用户名: 密码: 验证码:
H3N8亚型马流感病毒的致病性研究及灭活疫苗的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马流行性感冒是由马流感病毒(Equine influenza virus, EIV)引起的马属动物的一种急性呼吸道传染病,世界动物卫生组织(OIE)将其列为法定报告动物疫病。目前马流感病毒分为两个不同的亚型,分别是H7N7亚型病毒和H3N8亚型病毒,由这两个亚型引起的马流感广泛分布于世界各地。近30年来,世界各国所暴发的马流感均由H3N8亚型马流感病毒所引起。H3N8亚型马流感的频繁暴发,对养马业,尤其是赛马业危害严重,已在世界范围内造成了巨大的经济损失。
     2007年,许多国家包括澳大利亚、日本等暴发了马流感疫情,我国新疆以及华北地区也暴发了类似马流感的疫情,在流行病学调查的基础上,我们从华北地区分离到了一株H3N8亚型马流感病毒。本研究在病毒分离鉴定的基础上,为进一步探讨马流感病毒的致病机理,马流感病毒跨种间传播的可能性以及疫苗对马流感的预防效果,开展了如下研究工作。
     (1)对2007年华北地区马群中暴发的H3N8亚型马流感病毒进行了分离鉴定;测定了不同代次的鸡胚传代病毒对马致病性和致病性差异分子机制的探讨与分析。
     从发病赛马中分离到1株H3N8亚型马流感病毒,分离毒株为低致病性流感病毒,属于美洲谱系病毒,为马源H3N8亚型流感病毒流行毒株,命名为A/Equine/Huabei/1/07(H3N8)。
     利用F2代分离病毒,采用喷雾的方式以约5×106.7EID50/匹的剂量感染12个月~20个月龄的马,建立起以持续性发烧和流水样鼻汁为主要症状的马流感发病模型。F3、F4、F5和F10代病毒对马的致病性逐渐减弱,不能用于发病模型的建立。
     采用RT-PCR和基因序列测定技术,成功地获得F2、F3、F4、F5和F10代毒株的基因组序列。F2代-F5代毒株之间HA基因的核苷酸和氨基酸的同源率均为100%,而F2代~F5与F10代核苷酸的同源率均为99.90%,氨基酸的同源率均为99.80%;变异位点在核苷酸第539位,在此位点上F2代~F5代毒株核苷酸序列为A(腺嘌呤),而F10代毒株为G(鸟嘌呤),这一核苷酸位点的变异导致氨基酸159位(阅读框176位)抗原位点的氨基酸发生改变,由F2代~F5代毒株的N(天冬酰胺)变为F10代毒株的酸性氨基酸D(天冬氨酸)。HA基因的变异初步解释了毒株致病性减弱的主要分子机制。
     (2)H3N8亚型马流感病毒分离毒株对不同品种犬的感染性研究,对马流感病毒的跨种间传播提供了试验数据;
     用分离的A/Equine/Huabei/1/07(H3N8)毒株,经滴鼻感染途径分别以1.0mL或2.0mL(106.7EID50/条或2×106.7EID50/条)的接种剂量人工感染灵缇犬和比格犬。结果表明试验用H3N8亚型马流感病毒仅能引起犬轻度的上呼吸道病变,多数感染犬排毒且血清学检测抗体阳转,但感染犬无异常临床症状。此研究证实目前我国分离的马源H3N8亚型流感病毒能够感染犬,但可能暂时不会对犬类的健康构成威胁。
     (3)利用分离的H3N8亚型马流感病毒流行毒株,初步研制成功H3亚型马流感全病毒灭活疫苗。
     利用铝胶佐剂制备了H3N8亚型马流感全病毒灭活疫苗,经豚鼠安全性评价试验结果表明铝胶佐剂副反应轻。分别用F6、F8和F10代次的病毒制备了马流感灭活疫苗,经豚鼠和马的免疫试验证实,疫苗具有良好的免疫效果,马和豚鼠免疫后均能产生较高的HI抗体,而且豚鼠和马之间的HI抗体效价具有较好的平行关系,豚鼠可以作为马流感灭活疫苗效力检验的替代动物。
Equine influenza is one kind of acute contagious respiratory disease in Equus animals caused by the equine influenza virus, and also it is in notifiable form of OIE. There are currently two subtypes of equine influenza viruses in circulation, the outbreaks of equine influenza caused by Equine -1 influenza virus (H7N7) or Equine-2 influenza virus (H3N8) is very common in the world. The equine influenza occurred in the world was caused only H3N8 subtype EIV in the last 30 years. Frequent outbreaks of H3N8 subtype equine influenza results in interruption of horse industry, and in some cases, particularly in the racing industry, with significant financial impact.
