用户名: 密码: 验证码:
延迟相缺血预处理和缺血后处理对心脏缺血再灌注损伤保护作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]为研究缺血预适应机制,评价心肌缺血再灌注损伤药物疗效等相关研究提供理想的实验模型。
     [方法]共30只雄性C57BL/6小鼠,其中20只用于建立缺血再灌注损伤模型,10只作为假手术组。C57BL/6麻醉开胸后,用7/0医用单丝线穿过心脏冠状动脉左前降支(LAD)下方,结扎LAD 30分钟后,剪开缝线,关闭胸腔,待小鼠苏醒后撤离呼吸机。
     [结果]行30分钟LAD结扎术后再灌注模型组存活率为19/20;假手术组存活率为10/10。经过氯化三苯四氮唑(TTC)和伊文思蓝染色,测量30分钟I/R实验组中缺血危险区为59.5±0.9%,假手术组缺血危险区为60.7±1.1%;30分钟I/R实验组梗死面积为32.2±0.7%,假手术组无心肌无梗死形成
     [结论]采用本方法制作小鼠心肌缺血/再灌注损伤模型成功率高,且操作简单,创伤小
     [目的]心肌缺血预处理根据对缺血心肌起保护作用的时间分为缺血预处理的早期相和延迟相。近年来,大量的研究表明缺血预处理延迟相出现在缺血预处理后24小时,对心脏保护持续时间长,保护范围广。但是缺血预处理延迟相对心肌组织中的氧分压的影响和其作用机制尚不清楚。因此,我们通过建立小鼠缺血再灌注损伤模型,研究缺血预处理延迟相是否通过降低再灌注后心肌组织中氧分压水平保护线粒体功能减轻氧化应激损伤,从而减少梗死面积的形成。
     [方法]小鼠随机分为假手术组,单纯缺血预处理组(5分钟缺血/5分钟再灌,共3个循环,LPC),单纯缺血再灌注组(30分钟缺血后再灌60分钟或24小时,I/R)和缺血预处理延迟相组(LPC+I/R).心肌组织中的氧分压通过电子顺磁共振(EPR)测量,局部血流量通过激光多普勒方式测量,线粒体活性通过电子传递链复合酶活性反映,心肌梗死面积通过TTC和伊凡思蓝双染色进行定量。
     [结果]在I/R实验组中,再灌注后心肌组织中的氧分压升高,较之缺血前水平显著升高,通过缺血预处理后LPC+I/R实验组中小鼠心肌组织中的氧分压水平较I/R组降低;与假手术相比较复合酶Ⅱ和复合酶Ⅲ(琥珀酸细胞色素c还原酶,SCR),细胞色素c氧化酶(CcO)以及还原型烟酰胺腺嘌呤二核苷酸脱氢酶(NADH-DH)在LPC组中均升高,但在I/R实验组中活性均降低,通过缺血预处理后LPC+I/R实验组SCR, CcO和NADH-DH活性与假手术组无明显改变;锰超氧化物歧化酶在LPC实验组和LPC+I/R实验组中增加。
     [结论]研究结果表明延迟相缺血预处理可能通过增加锰超氧化物歧化酶的表达维持了SCR, CcO以及NADH-DN的活性,保护了线粒体的功能,有效减轻缺血后高氧合状态,减轻了缺血再灌损伤。
     [目的]长时间缺血后充分再灌注前通过短时多次的缺血/在灌注过程可有效降低缺血再灌注损伤,即缺血后处理(IPOC)。缺血梗死的严重程度与缺血时间成正相关,研究表明当缺血时间过短或者过长都会影响IPOC的保护效果。因此我们研究目的旨在揭示不同缺血时间条件下,缺血后处理对对缺血再灌注损伤的影响,从而确定缺血后处理对缺血后心脏保护作用的“窗口期”,并阐明其发生机制。
     [方法]野生型C57BL/6小鼠随机分为15,30,45和60分钟缺血再灌注实验组,和15,30,45,60分钟缺血后处理组及假手术组。体内组织氧分压采用电子顺磁共振法测量。局部血流量采用激光多普勒技术测定。再灌后60分钟缺血危险区心肌组织标本用于测定线粒体酶(琥珀酸细胞色素c还原酶,还原型烟酰胺腺嘌呤二核苷酸脱氢酶以及细胞色素C氧化酶)活性。再灌后24小时心脏用于测定梗死面积。
     [结果]缺血后梗死面积的测量表明:15分钟缺血时在I/R组和IPOC组中均无梗死形成。与I/R组想比较IPOC可有效保护30分钟(12.4±2.2 vs.32.2±0.7%)和45分钟(21.0±1.3 vs.37.9±0.7%)缺血心脏,但对60分钟缺血后心脏无保护作用(46.44±2.9 vs.45.6±3.8%)。缺血后处理可显著降低30分钟和45分钟缺血后再灌注心肌组织中氧分压,但对60分钟长时间缺血时无明显改善。局部血流量测定显示在30分钟,45分钟和60分钟缺血实验中,再灌注60分钟时局部血流量逐渐降,分别是5.3±0.4,4.3±0.1和3.9±0.2(a.u.)。缺血后处理可以显著改善30分钟和45分钟局部血流量(7.2±0.2,5.2±0.3)。缺血后处理对30分钟和45分钟缺血时心肌组织线粒体酶活性具有保护作用,但对60分钟实验组无影响。
     [结论]缺血后处理对缺血再灌注损伤心脏的保护作用具有“窗口期”效应。对缺血30分钟和45分钟再灌心脏具有明显的保护作用。主要通过提高局部血流量和维持线粒体功能完成。
Objective To improve the procedure of establishing animal model of myocardial ischemia and reperfusion (I/R) in mice.
     Methods Male C57BL/6 mice were anethetized, the chest was opened with a mouse respirator, a 7/0 silk suture was placed around the left anterior descending coronary artery (LAD), a polyethylene tube (PE) was placed under the silk suture. The LAD was ligated for 30 min, reperfusion was achieved by releasing the tension applied to ligature for 24 h.
