用户名: 密码: 验证码:
基于RNA-Seq技术的米曲霉RIB40转录组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
米曲霉,是我国传统酿造行业的优良菌种,具有极强的蛋白表达和分泌能力,在食品、饮料、化妆品、医药等领域具有重要的应用。随着米曲霉遗传转化系统的逐步建立,米曲霉成为极具潜力的异源重组蛋白表达系统。然而,米曲霉转录组学的研究却进展缓慢,依靠EST技术和基因芯片技术的转录组学研究受到自身检测范围和灵敏度的局限,很难揭示米曲霉转录组的功能复杂性。而且,米曲霉在固体、液体培养条件下生长表型出现显著差异,并导致蛋白表达和分泌的差异,其中的原因仍不清楚;异源蛋白在米曲霉中的表达,与同源蛋白相比,表达水平很低,其中的原因有待分析。针对以上米曲霉的基础生物学问题,作者采用最新发展起来的RNA-Seq技术对米曲霉的转录组进行解析,并在转录组水平上研究上述问题。
     本研究对米曲霉在不同培养条件下的RNA样品进行RNA-Seq测序,测序得到的序列片段(reads)对米曲霉基因组的覆盖高达145倍,有超过90%的reads是高质量的在基因组上特异匹配的reads。根据RNA-Seq reads在米曲霉基因组及基因上的匹配,绘制了米曲霉全基因组水平的转录图谱。通过代表基因转录水平的标准化数据RPKM判定米曲霉基因组的12074个蛋白编码基因中共有11263个发生转录表达,使得米曲霉基因的注释率达到93.28%。
     基于RNA-Seq数据,在米曲霉基因组范围内分析基因转录体的结构:确定了4198个基因的5'非翻译区(5'UTR)和4357个基因的3'非翻译区(3'UTR),并分析了UTR长度分布及其与基因功能的关系;确定了1345个米曲霉基因的上游开放阅读框(uORF)和272个基因的上游起始密码子(uATG),其中具有uORF的基因占米曲霉蛋白编码基因总数的11.14%,是酵母的两倍;发现了1166个新转录本和800个新外显子(存在于513个已知基因中),Augustus软件预测认为共有700个新转录本可能编码新的蛋白。
     基于RNA-Seq数据,在米曲霉基因组范围内分析基因转录体的可变剪接(alternative splicing,AS)。结果表明,总共在1032个米曲霉基因中确定了1375个可变剪接事件,具有可变剪接的基因占米曲霉基因总数的8.55%,米曲霉是目前真菌中检测到可变剪接数量最多的物种。其中,内含子保留(retained intron,RI)是米曲霉中占比例最大的可变剪接形式,达到总数的91.56%,而RI在哺乳动物中则是十分稀少的AS形式,这是米曲霉区别于高等生物的可变剪接的一个特点。通过分析米曲霉中发生RI的基因数目和发生外显子剪接(cassette exon,CE)的基因数目的比例以及RI和CE的长度关系,推测ID(intron definition)机制是米曲霉基因可变剪接中识别剪接位点的主要机制。
     基于不同培养条件下的米曲霉RNA-Seq数据,比较了米曲霉在两种基本培养方式(固体培养(solid-state culture,SC)和液体培养(liquid culture,LC))下基因的差异表达,分析得到4628个差异表达基因(p-value<0.001),固体培养条件下转录上调的有2355个,液体培养条件下转录上调的有2273个。GO功能富集分析和KEGG代谢途径分析表明在固体培养条件下米曲霉的蛋白质翻译及修饰、能量代谢等比在液体培养条件下更加强大。通过比较米曲霉在内质网压力胁迫下(二硫苏糖醇DTT处理)的差异表达基因,分析了内质网压力胁迫下米曲霉的蛋白分泌模式;通过对内质网压力胁迫下米曲霉蛋白分泌调控的分析,推断米曲霉在固体培养条件下比在液体培养条件下,具有更强的蛋白分泌调节能力。
     本研究通过RNA-Seq技术深入解析了米曲霉的转录组,对米曲霉的基因结构、新转录本、代谢途径、可变剪接、蛋白表达及分泌等方面进行了研究,为米曲霉的基础生物学研究、基因工程和工业应用提供了参考数据。
Aspergillus oryzae, an excellent strain used in Chinese traditional brewing industry, owns powerful capacity of protein expression and secretion, and has important applications in the field of grocery, beverage, cosmetic and medicine. And A. oryzae becomes an attractive expression system for heterologous recombinant protein genes, as the development of its genetic transformation system. However, the transcriptome research of A. oryzae progressed slowly. The research by EST and microarray technology, due to their limited depth of coverage and sensitivity, could not elucidate the functional complexity of A. oryzae transcriptome. Furthermore, it was still unknown why there were remarkable differences in growth phenotype and protein expression and secretion between solid-state culture (SC) and liquid culture (LC) in A. oryzae. And it was difficult to unpuzzle the fact that the expression level of heterologous genes in A. oryzae is lower when compared with homologous gene expression. Herein, in order to address the above fundamental issues in A. oryzae, the high-throughput RNA sequencing technology (RNS-Seq) was utilized to interrogate A. oryzae transcriptome. We hope to provide clue to the above problems on the transcriptome level.