     In 2007, Outbreaks of equine influenza have been reported in Australia, Mongolia, Japan and other countries, an outbreak of respiratory disease with the similar influenza symptoms occurred in racehorses in Xinjiang and Northern China. According to the results of epidemiological investigation, we got one H3N8subtype equine influenza virus. Based on the data of isolation and identification, in order to further exploring pathogenesis, interspecies spread and the inactivated vaccine against Equine influenza, following experiments have been conducted in this study:
     (1) Isolation and identification of H3N8 EIV occurred in Northern China, determination the pathogenicity, exploring and analysis the molecular mechanism of attenuation with embryo propagations of virus seed lot of H3N8 EIV strains.
     One isolates denominated A/Equine/Huabei/1/07(H3N8) of lower pathogenic Equine influenza virus was isolated from nasal discharge of sick racing horse, it belongs to the American lineage and it is original horse strain.
     Twelve to 20-month-day-old Mongolia Horses were experimentally inoculated with the F2, F3, F4, F5 and F10 propagation of EIV H3N8 by spraying routes at the dose of 5×106.7EID50 per horse. All inoculated horses with F2 propagation virus exhibited the typical clinical signs such as continuity pyrexia and watery nasal discharge of EI. In contrast, all the horses inoculated with other propagation virus showed mild and subclinical signs of EI, the data from the experiment clearly suggest that the F10 propagation virus seed lot may not serve as a challenge virus for develop the model of El.
     By means of RT-PCR with specific primers from the noncoding sequence of each gene segment and sequencing, full coding sequences of eight viral genes of the F2, F3, F4, F5 and F10 propagation of EIV H3N8 were amplified and sequenced. Phylogenetic analysis based on HA gene and deduced amino acid showed that (1) the four propagation of virus (F2, F3, F4, F5) possessed an HA cleavage site sequence identical to each other with HA homology of 100% and 99.90%,99.80% to F10 respectively.
     The variation site is located in the 539, the nucleotide of F2, F3, F4, F5 propagation is Adenine and Guanine from F10 propagation, corresponding the amino acid of Asparagine (A) is changed to acidity Aspartic Acid (D), the variation of HA gene primarily interpret the mechanism of pathogenicity of 5 propagations of EIV.
     (2) Infectivity analysis of canine to isolates of EIV H3N8, providing the experimental data for further exploring interspecies spread regarding the infectivity of canine to EIV H3N8.
     Seven greyhounds and 12 beagles were experimentally inoculated with F2 propagation isolates of EIV H3N8 by intranasal (IN) routes at the dose of 106.7 EID50 per dog or 2×106.7 EID50 per dog. Of the 19 inoculated canines, none of them exhibited any clinical signs of illness and all remained healthy during the observation period (on days 14-21 post inoculation) and showed no gross lesions. While the trachea exhibited very mild lesions such as falling off of cilia. Both viruses were recovered and HI antibody was detected from most of the experimentally infected canines. Results from the experiment clearly suggest that the H3N8 subtype EIV prevalence now may not threaten to the dogs.
     (3) Inactivated vaccine against Equine influenza was primarily developed with isolated strain of H3N8 EIV.
     The inactivated whole virus vaccine against equine influenza containing Aluinium Hydroxide adjuvant was manufactured, the data of safety test indicated that the guinea pigs vaccinated with killed vaccine exhibited very little adverse reaction. Both horses and guinea pigs which received different vaccines containing 64 or 128 HA unit from F6, F8 and F10 propagation antigen had high levels of HI antibody on the 28 days post vaccination, furthermore, the serum HI titers from horse and guinea pigs showed direct correlation, guinea pigs is one of the ideal experimental animals available for equine influenza vaccine efficacy.