     Result A total of 20 C57BL/6 were allocated into I/R group and shame control group. The survival rate in 30-min I/R group is 9/10 after 24 h reperfusion and the infarct area is 32.2±0.7% and the AAR (total left ventricle (LV) area-non-ischemic area) over the area of left ventricle is 59.5±0.9%. Conclusions A repeatable and simple technique for mouse model of myocardial ischemia and reperfusion injury can be established.
     Objective The late phase ischemic preconditioning (24 hours later) strongly protects against ischemia reperfusion injury. However, its effect on myocardial oxygenation and related mechanism(s) are unknown. Therefore, we determine in an in vivo mouse model of regional ischemia and reperfusion (I/R) whether late phase preconditioning attenuates post-ischemic myocardial hyperoxygenation with preservation of mitochondrial function.
     Methods Four groups of mice were studied:sham, late phase preconditioning (LPC,3 cycles of 5 min coronary occlusion/5 min reperfusion), ischemia reperfusion (I/R,30 min ischemia followed by 60 min reperfusion), and LPC+I/R mice.
     Results Tissue Po2 upon reperfusion rose significantly above the pre-ischemic value in the I/R mice. This hyperoxygenation status was attenuated in the PC+I/R mice. Activities of complexⅡandⅢ(SCR) and cytochrome c oxidase (CcO) were increased in the PC group, reduced in the I/R group, but conserved in the PC+I/R group compared with sham control. The activity of NADH dehydrogenase (NADH-DH) showed no significant difference between sham and the PC group, but was reduced in the I/R group and recovered in the PC+I/R group. The expression of Mn-SOD was increased in the PC and PC+I/R group compared with sham control.
     Conclusion Taken together, these data suggest that the late phase PC attenuates post-ischemic myocardial hyperoxygenation and preserves mitochondrial O2 metabolism due to increased SCR and CcO activities and conserved NADH-DH activity and increased Mn-SOD expression.
     Objective Ischemic post-conditioning (IPOC) is a powerful method to reduce ischemia and reperfusion injury. Studies also demonstrate that IPOC could be deleterious when the ischemia duration was either too short or too long. Our study is to determine whether there is a salvageable ischemic time window for IPOC and the potential mechanisms involved.