     RNA samples of A. oryzae cultured under different conditions were sequenced by RNA-Seq technology. The obtained sequence fragments (reads) represent 145-fold A. oryzae genome lengths. Uniquely mapped reads accounts for >90% of all reads. The A. oryzae genome-wide transcriptome map was depicted according to the reads match in A. oryzae genome and genes. 11263 (93.28%) of the total 12074 A. oryzae protein-coding genes had transcriptional activity based on the RPKM value.
     The transcript structures of A. oryzae genes were analyzed on the genome scale based on RNA-Seq data. The results defined or extended 5′UTRs for 4198 transcribed genes and 3′UTRs for 4357 transcribed genes in A. oryzae, and the length distribution of UTRs and their functional categories were studied. 1345 upstream open reading frames (uORF) and 272 upstream initiation codons (uATG) were detected in the identified 5′UTRs. The amount of genes with uORF accounted for 11.14% of the total number of A. oryzae protein-coding genes, twice of that in yeast. The results also identified 1166 novel transcripts and 800 new exons in 513 annotated genes. 700 of the 1166 novel transcripts were likely to be protein-coding genes, based on the prediction by Augustus software.
     Alternative splicing (AS) of A. oryzae gene transcripts were analyzed on the genome scale based on RNA-Seq data. 1375 AS events were detected in 1032 A. oryzae genes (8.55% of all A. oryzae genes). This is the highest amount reported among fungi up to now. Retained intron (RI) accounted for the largest number of AS events (91.56%) in A. oryzae, while RI is a rare AS event in mammals. RI event is a feature of A. oryzae AS events, which was different from high eucaryotes. Based on the comparison of the amount and the length distribution between RIs and cassette exons (CEs), it is suggested that A. oryzae might perform splice site recognition predominantly by the intron definition (ID) mechanism.
     The differentially expressed genes between A. oryzae cultured in solid-state culture condition (SC) and liquid culture condition (LC), were analyzed based on RNA-Seq data. There were 4628 differentially expressed genes (p-value<0.001) between the two basic culture conditions (SC and LC), with 2355 up-regulated in SC and 2273 up-regulated in LC. GO functional enrichment analysis and KEGG pathway analysis of these genes, illustrated that the capacities of protein translation and modification and energy metabolism were much more powerful in SC than in LC. By comparison of the differentially expressed genes between SC and LC under ER stress (DTT treatment), the protein secretion model of A. oryzae under ER stress was depicted. The regulation of protein secretion in A. oryzae under ER stress was also analyzed, and the results illustrated that the regulation capacity for A. oryzae protein secretion was much more powerful in SC than in LC.
     The A. oryzae transcriptome was interrogated by RNA-Seq technology in this research. The results provided much information about gene structures, novel transcripts, metabolic pathways, alternative splicing events, protein expression and secretion and so on, which were valuable for such studies in A. oryzae as fundamental biological research, gene engineering and industrial applications.
引文
1. Adams M, Kelly J, Gocayne J. Complementary DNA sequencing: expressed sequence tags and human genome project [J]. Science, 1991, 252 (5013): 1631-1656.
    2. Patanjali S, Parimoo S, Weissman S. Construction of a uniform abundance (nomalized) cDNA library [J]. Proc Natl Acad Sci USA, 1991, 88: 1943-1947.