引文
1. Saif Y M, Barnes H J, Glisson J R, et al主编.苏敬良,高福,索勋主译.禽病学.第十一版.北京:中国农业出版社,2005,147-166
    2. 曹诚贤,冯卫.禽流感发病机理及免疫学特性.江西畜牧兽医杂志,2008,(5):9-12
    3. 陈红军,候义宏,白华等.猪流感病毒分型基因芯片的建立和初步应用.畜牧兽医学报,2007,38(7):708-712
    4. 陈怀涛,许乐仁.兽医病理学.北京:中国农业出版社,2005,791-792
    5. 甘孟侯.禽流感.第二版.北京:中国农业出版社,2002
    6. 郭巍,戴伶俐,李雪峰等.马流感病毒多重RT-PCR检测方法的建立.动物医学进展,2008a,29(11):28-31
    7. 郭巍,阎妍,王英原等.新疆一株马流感病毒的分离与鉴定.中国预防兽医学报,2008b,30(8):584-591
    8. 郭元吉,程小雯.流行性感冒及其实验技术.北京:中国三峡出版社,1997
    9. 郭元吉,范风莲,曲风珍.甲型流感病毒在我国动物中分布的初步调查.中国微生物学报,1981,21(3):349-384
    10.郭元吉.近两次我国马群中流感流行程度差异原因的探讨.中华实验和临床病毒学杂志,1992,6(2):119
    11.侯云德.分子病毒学.北京:学院出版社,1990,313-326
    12.贾斌,王晓钧,相文华等.我国马流感病毒不同分离株试验感染SPF鸡的研究.中国预防兽医学报,1999,21(1):11-13
    13.蒋桃珍,刘月焕,林健等.2007年华北地区H3N8亚型马流感病毒的分离与鉴定.中国兽医学报待发表
    14.卡尔尼克B W.禽病学(第11版).北京:中国农业出版社,2005,147-177
    15.亢文华,郝俊峰,张仲秋等PCR-ELISA快速检测高致病性禽流感病毒方法的建立.中国畜牧兽医,2005,32(6):54-56
    16.刘颖,唐秀英,吴凤鸣.禽流感疫苗的研究进展.广东农业科学,2009(1):86-88
    17.陆承平.兽医微生物学.第三版.北京:中国农业出版社,2001,536-539
    18.罗勇,苏志芬.新一代流感疫苗.国外医学预防诊断治疗用生物制品分册,2004,27(3):113
    19.世界动物卫生组织著.陆生动物诊断试验和疫苗手册.第五版.(农业部兽医局/中国动物卫生与流行病学中心译).2004
    20.孙高超,毕可东,张娜等.马流感简介.动物医学进展,2008,29(8):115-116
    21.王凤龙主编.动物病理及检验技术.呼和浩特.内蒙古大学出版社.2006,170-186
    22.小沼操,明石博臣,菊池直哉等.动物感染症.第二版.(朴范泽,何伟勇,罗廷荣译).北京:中国农业出版社,2008,168
    23.杨彩然.禽源H3、H4亚型流感病毒的序列分析及对鸡的致病性研究.(博士学位论文).呼和浩特:内蒙古农业大学图书馆,2005
    24.杨建德,相文华,李景鹏.马流行性感冒病毒研究进展.预防兽医学进展,2001,3(4):28-30
    25.杨建德,相文华,薛匕等.我国H3N8马流感病毒血凝素基因分子进化树的分析.中国生物工程杂志,2003(6):76-78
    26.杨建德,相文华.我国马流感的研究现状.黑龙江畜牧兽医,2002(3):42-44
    27.殷震,刘景华.动物病毒学.第二版.北京:科学出版社,1997,704-728
    28.张利峰,张鹤晓,谷强等.马流感血凝及血凝抑制试验研究与应用.检验检疫科学,2003,13(1):30-32
    29.赵文成,许娇娜.我国马流感的研究现状.畜牧兽医科技信息,2008(6):5-7
    30. Adeyefa C A, Quayle K, McCauley J W. A rapid method for the analysis of influenza virus genes:application to the reassortment of equine influenza virus genes. Virus Res,1994,32 (3): 391-399
    31. Alexander D J. A review of avian influenza in different bird species. Vet Microbiol,2000, 74(1-2):3-13
    32. Anestad G, Maagaard O. Rapid diagnosis of equine influenza. Vet Rec,1990,126(22): 550-551
    33. Aymard-Henry M, Coleman M T. Influenza virus neuraminidase-inhibition test procedures. Bulletin of the WHO,1973,48:199-202
    34. Banks J, E S Speidel, E Moore L, et al. Alexander. Changes in the haemagglutinin and neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy..Arch. Virol.,2001,146:963-973
    35. Belshe R B. The origins of pandemic influenza-Lessons from the 1918 virus. N Eng J Med, 2005,353(21):2209-2211
    36. Birch-Machin I, Rowan A, Pick J, et al. Expression of the nonstructural protein NS1 of equine influenza A virus:detection of Anti-NS1 antibody in post infection equine sera. J Virol Methods, 1997,65:255-263
    37. Blaskovic D, Szanto J, Kapitancik B, et al. Experimental pathogenesis of A/Equi 1 influenza virus infection in horses. Acta Virol Prague,1966,10:513-520
    38. Bosch F X, Garten W, clenk H-D, et al. Proteolytic cleavage of influenza virus haemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology,1981,113:725-735
    39. Braam J, Ulmanen I, Krug R M. Molecular model of a eucaryotic transcription complex: functions and movements of influenza P proteins during capped RNA-primed transcription. Cell, 1983,34 (2):609-618
