rat Sarcoma 2 Viral Oncogene Homolog Mutation Testing to Define Clonal Relationships Among Multiple Lung Adenocarcinomas Comparison With Clinical Guidelines. Chest 2010; 137:46-52.
    46. Chao D, Hou M, Guan YS, et al. Expression of HIF-1 alpha and VEGF in colorectal cancer: association with clinical outcomes and prognostic implications. BMC cancer.2009,10:1-9
    47. Kurokawa T, Miyamoto M, Kato K,Overexpression of hypoxia-inducible-factor 1 alpha (HIF-1 alpha) in oesophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Br J Cancer.2003; 89(6):1042-7.
    48. Faoro L, Cervantes GM, Ferguson BD, Seiwert TY, Yala S, MET/PKCss expression correlate with metastasis and inhibition is synergistic in lung cancer.J Carcinog.2009;8 (15):1-6..
    49. Zolota V, Batistatou A, Tsamandas AC, Iliopoulos G, Immunohistochemical expression of TGF-betal, p21WAF1, p53, Ki67, and angiogenesis in gastric carcinomas:a clinicopathologic study.Int J Gastrointest Cancer.2002; 32 (2-3):83-89
    50. Coppola D, Lu L, Fruehauf JP, Kyshtoobayeva A。Analysis of p53, p21 WAF1, and TGF-betal in human ductal adenocarcinoma of the pancreas:TGF-beta1 protein expression predicts longer survival.Am J Clin Pathol.1998 Jul;110(1):16-23.
    51. Gow CH, Chang YL, Hsu YC et al. Comparison of epidermal growth factor receptor mutations between primary and corresponding metastatic tumors in tyrosine kinase inhibitor-naive non-small-cell lung cancer. Ann Oncol. 2009;20(4):696-702.
    52. Raynaud CM, Mercier O, Commo F, et al. Telomere length, telomeric proteins and DNA damage repair proteins are differentially expressed between primary lung tumors and their adrenal metastases. Lung Cancer.2009;65(2):144-9.
    53. Wu PF, Kuo KT, Kuo LT et al.O(6)-Methylguanine-DNA methyltransferase expression and prognostic value in brain metastases of lung cancers. Lung Cancer. 2010;68(3):484-90.
    54. Bibeau, F. Boissiere-Michot, F. Sabourin, J. Ychou, M. Assessment of epidermal growth factor receptor (EGFR) expression in primary colorectal carcinomas and their related metastases on tissue sections and tissue microarray. Virchows Arch. 2006 September; 449(3):281-287.
    55. Akita K, Inagaki H, Sato S, Niimi T et al.p185(HER-2/neu) and p21(CIP1/WAF1) expression in primary tumors and lymph node metastases in non-small cell lung cancer. Jpn J Cancer Res.2002;93(9):1007-11.
    56. Matsuzoe D., Hideshima T., Ohshima K., et al. Discrimination of double primary lung cancer from intrapulmonary metastasis by p53 gene mutation. Br. J. Cancer, 1999,79:1549-1552
    57. Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor. Science 1977;197:893-5.
    58. Talmadge JE, Wolman SR, Fidler IJ. Evidence for the clonal origin of spontaneous metastases. Science 1982;217:361-363.
    59. Talmadge JE.Clonal selection of metastasis within the life history of a tumor. Cancer Res.2007 Dec 15;67(24):11471-5.
    60. Gray JW. Evidence emerges for early metastasis and parallel evolution of primary and metastatic tumors. Cancer Cell 2003;4:4-6.
    61. Schmidt-Kittler O, Ragg T, Daskalakis A, et al. From latent disseminated cells to overt metastasis:genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A 2003; 100:7737-42.
    62. Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat Rev Cancer 2004;4:448-56.
    63. Takahashi K, Kohno T, Matsumoto S et al.Clonal and parallel evolution of primary lung cancers and their metastases revealed by molecular dissection of cancer cells. Clin Cancer Res.2007; 13(1):111-20.
    64. Steeg PS.Heterogeneity of drug target expression among metastatic lesions: lessons from a breast cancer autopsy program. Clin Cancer Res. 2008;14(12):3643-5.
    65. Bar J, Herbst RS, Onn A.Targeted drug delivery strategies to treat lung metastasis. Expert Opin Drug Deliv.2009 Oct;6(10):1003-16.
    66. J.M. Ebos, C.R. Lee and W. Cruz-Munoz et al., Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis, Cancer Cell 2009,15 (3):232-239.
    67. M. Paez-Ribes, E. Allen and J. Hudock et al., Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis, Cancer Cell 2009,15 (3):220-231.
    68. Steeg PS, Theodorescu D.Metastasis: a therapeutic target for cancer. Nat Clin Pract Oncol.2008;5(4):206-19.
    69. Tabernero J.The role of VEGF and EGFR inhibition:implications for combining

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700