     Methods C57BL/6 mice underwent 30,45 and 60 min left anterior descending coronary artery (LAD) occlusion followed by reperfusion, w/o IPOC. In vivo tissue oxygenation was monitored with electron paramagnetic resonance (EPR) oximetry. Regional Blood Flow (RBF) was measured by the laser Doppler perfusion monitor. Tissue from the risk area was collected and the activities of mitochondrial were assayed.
     Results The tissue oximetry data demonstrated that IPOC attenuated tissue hyperoxygenation with 45 but not 30 and 60 min ischemia. IPOC improved the RBF with 30 and 45 but not 60 min ischemia. IPOC preserved the activities of mitochondrial enzymes activities at 30 and 45 but not 60 min ischemia. Infarct size measurement indicated that IPOC protected the heart with 30 min and 45 min but not 60 min ischemia.
     Conclusions The cardioprotection afforded by IPOC is limited to a time window between 30 and 45 min LAD occlusion in mouse. This salvageable ischemic time window is determined by the effect of IPOC on improving the RBF and mitochondrial function.
引文
1. Yeqi fa, Niu ying, Ming ying zi, et al. Evaluation ischemia reperfusion injury of liver grafts and its impact up on theprogenosis of patient after liver transplantation [J]. Chin J Organ Transplant,2006;27(11):668-671
    2. Drozdz W, Sarwa A, Labza H. Clinical implication of ischemic preconditioning in protection of reperfused tissues. Przegl Lek.2006;63 (5):271-7.
    3. Murry CE, Jennings RB, Reimer KA:Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74 (5):1124-1136.
    4. Ahmed SH, He YY, Nassief A, Xu J, Xu XM, Hsu CY, Faraci FM:Effects of lipopolysaccharide priming on acute ischemic brain injury. Stroke 2000; 31 (1): 193-9.
    5. Li B, Yang C, Rosenbaum DM, Roth S. Signal transduction mechanisms involved in ischemic preconditioning in the rat retina in vivo. Exp Eye Res. 2000; 70 (6):755-65.
    6. Jefayri MK, Grace PA, Mathie RT Attenuation of reperfusion injury by renal ischaemic preconditioning:the role of nitric oxide. BJU Int 2000 Jun; 85 (9): 1007-13
    7. Toosy N, McMorris EL, Grace PA, Mathie RT Ischaemic preconditioning protects the rat kidney from reperfusion injury. BJU Int 1999 Sep; 84 (4): 489-94
    8. Islam CF, Mathie RT, Dinneen MD, Kiely EA, Peters AM, Grace PA Ischaemia-reperfusion injury in the rat kidney:the effect of preconditioning. Br J Urol 1997 Jun; 79 (6):842-7
    9. Sola A, Rosello-Catafau J, Gelpi E, Hotter G:Fructose-1,6-biphosphate in rat intestinal preconditioning:involvement of nitric oxide. Gut 2001; 48:168-175
    10. Li YW, Whittaker P, Kloner RA. The transient nature of the effect of ischemic preconditioning on myocardial infarct size and ventricular arrhythmia. Am Heart J.1992; 123 (2):346-53.
    11. Puisieux F, Deplanque D, Pu Q, Souil E, Bastide M, Bordet R:Differential role of nitric oxide pathway and heat shock protein in preconditioning and lipopolysaccharide-induced brain ischemic tolerance. Eur J Pharmacol 2000; 389(1):71-8.
    12. Park KM, Chen A, Bonventre JV:Prevention of kidney ischemia/ reperfusion-induced functional injury, JNK, p38, and MAP kinase kinase activation by remote ischemic pretreatment. J Biol Chem.2001; 276 (15): 11870-633 (2):556-64.
    13. Li G, Chen S, Lu E, Luo W:Cardiac ischemic preconditioning improves lung preservation in valve replacement operations. Ann Thorac Surg 2001; 71 (2): 631-5.
    14. Vinten-Johansen J, Zhao ZQ, Jiang R, Zatta AJ. Myocardial protection in reperfusion with postconditioning. Expert Rev Cardiovasc Ther 2005; 3:1035.
    15. Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning. Am J Physiol 2003; 285:H579.
    16. Tsang A, Hausenloy DJ, MocanuMM,Yellon DM. Postconditioning:A form of "modified reperfusion" protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 2004; 95:230.