    40. Bryant N, Rash A, Lewis N,et al. Australian equine influenza:vaccine protection in the UK. Vet Rec,2008,162:491-492
    41. Burrows R, Denyer M, Goodridge D, et al. Field and laboratory studies of equine influenza viruses isolated in 1979. Vet Rec,1981,109:353-356
    42. Cameron R P, Alford R H, Kasel J, et al. Experimental equine influenza in Chincoteague ponies. Proc Soc Exp Biol Med,1967,124:510-515
    43. Chambers T M, Shortridge K F, Li P H, et al. Rapid diagnosis of equine influenza by the Directigen FLU-A enzyme immunoassay. Vet Rec,1994,135:275-279
    44. Chen J, Lee K H, Steinhauer D A, et al. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell,1998,95: 409-417
    45. Chen Z, Li Y, Krug R M. Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3'-end processing machinery. EMBO J,1999,18:2273-2283
    46. Choi Y K, Goyal S M, Kang S W, et al. Detection and subtyping of swine influenza H1N1, H1N2 and H3N2 viruses in clinical samples using two multiplex RT-PCR assays. J Virol Methods,2002,102 (122):53-59
    47. Chris Olsen. Canine Influenza. North Carolina University College of Veterinary Medicine. http://www.ncvdl.com/.2006
    48. Colman P M, W G Laver, J dN Varghese, et al. The three-dimensional structure of complex of influenza virus neuraminidase and an antibody. Nature,1987,326:358-363
    49. Colman P M. Structure and function of neuraminidase [M]. In "Textbook of influenza" (Nicholson K G, Webster R G, and Hay A J, Eds.) Blackwell Science Ltd., London.1998:65-73
    50. Connor R L, Kawaoka Y, Webster R G, et al. Receptor specificity in human, avian and equine H2 and H3 influenza virus isolates. Virology,1994,205:17-23
    51. Crawford P C, Dubovi E J, Castleman W L, et al. Transmission of equine influenza virus to dogs. Science,2005,310:482-485
    52. Crawford P C, Dubovi E J. Transmission of equine influenza virus to dogs. Science,2005, 310:482-485
    53. Daly J M, Blunden A S, Elton D, et al. Transmission of equine influenza virus to English Foxhounds. Emerg Infec Dis,2008,14:461-464
    54. Daly J M, Lai A C, Binns M M, et al. Antigenic and genetic evolution of equine H3N8 influenza A viruses. Journal of Generral Virology,1996,77:661-671
    55. Daly J M, Newton J R, Mumford J A. Current perspectives on control of equine influenza. Vet Res,2004,35:411-423
    56. Daly J M. Equine influenza in dogs:too late to bolt the stable door? The veterinary journal,2006, 171:7-8
    57. Damiani A M, Scicluna M T, Ciabatti I, et al. Genetic characterization of equine influenza viruses isolated in Italy between 1999 and 2005. Virus Res,2008,131(1):100-105
    58. de Jong J C, Beyer W E, Palache A M, et al. Mismatch between the 1997/1998 influenza vaccine and the major epidemic A (H3N2) virus strain as the cause of an inadequate vaccine-induced antibody response to this strain in the elderly. Journal of Medical Virology, 2000,61 (1):94-99
    59. Doll G R. Influenza of horses. Am Rev Resp Dis,1961,83:48-50
    60. Dubovi E J, Njaa B L. Canine influenza. Vet Clin Small Anim,2008,38:827-835