    3. Fargnoli J, Holbrook N, Fomace J. Low-ratio hybridization subtraction [J]. Analytical Biochemistry, 1990, 187 (2): 364-373.
    4. Boguski M, Tolstoshev C, DE Bassett J. Gene discovery in dbEST [J]. Science, 1994, 265 (30): 1993-1994.
    5. Gerhard D, Wagner L, Feingold E. The status, quality, and expansion of the NIH full-length cDNA project: the mammalian gene collection (MGC) [J]. Genome research, 2004, 14: 2121-2127.
    6. Castelli V, Aury J, Jaillon O. Whole genome sequence comparisons and "full-length" cDNA sequences: a combined approach to evaluate and improve Arabidopsis genome annotation [J]. Genome research, 2004, 14: 406-413.
    7.王正志,李稚锋,杭兴宜,等.适合可变剪接研究的转录组序列分析策略[J].国防科技大学学报, 2006, 28 (4): 37-42.
    8.丁克越,沈岩. ESTs数据分析及ESTs数据系统[J].国外医学分子生物学分册, 2002, 24 (2): 113-117.
    9. Hisashi I, Sharon AB, Andrea LW. EST analysis of mouse retina and RPE/choroid cDNA libraries [J]. Molecular vision, 2004, 10: 439-444.
    10. Akao T, Sano M, Yamada O, et al. Analysis of expressed sequence tags from the fungus Aspergillus oryzae cultured under different conditions [J]. DNA research, 2007, 14 (2): 47-57.
    11.朱丽娜,戴雅丽,马飞,等.日本七鳃鳗(Lampetra japonica)肝脏ESTs分析与比较转录组研究[J].中国科学C辑:生命科学, 2007, 37 (6): 609-619.
    12.陈作舟. EST转录组功能差异的数据挖掘系统及应用[D].杭州:浙江大学, 2007.
    13. Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray [J]. Science, 1995, 270 (5235): 467-470.
    14. Lipshutz RJ, Fodor SP, Gingeras TR. High density synthetic oligonucleotide arrays [J]. Nature genetics, 1999, 21 (1): 20-24.
    15. Schena M, Shalon D, Heller R. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes [J]. Proc Natl Acad Sci USA, 1996, 93 (20): 10614-10619.
    16. Kapranov P, Cawley SE, Drenkow J. Large-scale transcriptional activity in chromosomes 21 and 22 [J]. Science, 2002, 296 (5569): 916-919.
    17. Johnson JM, Edwards S, Shoemaker D, et al. Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments [J]. Trends in genetics, 2005, 21 (2): 93-102.
    18. Mockler TC, Ecker JR. Applications of DNA tiling arrays for whole-genome analysis [J]. Genomics, 2005, 85: 1-15.
    19. Berger JA, Hautaniemi S, J?rvinen A-K. Optimized LOWESS normalization parameter selection for DNA microarray data [J]. BMC bioinformatics, 2004, 5 (194).
    20.马煜,陈莉,方鹤鹤.基因微阵列数据中的聚类技术研究[J].计算机技术与发展, 2006, 16 (2): 117-122.
    21. Eisen MB, Spellman PT, Brown PO, et al. Cluster analysis and display of genome-wide expression patterns [J]. Proc Natl Acad Sci USA, 1998, 95: 14863-14868.
    22. Audic S, Claverie JM. The significance of digital gene expression profiles [J]. Genome research, 1997, 7 (10): 986-995.
    23. Andersen MR, Vongsangnak W, Panagiotou G, et al. A trispecies Aspergillus microarray: comparative transcriptomics of three Aspergillus species [J]. Proc Natl Acad Sci USA, 2008, 105 (11): 4387-4392.
    24. He H, Wang J, Liu T. Mapping the C. elegans noncoding transcriptome with a whole-genome tiling microarray [J]. Genome research, 2007, 17: 1471-1477.
    25.邱景富.基于DNA芯片技术鼠疫耶尔森氏菌在不同条件下的转录组学研究[D].北京:军事医学科学院, 2006.
    26. Velculescu VE, Zhang L, Vogelstein B, et al. Serial analysis of gene expression [J]. Science, 1995, 270 (5235): 484-487.
    27. Powell J. Enhanced concatemer cloning—a modification to the SAGE (serial analysisof gene expresson) technique [J]. Nucleic acids research, 1998, 26 (14): 3445-3446.