    17. Ferrera R, Bopassa J-C, Angoulvant D, Ovize M. Post-conditioning protects from cardioplegia and cold ischemia via inhibition of mitochondrial permeability transition pore. J Heart Lung Transplant 2007; 26:604.
    18. Cohen MV, Yang X-M, Downey JM. The ph hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 2007; 115:1895.
    19. Lauzier B, Sicard P, Bouchot O, et al. After four hours of cold ischemia and cardioplegic protocol, the heart can still be rescued with postconditioning. Transplantation 2007; 84:1474.
    1. Azfer A, Niu J, Rogers LM, Adamski FM, Kolattukudy PE. Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am J Physiol Heart Circ Physiol 2006;291:H1411-1420.
    2. Ferez Santander SM, Marquez MF, Pena2Duque MA, et al. Myocardial ischemic2reperfusion injury. Rev Exp Cardiol,2004;57 Suppl:9221.
    3. 汪谦.现代医学实验方法.北京:人民卫生出版社,1997.
    4. Zhu X, Liu B, Zhou S, Chen YR, Deng Y, Zweier JL, et al. Ischemic preconditioning prevents in vivo hyperoxygenation in postischemic myocardium with preservation of mitochondrial oxygen consumption. Am J Physiol Heart Circ Physiol 2007;293:H1442-1450.
    5. Zhao X, He G, Chen YR, Pandian RP, Kuppusamy P, Zweier JL. Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport. Circulation 2005; 111:2966-2972.
    6. Xu Y, Liu B, Zweier JL, He G Formation of hydrogen peroxide and reduction of peroxynitrite via dismutation of superoxide at reperfusion enhances yocardial blood flow and oxygen consumption in postischemic mouse heart. J Pharmacol Exp Ther 2008;327:402-410.
    1. Balakumar, P.; Rohilla, A.; Singh, M. Pre-conditioning and postconditioning to limit ischemia-reperfusion-induced myocardial injury:what could be the next footstep? Pharmacol Res 57:403-412; 2008.
    2. Braunwald, E.; Kloner, R. A. Myocardial reperfusion:a double-edged sword? J Clin Invest 76:1713-1719; 1985.
    3. Zweier, J. L. Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. J Biol Chem 263:1353-1357; 1988.
    4. Yasmin, W.; Strynadka, K. D.; Schulz, R. Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res 33:422-432; 1997.
    5. Murry, C. E.; Jennings, R. B.; Reimer, K. A. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124-1136; 1986.
    6. Murry, C. E.; Jennings, R. B.; Reimer, K. A. New insights into potential mechanisms of ischemic preconditioning. Circulation 84:442-445; 1991.
    7. Kuzuya, T.; Hoshida, S.; Yamashita, N.; Fuji, H.; Oe, H.; Hori, M.; Kamada, T.; Tada, M. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 72:1293-1299; 1993.
    8. Marber, M. S.; Latchman, D. S.; Walker, J. M.; Yellon, D. M. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88:1264-1272; 1993.
    9. Bolli, R. The late phase of preconditioning. Circ Res 87:972-983; 2000.
    10. Baxter, G. F.; Ferdinandy, P. Delayed preconditioning of myocardium:current perspectives. Basic Res Cardiol 96:329-344; 2001.
    11. Bolli, R.; Dawn, B.; Tang, X. L.; Qiu, Y.; Ping, P.; Xuan, Y T.; Jones, W. K.; Takano, H.; Guo, Y.; Zhang, J. The nitric oxide hypothesis of late preconditioning. Basic Res Cardiol 93:325-338; 1998.
    12. Schulz, R.; Cohen, M. V.; Behrends, M.; Downey, J. M.; Heusch, G. Signal transduction of ischemic preconditioning. Cardiovasc Res 52:181-198; 2001.
    13. Zhao, X.; He, G.; Chen, Y. R.; Pandian, R. P.; Kuppusamy, P.; Zweier, J. L. Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport. Circulation 111:2966-2972; 2005.
    14. Chen, Z.; Siu, B.; Ho, Y. S.; Vincent, R.; Chua, C. C.; Hamdy, R. C.; Chua, B. H. Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol 30:2281-2289; 1998.