    61. Engelhardt O G, Smith M, Fodor E. Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase Ⅱ. J Virol,2005,79(9):5812-5818
    62. Evans T G, Kallas E G, Campbell M, et al. Evaluation of canarypox-induced CD8(+) responses following immunization be measuring the effector population IFNgamma production. Immunol Lett,2001,77:7-15
    63. Fouchier RA, Munster V, Wallensten A, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol,2005,79(5):2814-2822
    64. Gonzalez S, Zurcher T, Ortin J. Identification of two separate domains in the influenza virus PB1 protein involved in the interaction with the PB2 and PA subunits:a model for the viral RNA polymerase structure. Nucleic Acids Res,1996,24(22):4456-4463
    65. Gorse G J, Patel G B, Belshe R B. HTV type 1 vaccine-induced T cell memory and cytotoxic T lymphocyte responses in HTV type 1-uninfected volunteers. AIDS Res Hum Retroviruses, 2001,17:1175-1189
    66. Goto H, Kawaoka Y. A novel mechanism for the acquisition of virulence by a human influenza A virus. Proc Natl Acad Sci USA,1998,95:10224-10228
    67. Guo Yuanji, Wang Min, Yoshihiro Kawaoka, et al. Characterization of a new Avain-like influenza virus from horses in China. Virology,1992,188:245-255
    68. Guthrie A J, Stevens K B, Bosnian P P. The circumstances surrounding the outbreak and spread of equine influenza in South Africa. Rev Sci Tech,1999,18:179-185
    69. Hay A J. The virus genome and its replication. In "Textbook of influenza" (Nicholson K G, Webster R G, and Hay A J, Eds.) Blackwell Science Ltd., London.1998:43-53
    70. Hilleman M R. Realities and enigmas of human viral influenza:pathogenesis, epidemiology and control. Vaccine,2002,20(25-26):3068-3087
    71. Horimoto T, Kawaoka Y. Influenza:lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol,2005,3(8):591-600
    72. Hsu, M.T, Parvin, J.D, Gupta, S,et al. Genomic RNAs of influenza viruses are held in a c ircular conformation in virions and in infected cells by a terminal panhandle. Proc Natl Acad Sci, 1984,84:8140-8144
    73. Imai M, Ninomiya A, Minekawa H, et al. Development of H5-RT-LAMP system for rap id diagnosis of H5 avian influenza virus infection. Vaccine,2006,24 (44-46):6679-6682
    74. Ito T, Suzuki Y, Mitnaul L, et al. Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology,1997(227):493-499
    75. Ito T. Interspecies transmission and receptor recognition of influenza A viruses. Microbiol Immunol,2000,44:423-430
    76. Jakeman K J, Tisdale M, Russell S, et al. Efficacy of 2'-deoxy-2'-fluororibosides against influenza A and B viruses in ferrets. Antimicrob Agents Chemother,1994,38 (8):1864-1867
    77. Jennifer A. M, Hannant D, Jessett D M. Experimental infection of ponies with equine influenza (H3N8) viruses by intranasal inoculations or exposure to aerosols. Equine Vet J,1990,22 (2): 93-98
    78. Kawaoka Y, Naeve C W, Webster R Cl.Is virulence of H5N2 influenza in chicken associated with loss of carbohydrate from the hemagglutinin.Virology,1984,139:303-316
    79. Keawcharoen J, Oraveerakul K, Kuiken T, et al. Avian infl uenza H5N1 in tigers and leopards. Emerg Infect Dis,2004,10:2189-2191