    28.包文斌,陈国宏,束婧婷,等.基因表达系列分析(SAGE)及其在生命科学中的应用[J].中国兽医学报, 2008, 28 (1): 106-110.
    29. Hu M, Polyak K. Serial analysis of gene expression [J]. Nature protocols, 2006, 1 (4): 1743-1760.
    30. Caron H, Schaik Bv, Mee Mvd. The human transcriptome map: clustering of highly expressed genes in chromosomal domains [J]. Science, 2001, 291: 1289-1292.
    31. Wahl MB, Caldwell RB, Kierzek AM. Evaluation of the chicken transcriptome by SAGE of B cells and the DT40 cell line [J]. BMC genomics, 2004, 5: 98.
    32.潘兴元,宁文, M CA,等.利用SAGE库挖掘有功能的假设基因[J].扬州大学学报(农业与生命科学版), 2004, 25 (3): 29-32.
    33.黄健华.基于SAGE技术的家蚕基因表达谱研究[D].上海:中国科学院上海生命科学研究院植物生理生态研究所, 2007.
    34. Brenner S, Johnson M, Bridgham J. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays [J]. Nature biotechnology, 2000, 18: 630-634.
    35.陈杰.大规模平行测序技术(MPSS)研究进展[J].生物化学与生物物理进展, 2004, 31 (8): 761-765.
    36. Jongeneel CV, Iseli C, Stevenson BJ. Comprehensive sampling of gene expression in human cell lines with massively parallel signature sequencing [J]. Proc Natl Acad Sci USA, 2003, 100 (8): 4702-4705.
    37. Meyers BC, Vu TH, Tej SS. Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing [J]. Nature biotechnology, 2004, 22 (8): 1006-1011.
    38. Hoth S, Morgante M, Sanchez J-P. Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant [J]. Journal of cell science, 2002, 115: 4891-4900.
    39. Kim H, Park TS, Lee WK. MPSS profiling of embryonic gonad and primordial germ cells in chicken [J]. Physiol genomics, 2007, 29: 253-259.
    40. Wilhelm BT, Marguerat S, Watt S, et al. Dynamic repertoire of a eukaryotictranscriptome surveyed at single-nucleotide resolution [J]. Nature, 2008, 453 (7199): 1239-1243.
    41. Nagalakshmi U, Wang Z, Waern K, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing [J]. Science, 2008, 320 (5881): 1344-1349.
    42. Cloonan N, Grimmond SM. Transcriptome content and dynamics at single-nucleotide resolution [J]. Genome biology, 2008, 9 (9): 234.
    43. Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes [J]. Nature, 2008, 456 (7221): 470-476.
    44. Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nature methods, 2008, 5 (7): 621-628.
    45. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics [J]. Nature reviews genetics, 2009, 10 (1): 57-63.
    46. Maher CA, Kumar-Sinha C, Cao XH, et al. Transcriptome sequencing to detect gene fusions in cancer [J]. Nature, 2009, 458 (7234): 97-U9.
    47. Ashburner M, Ball CA, Blake JA. Gene ontology: tool for the unification of biology [J]. Nature genetics, 2000, 25: 25-29.
    48. Quevillon E, Silventoinen V, Pillai S. InterProScan: protein domains identifier [J]. Nucleic acids research, 2005, 33 (Web Server issue): W116-W120.
    49. Marioni JC, Mason CE, Mane SM. RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays [J]. Genome research, 2008, 18: 1509-1517.
    50. Wang L, Feng Z, Wang X, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data [J]. Bioinformatics, 2010, 26 (1): 136-138.
    51. Conesa A, Gotz S, Garcia-Gomez JM, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research [J]. Bioinformatics, 2005, 21 (18): 3674-3676.
    52. Yassour M, Kaplan T, Fraser HB, et al. Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing [J]. Proc Natl Acad Sci USA, 2009, 106 (9): 3264-3269.
    53. Lister R, O'Malley RC, Tonti-Filippini J, et al. Highly integrated single-base resolutionmaps of the epigenome in Arabidopsis [J]. Cell, 2008, 133 (3): 523-536.
    54. Hillier LW, Reinke V, Green P, et al. Massively parallel sequencing of the polyadenylated transcriptome of C. elegans. Genome research, 2009, 19 (4): 657-666.