    15. Chen, Z.; Oberley, T. D.; Ho, Y.; Chua, C. C.; Siu, B.; Hamdy, R. C.; Epstein, C. J.; Chua, B. H. Overexpression of CuZnSOD in coronary vascular cells attenuates myocardial ischemia/reperfusion injury. Free Radic Biol Med 29:589-596; 2000.
    16. Chen, E. P.; Bittner, H. B.; Davis, R. D.; Van Trigt, P.; Folz, R. J. Physiologic effects of extracellular superoxide dismutase transgene overexpression on myocardial function after ischemia and reperfusion injury. J Thorac Cardiovasc Surg 115:450-458; discussion 458-459; 1998.
    17. Rui, T.; Cepinskas, G.; Feng, Q.; Kvietys, P. R. Delayed preconditioning in cardiac myocytes with respect to development of a proinflammatory phenotype: role of SOD and NOS. Cardiovasc Res 59:901-911; 2003.
    18. Pan, Y. X.; Ren, A. J.; Zheng, J.; Rong, W. F.; Chen, H.; Yan, X. H.; Wu, C.; Yuan, W. J.; Lin, L. Delayed cytoprotection induced by hypoxic preconditioning in cultured neonatal rat cardiomyocytes: role of GRP78. Life Sci 81:1042-1049; 2007.
    19. Csonka, C.; Csont, T.; Onody, A.; Ferdinandy, P. Preconditioning decreases ischemia/reperfusion-induced peroxynitrite formation. Biochem Biophys Res Commun 285:1217-1219; 2001.
    20. Hoshida, S.; Kuzuya, T.; Fuji, H.; Yamashita, N.; Oe, H.; Hori, M.; Suzuki, K. Taniguchi, N.; Tada, M. Sublethal ischemia alters myocardial antioxidant activity in canine heart. Am J Physiol 264:H33-39; 1993.
    21. Yamashita, N.; Hoshida, S.; Taniguchi, N.; Kuzuya, T.; Hori, M. A "second window of protection" occurs 24 h after ischemic preconditioning in the rat heart. J Mol Cell Cardiol 30:1181-1189; 1998.
    22. Ilangovan, G.; Zweier, J. L.; Kuppusamy, P. Mechanism of oxygen-induced EPR line broadening in lithium phthalocyanine microcrystals. J Magn Reson 170:42-48; 2004.
    23. Swartz, H. M.; Bacic, G.; Friedman, B.; Goda, F.; Grinberg, O.; Hoopes, P. J.; Jiang, J.; Liu, K. J.; Nakashima, T.; O'Hara, J.; et al. Measurements of pO2 in vivo, including human subjects, by electron paramagnetic resonance. Adv Exp Med Biol 361:119-128; 1994.
    24. Zhu, X.; Zuo, L.; Cardounel, A. J.; Zweier, J. L.; He, G Characterization of in vivo tissue redox status, oxygenation, and formation of reactive oxygen species in postischemic myocardium. Antioxid Redox Signal 9:447-455; 2007.
    25. Zhu, X.; Liu, B.; Zhou, S.; Chen, Y. R.; Deng, Y.; Zweier, J. L.; He, G. Ischemic preconditioning prevents in vivo hyperoxygenation in postischemic myocardium with preservation of mitochondrial oxygen consumption. Am J Physiol Heart Circ Physiol 293:H1442-1450; 2007.
    26. Hoffmeyer, M. R.; Jones, S. P.; Ross, C. R.; Sharp, B.; Grisham, M. B.; Laroux, F. S.; Stalker, T. J.; Scalia, R.; Lefer, D. J. Myocardial ischemia/reperfusion injury in NADPH oxidase-deficient mice. Circ Res 87:812-817; 2000.
    27. Jones, S. P.; Trocha, S. D.; Strange, M. B.; Granger, D. N.; Kevil, C. G.; Bullard, D. C.; Lefer, D. J. Leukocyte and endothelial cell adhesion molecules in a chronic murine model of myocardial reperfusion injury. Am J Physiol Heart Circ Physiol 279:H2196-2201; 2000.
    28. Xu, Y.; Liu, B.; Zweier, J. L.; He, G. Formation of hydrogen peroxide and reduction of peroxynitrite via dismutation of superoxide at reperfusion enhances myocardial blood flow and oxygen consumption in postischemic mouse heart. J Pharmacol Exp Ther 327:402-410; 2008.