    80. Kendal A P, Pereira M S. Concepts and Procedures for Laboratory-based Influenza Surveillance, B1-B66. US Department of Health and Human Services/Public Health Service/Centers for Disease Control.1982
    81. Klenk H D, Rott R, Oylich M, et al. Activitation of influenza viruses by trypsin treatment. Virology,1975,68:426-439
    82. Kobasa D, Jones S M, Shinya K, et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature,2007,445(7125):319-323
    83. Kuiken T, Rimmelzwaan G, van Riel D, et al. Avian H5N1 infl uenza in cats. Science,2004, 306:241
    84. Kumanomido T, Akiyama Y. Immuno-effect of serum and nasal antibody against experimental inoculation with influenza A/equi-2 virus. Exp Rep Equine Helth Lab,1975,12:44-52
    85. Lai A C, Chambers T M, Holland R E Jr, et al. Diverged evolution of recent equine-2 influenza (H3N8) viruses in the Western Hemisphere. Arch Virol,2001,146:1063-1074
    86. Lazarowitz S G, and P W Chopppin. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide.Virology,1975,68:440-454
    87. Li S, Schulman J, Itamura S, et al. Glycosylation of neuraminidase determines the neurovirulence of influenza A/WSN/33 virus. J Virol,1993,67:6667-6673
    88. Livesay G J, O'Neill T, Hannant D, et al. The outbreak of equine influenza (H3N8) in the United Kingdom in 1989:diagnostic use of an antigen capture ELISA. Vet Rec,1993,133: 515-519
    89. Luo G, Chung L, Palese P. Alterations of the stalk of the influenza virus neuraminidase deletions and insertions. Virus Res,1993,29(2):141-153
    90. Maria C Zamnon. The pathogenesis of influenza in humans. Rev Med Virol,2001(11):227-241
    91. Martella V, Elia G, Decaro N, et al. An outbreak of equine influenza virus in vaccinated horses in Italy is due to an H3N8 stain closely related to recent North American representatives of the Florida sub-lineage. Vet Microbiol,2007,121:56-63
    92. Martin K, and A Helenius. Nuclear transport of influenza virus ribonucleoprotiens:the viral matrix protein (M1) promotes export and inhibits inport. Cell,1991,67:117-130
    93. Matrosovich M N, Gambaryan A S, Teneberg S, et al. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology,1997(233):224-234
    94. Matsuzaki Y, Sugawara K, Mizuta K, et al. Antigenic and genetic characterization of influenza C viruses which caused two outbreaks in Yamagata City, Japan, in 1996 and 1998. J Clin Microbiol,2002,40 (2):422-429
    95. Matthias G, Timm C H, Jens P T, et al. Experimental infection and natural contact exposure of dogs with avian influenza virus (H5N1). Emerging Infectious Disease,2008,14 (2):308-310
    96. Morley P S, Townsend H G G, Bogdan J R, et al. Efficacy of a commercial vaccine for preventing disease caused by influenza virus infection in horses. J Am Vet Med Assoc,1999, 215:61-64
    97. Mumford J A, Wood J M, Scott A M, et al. Studies with inactivated equine influenza vaccine.2. Protection against experimental infection with influenza virus A/equine/Newmarket/79(H3N8). J Hyg,1983,90:385-395
    98. Mumford JA, Wilson H, Hannant D, Jessett DM. Antigenicity and immunogenicity of equine influenza vaccines containing a Carbomer adjuvant. Epidemiol Infect.1994 Apr;112(2):421-37.