    55. Sultan M, Schulz MH, Richard H, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome [J]. Science, 2008, 321 (5891): 956-960.
    56. Yoder-Himes DR, Chain PS, Zhu Y, et al. Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing [J]. Proc Natl Acad Sci USA, 2009, 106 (10): 3976-3981.
    57. Perkins TT, Kingsley RA, Fookes MC, et al. A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi [J]. PLoS genetics, 2009, 5 (7): e1000569.
    58. Passalacqua KD, Varadarajan A, Ondov BD, et al. Structure and complexity of a bacterial transcriptome [J]. Journal of bacteriology, 2009, 191 (10): 3203-3211.
    59. Denoeud F, Aury J-M, Silva CD. Annotating genomes with massive-scale RNA sequencing [J]. Genome biology, 2008, 9: R175.
    60. Stemmer WPC. Molecular breeding of genes, pathways and genomes by DNA shuffling [J]. Journal of molecular catalysis B: enzymatic, 2002, 19-20 (2): 3-12.
    61.邵伟,熊泽,唐明.沪酿3.042米曲霉菌种诱变选育研究[J].中国调味品, 2006, (3): 21-24.
    62.唐洁,车振明,李拴美,等.原生质体电融合选育米曲霉新菌株的研究[J].食品科学, 2007, 28 (5): 219-223.
    63.潘力,梁燕嫦,苗小康,等.基于基因组改组的米曲霉沪酿3.042多亲株PEG介导融合育种[J].中国酿造, 2008 (12): 70-73.
    64.赵文婷,邹懿,胡昌华.微生物菌种改良的新方法新策略[J].生物工程学报, 2009, 25 (6): 801-805.
    65. Conesa A, Punt PJ, Luijk Nv, et al. The secretion pathway in filamentous fungi: a biotechnological view [J]. Fungal genetics and biology, 2001, 33: 155-171.
    66. Ma YJ, Hendershot LM. The unfolding tale of the unfolded protein response [J]. Cell, 2001, 107 (7): 827-830.
    67. Back SH, Schroder M, Lee K, et al. ER stress signaling by regulated splicing: IRE1/HAC1/XBP1 [J]. Methods, 2005, 35: 395-416.
    68. Mulder HJ, Saloheimo M, Penttila M, et al. The transcription factor HACA mediate the unfolded protein response in Aspergillus niger, and up-regulates its own transcription [J]. Molecular genetics genomics, 2004, 271: 130-140.
    69. Ye L, Pan L. A comparison of the unfolded protein response in solid-state with submerged cultures of Aspergillus oryzae [J]. Bioscience biotechnology and biochemistry, 2008, 72 (11): 2998-3001.
    70. Travers KJ, Patil CK, Wodicka L. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-Associated degradation [J]. Cell, 2000, 101: 249-258.
    71. Al-Sheikh H, Watson AJ, Lacey GA, et al. Endoplasmic reticulum stress leads to the selective transcriptional downregulation of the glucoamylase gene in Aspergillus niger [J]. Molecular microbiology, 2004, 53 (6): 1731-1742.
    72.潘力,王斌,郭勇.曲霉菌的RAPD分析及其在酿造工业中的应用[J].微生物学报, 2007, 47 (3): 533-536.
    73.王斌,潘力,郭勇. RAPD分子标记在酱油生产菌系统发育分析中的应用[J].微生物学通报, 2007, 34 (3): 508-511.
    74. Biesebeke Rt. Molecular analysis and improvement of protein production by Aspergillus oryzae grown on solid substrates [A]. Prof. Dr. W.M. de Vos. 2005, ISBN 90-8504-144-9: 7-166.
    75. Biesebeke Rt, Ruijter G, Rahardjo YSP, et al. Aspergillus oryzae in solid-state and submerged fermentations progress report on a multi- disciplinary project [J]. FEMS yeast research, 2002, 2: 245-248.
    76. Shoji J-y, Maruyama J-i, Arioka M, et al. Development of Aspergillus oryzae thiA promoter as a tool for molecular biological studies [J]. FEMS microbiology letters, 2005, 244: 41-46.
    77. Ishida H, Matsumura K, Hata Y, et al. Establishment of a hyper-protein production system in submerged Aspergillus oryzae culture under tyrosinase-encoding gene (melO) promoter control [J]. Applied microbiology and biotechnology, 2001, 57: 131-137.