    99. Mumford J. Collaborative study for the establishment of three European Pharmacopoeia Biological Reference Preparations for equine influenza horse antiserum. Pharmeuropa,2000: 7-21
    100. Nagamine K, Kuzuhara Y, Notomi T. Isolation of single stranded DNA from loop-mediated isothermal amp lification products. Biochem Biophys Res Commun,2002,290 (4):1195-1198
    101. Nelson K M, Schram B R, Mc Grergor M W, et al. Local and systemic isotype-specific antibody responses to equine influenza virus infection versus conventional vaccination. Vaccine,1998, 16:1306-1313
    102. Nemeroff M E, Barabino S M, Li Y, et al. Influenza virus NS1 protein interacts with the cellular 30 k Da subunit of CPSF and inhibits 3'end formation of cellular pre-mRNAs. Mol Cell,1998, 1:991-1000
    103. Newton J R, Daly J M, Spencer L, et al. Description of the outbreak of equine influenza (H3N8) in the United Kingdom in 2003, during which recently vaccinated horses in Newmarket developed respiratory disease. Vet Rec,2007,158(6):185-192
    104. Ohuchi, R, Ohuchi M, Garten W, et al. human influenza virus hemagglutinin with high sensitivity to proteolytic activation. Virol,1991,65:3530-3537
    105. OIE,2004, Equine influenza. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, website:http://www.oie.org.
    106. OIE,2005, Equine influenza. Mannual of diagnostic tests and vaccines for terrestrial animals, website:http://www.oie.org.
    107. OIE. Terrestrial Manual,2008,871
    108. Osterhaus A, Rimmelzwaan G, Martina B, et al. Influenza B virus in seals. Science,2000,288 (5468):1051-1053
    109. Oxburgh L, Akerblom L, Fridberger T, et al. Identification of two antigenically and genetically distinct lineages of H3N8 equine influenza virus in Sweden. Epidemiol Infect,1998,120 (1): 61-70
    110. Oxburgh L, Berg M, Klingeborn B,et al. Evolution of H3N8 equine influenza virus from 1963 to 1991. Virus Res,1994,34:153-165
    111. Oxburgh L, Klingeborn B. Concirculation of two distinct lineages of equine influenza virus subtype H3N8. Journal of clinical microbiology,1999,37(9):3005-3009
    112. Ozaki H, Sugiura T, Sugita S, et al. Detection of antibodies to the nonstructural protein (NS1) of influenza A virus allows distinction between vaccinated and infected horses. Vet Microbiol, 2001,82:111-119
    113.Palese P, Tobita K, Ueda M, et al. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology,1974,61:397-410
    114. Payungporn S, Crawford P C, Kouo T S, et al. Influenza A virus (H3N8) in dogs with respiratory disease, Florida. Emerg Infec Dis,2008,14:902-908
    115. Pinto L H, L J Holsinger, and R A Lamb. Influenza virus M2 protein has ion channel activity. Cell,1992,69:517-528
    116. Poddar S K, Espina R, Schnurr D P, et al. Evaluation of a single step multiplex RT-PCR for influenza virus type and subtype detection in respiratory samples. J Clin Lab Anal,2002,16(3): 163-166
    117. Poon L L, Leung C S, Chan K H, et al. Detection of human influenza A viruses by loop-mediated isothermal amp lification. J Clin Microbiol,2005,43 (1):427-430
    118. Poon L. L, Leung C. S, TashiroM, et al. Rapid detection of the severe acute respiratory syndrome (SARS) coronavirus by a loop-mediated isothermal amplification assay. Clin Chem, 2004,50 (6):1050-1052
    119. Powell D G, Watkins K L, Li P H,et al. Outbreak of equine influenza among horses in Hong Kong during 1992. Vet Rec,1995,136:531-536
    120. Qiao C L, Yu K Z, Jing Y P, et al. Protection of chickens against highly lethal H5N1 and H7N1 avian influenza viruses with a recombinant fowl pox virus co-expressing H5 hemagglutinin and N1 neuraminidase genes. Avian Pathol,2003,32(5):25-32
    121. Quinlivan M, Cullinane A, Nelly M, et al. Comparison of sensitivities of virus isolation, antigen detectoion, and nucleic acid amplification for detection of equine influenza virus. Clin Microl,2004,42 (2):7563-7567
    122. Richt J A, Lager K M, Clouser D F, et al. Real-time reverse transcription-polymerase chain reaction assays for the detection and differentiation of North American swine influenza viruses. J Vet Diagn Invest,2004,16 (5):367-373