    78. Toda T, Sano M, Honda M, et al. Deletion analysis of the enolase gene (enoA) promotor from the filamentous fungus Aspergillus oryzae [J]. Current genetics, 2001,40: 260-267.
    79. Yamada O, Lee BR, Gomi K. Transformation system for Aspergillus oryzae with double auxotrophic mutations, niaD and sC [J]. Bioscience biotechnology and biochemistry, 1997, 61 (8): 1367-1369.
    80. Gomi K, Iimura Y, Hara S. Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene [J]. Agricultural and biological chemistry, 1987, 51 (9): 2549-2555.
    81.陈惠清,刘钟滨.外源基因在曲霉菌中的表达[J].同济大学学报(医学版), 2003, 24 (3): 256-259.
    82.刘谨,王汉忠.丝状真菌外源基因表达系统研究的现状及展望[J].微生物学通报, 2000, 27 (6): 453-457.
    83. Wang L, Ridgway D, Gu T, et al. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations [J]. Biotechnology advances, 2005, 23 (2): 115-129.
    84.王斌,潘力,郭勇.丝状真菌米曲霉外源基因表达系统的构建[J].华南理工大学学报(自然科学版), 2009, 37 (6): 84-90.
    85.钟丽婵,范晓春,唐国敏. niaD基因与uidA基因共转化糖化酶高产菌株Aspergillus niger T21 [J].菌物系统, 1999, 18 (2): 172-175.
    86. Machida M, Asai K, Sano M, et al. Genome sequencing and analysis of Aspergillus oryzae [J]. Nature, 2005, 438 (7071): 1157-1161.
    87. Ho EC, Cahill MJ, Saville BJ. Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison [J]. BMC genomics, 2007,8: 334.
    88. Ebbole DJ, Jin Y, Thon M, et al. Gene discovery and gene expression in the rice blast fungus, Magnaporthe grisea: analysis of expressed sequence tags [J]. Molecular plant-microbe interactions, 2004, 17 (12): 1337-1347.
    89. Vongsangnak W, Olsen P, Hansen K, et al. Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae [J]. BMC genomics, 2008, 9: 245.
    90. Tamano K, Sano M, Yamane N, et al. Transcriptional regulation of genes on the non-syntenic blocks of Aspergillus oryzae and its functional relationship to solid-state cultivation [J]. Fungal genetics and biology, 2008, 45 (2): 139-151.
    91.赵龙飞,徐亚军.米曲霉的应用研究进展[J].中国酿造, 2006 (3): 8-10.
    92. MacKenzie DA, Guillemette T, Al-Sheikh H, et al. UPR-independent dithiothreitol stress-induced genes in Aspergillus niger [J]. Molecular genetics and genomics, 2005, 274: 410-418.
    93. Pakula TM, Laxell M, Huuskonen A, et al. The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei - evidence for down-regulation of genes that encode secreted proteins in the stressed cells [J]. Journal of biological chemistry, 2003, 278 (45): 45011-45020.
    94. Richie DL, Hartl L, Aimanianda V, et al. A role for the unfolded protein response (UPR) in virulence and antifungal susceptibility in Aspergillus fumigatus [J]. PLoS pathogens, 2009, 5 (1): e1000258.
    95. Saloheimo M, Valkonen M, Penttil? M. Activation mechanisms of the HAC1-mediated unfolded protein response in filamentous fungi [J]. Molecular microbiology, 2003, 47 (4): 1149-1161.
    96. Sims AH, Gent ME, Lanthaler K, et al. Transcriptome analysis of recombinant protein secretion by Aspergillus nidulans and the unfolded-protein response in vivo [J]. Applied and environmental microbiology, 2005, 71 (5): 2737-2747.
    97. Li R, Li Y, Kristiansen K, et al. SOAP: short oligonucleotide alignment program [J]. Bioinformatics, 2008, 24 (5): 713-714.
    98. Stanke M, Diekhans M, Baertsch R, et al. Using native and syntenically mapped cDNA alignments to improve de novo gene finding [J]. Bioinformatics, 2008, 24 (5): 637-644.
    99. Pel HJ, Winde JHd, Archer DB, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS513.88 [J]. Nature biotechnology, 2007, 25 (2): 221-231.