    123. Riks M, Mirriam T, Lisette R, et al. Avian influenza (H5N1) susceptibility and receptors in dogs. Emerging Infectious Disease,2007,13(8):1219-1221
    124. Rogers G N, Paulson J C, Daniels R S. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature,1983(304):76-78
    125. Rogers G N, Souza B L D. Receptor binding properties of human and animal HI influenza virus isolates. Virology,1989,173:317-322
    126. Rouse B T, Ditchfield W J B. The response of ponies to Myxovirus influenza A/equi-2.I. Serum and nasal antibody titres following exposure. Can J Com Med,1970,34:1-6
    127. Schulman J L, Palese P. Virulence factors of influenza A viruses:WSN virus neuraminidase required for plaque production in MDBK cells. J Virol,1977,24:170-176
    128. Senne D A, Panigrahy B, Kawaoka Y, et al. Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses:amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis.,1996,40(2) 425-437
    129. Shan S, Ko L S, Collins R A, et al. Comparison of nucleic acid based detection of avian influenza H5N1 with virus isolation. Biochem Biophys Res Commun,2003,302:377-383
    130. Songserm T, Amonsin A, Jam-on R, et al. Fatal avian infl uenza A H5N1 in a dog. Emerg Infect Dis,2006,12:1744-1747
    131. Sovinova O, Tumova B, Pousky F, et al. Isolation of a virus causing respiratory diseases in horses. Acta Virol,1958,1:52-61
    132. Suzuki Y, Toshihiro I, Suzuki T, et al. Sialic acid species as a determinant of the host range of influenza A viruses. Virol,2000(74):11825-11831
    133. Swenson S L, Vincent L L, Lute B M, et al. A comparison of diagnostic assays for the detection of type A swine influenza virus from nasal swabs and lungs. J Vet Diagn Invest,2001,13 (1): 36-42
    134. Takashi Y, Manabu N, Koji T, et al. Interspecies transmission of equine influenza virus (H3N8) to dogs by close contact with experimentally infected horses. Veterinary Microbiology,2009, 139:351-355
    135. Taubenberger J K, Morens DM.The pathology of influenza virus infections.[J]. Annu Rev Pathol,2009,3:499-522.
    136. Townsend H.G.G., Penner S.J., Watts T.C., Cook A., Bogdan J., Haines D.M., Griffin S., Chambers T., Holland R.E., Whitaker-Dowling P., Youngner J.S., Sebring R.W., Efficacy of a cold-adapted, intranasal equine influenza vaccine:challenge trials, Equine Vet. J. 33(2001):637-643.
    137. Twu KY, Noah DL, Rao P, et al. The CPSF30 binding site on the NS1A protein of influenza A virus is a potential antiviral target. J Virol,2006,80:3957-3965.
    138. van Grotthhuss M, Rychlewski L. Influenza mutation from equine to canine. Science,2006,311: 1241-1242
    139. van Reeth K. Avian and swine influenza viruses:Our current understanding of the zoonotic risk[J]. Vet Res,2007,38(2):243-260.
    140. Varghese J N, Laver W G, Colman P M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature,1983,303:35-40
    141. Waddel G H, Teighland M B, Siegel M M. A new influenza virus associated with equine respiratory disease. J Am Vet Med Assoc,1963,143:587-590
    142. Wareing M D. Tannock GA1 Live attenuated vaccines against influenza; an historical review. Vaccine,2001,19:3320-3330
    143. Wernery R, Yates P J, Wernery U, et al. An equine influenza outbreak in a polo club in Dubai, United Arab Emirates in 1995/96. In:Wernery U., Wade J.F., Mumford J.A., et al. (Eds.), Proc. 8th Int. Conference on Equine Infections Diseases, Dubai,1998,342-346
    144. Wood J M, Schild G C, Folkers C, et al. The standardization of inactivated equine influenza vaccines by single-radial immunodiffusion. J Biol Stand,1983,11:133-136
    145. Yamanaka T, Niwa H, Tsujimura K,et al. Epidemic of equine influenza among vaccinated racehorses in Japan in 2007. J Vet Med Sci,2008,70:623-625
    146. Yoon K J, Cooper V L, Schwartz K J, et al. Influenza virus infection in racing greyhounds. Emerg Infec Dis,2005,11:1974-1975
    147. Zebedee S L, and R A Lamb. Influenza virus M2 protein:monoclonal antibody restriction of virus growth and detection of M2 virions. J. Virol,1988,62:2762-2772

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700