    100. Wang B, Guo G, Wang C, et al. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing [J]. Nucleic acids research, 2010, doi: 10.1093/nar/gkq256.
    101. Lackner DH, Beilharz TH, Marguerat S, et al. A network of multiple regulatory layersshapes gene expression in fission yeast [J]. Molecular cell, 2007, 26: 145-155.
    102. Ruiz-Echevarria MJ, Peltz SW. The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames [J]. Cell, 2000, 101 (7): 741-751.
    103. Vilela C, McCarthy JE. Regulation of fungal gene expression via short open reading frames in the mRNA 5'untranslated region [J]. Molecular microbiology, 2003, 49 (4): 859-867.
    104. Hinnebusch AG. Translational regulation of GCN4 and the general amino acid control of yeast [J]. Annual review of microbiology, 2005, 59: 407-450.
    105. Modrek B, Lee C. A genomic view of alternative splicing [J]. Nature genetics, 2002, 30 (1): 13-19.
    106. Loftus BJ, Fung E, Roncaglia P, et al. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans [J]. Science, 2005, 307 (5713): 1321-1324.
    107. McGuire AM, Pearson MD, Neafsey DE, et al. Cross-kingdom patterns of alternative splicing and splice recognition [J]. Genome biology, 2008, 9 (3): R50.
    108. Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing [J]. Nature genetics, 2008, 40 (12): 1413-1415.
    109. Berget SM. Exon recognition in vertebrate splicing [J]. Journal of biological chemistry, 1995, 270 (6): 2411-2414.
    110. Romfo CM, Alvarez CJ, van Heeckeren WJ, et al. Evidence for splice site pairing via intron definition in Schizosaccharomyces pombe [J]. Molecular and cellular biology, 2000, 20 (21): 7955-7970.
    111. Ast G. How did alternative splicing evolve? [J]. Nature reviews genetics, 2004, 5 (10): 773-782.
    112. Akao T, Gomi K, Goto K, et al. Subtractive cloning of cDNA from Aspergillus oryzae differentially regulated between solid-state culture and liquid (submerged) culture [J]. Current genetics, 2002, 41 (4): 275-281.
    113. Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks [J]. Bioinformatics, 2009, 25 (8): 1091-1093.
    114. Maeda H, Sano M, Maruyama Y, et al. Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using cDNA microarrays and expressed sequence tags [J]. Applied microbiology and biotechnology, 2004, 65 (1): 74-83.
    115. Oda K, Kakizono D, Yamada O, et al. Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions [J]. Applied and environmental microbiology, 2006, 72 (5): 3448-3457.
    116. Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress [J]. Trends in cell biology, 2004, 14 (1): 20-28.
    117. Bertolotti A, Zhang Y, Hendershot LM, et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response [J]. Nature cell biology, 2000, 2: 326-332.
    118. Shang J. Quantitative measurement of events in the mammalian unfolded protein response [J]. Methods, 2005, 35: 390-394.
    119. Griffith DA, Delipala C, Leadsham J, et al. A novel yeast expression system for the overproduction of quality-controlled membrane proteins [J]. FEBS letters, 2003, 553: 45-50.
    120. Mori K, Sant A, Kohno K, et al. A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins [J]. The EMBO journal, 1992, 11 (7): 2583-2593.
    121. Guillemette T, Peij NNv, Goosen T, et al. Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger [J]. BMC genomics, 2007, 8: 158.
    122. Lee AS. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress [J]. Methods, 2005, 35: 373-381.
    123. Rutkowski DT, Kaufman RJ. That which does not kill me makes me stronger: adapting to chronic ER stress [J]. Trends in biochemical sciences, 2007, 32 (10): 469-476.
    124. Leber JH, Bernales S, Walter P. IRE1-independent gain control of the unfolded protein response [J]. PLoS biology, 2004, 2 (8): 1197-1207.
    125. Patil CK, Li H, Walter P. Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response [J]. PLoS biology, 2004, 2 (8): 1208-1223.
    126.陈茹,刘钟滨.黄曲霉毒素生物合成途径调节基因aflR [J].细胞生物学杂志, 2005, 27: 431-434.
    127. Orejas M, Espeso EA, Tilburn J, et al. Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety [J]. Genes & development, 1995, 9: 1622-1632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700