    29. Kirby, D. M.; Thorburn, D. R.; Turnbull, D. M.; Taylor, R. W. Biochemical assays of respiratory chain complex activity. Methods Cell Biol 80:93-119; 2007.
    30. Chen, Y. R.; Chen, C. L.; Chen, W.; Zweier, J. L.; Augusto, O.; Radi, R.; Mason, R. P. Formation of protein tyrosine ortho-semiquinone radical and nitrotyrosine from cytochrome c-derived tyrosyl radical. J Biol Chem 279:18054-18062; 2004.
    31. Murray, J.; Taylor, S. W.; Zhang, B.; Ghosh, S. S.; Capaldi, R. A. Oxidative damage to mitochondrial complex I due to peroxynitrite:identification of reactive tyrosines by mass spectrometry. J Biol Chem 278:37223-37230; 2003.
    32. Yellon, D. M.; Baxter, G. F.; Garcia-Dorado, D.; Heusch, G.; Sumeray, M. S. Ischaemic preconditioning:present position and future directions. Cardiovasc Res 37:21-33; 1998.
    33. Dekker, L. R. Toward the heart of ischemic preconditioning. Cardiovasc Res 37:14-20; 1998.
    34. Rudzinski, T.; Mussur, M.; Wawrzycki, M.; Gwiazda, Z.; Zaslonka, J. Ischemic preconditioning diminishes oxygen demand and increases coronary flow in the early phase of reperfusion in rat heart. Med Sci Monit 8:BR362-368; 2002.
    35. Kilgore, K. S.; Lucchesi, B. R. Reperfusion injury after myocardial infarction: the role of free radicals and the inflammatory response. Clin Biochem 26:359-370; 1993.
    36. Park, J. W.; Chun, Y. S.; Kim, Y. H.; Kim, C. H.; Kim, M. S. Ischemic preconditioning reduces Op6 generation and prevents respiratory impairment in the mitochondria of post-ischemic reperfused heart of rat. Life Sci 60:2207-2219; 1997.
    37. Yabe, K.; Nasa, Y.; Sato, M.; Iijima, R.; Takeo, S. Preconditioning preserves mitochondrial function and glycolytic flux during an early period of reperfusion in perfused rat hearts. Cardiovasc Res 33:677-685; 1997.
    38. Swartz, H. M.; Boyer, S.; Brown, D.; Chang, K.; Gast, P.; Glockner, J. F.; Hu, H.; Liu, K. J.; Moussavi, M.; Nilges, M.; et al. The use of EPR for the measurement of the concentration of oxygen in vivo in tissues under physiologically pertinent conditions and concentrations. Adv Exp Med Biol 317:221-228; 1992.
    39. Gallez, B.; Jordan, B. F.; Baudelet, C.; Misson, P. D. Pharmacological modifications of the partial pressure of oxygen in murine tumors:evaluation using in vivo EPR oximetry. Magn Reson Med 42:627-630; 1999.
    40. Petelin, M.; Pavlica, Z.; Bizimoska, S.; Sentjurc, M. In vivo study of different ointments for drug delivery into oral mucosa by EPR oximetry. Int J Pharm 270:83-91; 2004.
    41. Liu, K. J.; Gast, P.; Moussavi, M.; Norby, S. W.; Vahidi, N.; Walczak, T.; Wu, M.; Swartz, H. M. Lithium phthalocyanine:a probe for electron paramagnetic resonance oximetry in viable biological systems. Proc Natl Acad Sci U S A 90:5438-5442; 1993.
    42. Bolli, R.; Manchikalapudi, S.; Tang, X. L.; Takano, H.; Qiu, Y.; Guo, Y.; Zhang, Q.; Jadoon, A. K. The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase. Evidence that nitric oxide acts both as a trigger and as a mediator of the late phase of ischemic preconditioning. Circ Res 81:1094-1107; 1997.
    43. Bolli, R. The early and late phases of preconditioning against myocardial stunning and the essential role of oxyradicals in the late phase:an overview. Basic Res Cardiol 91:57-63; 1996.
    44. Baxter, G. F.; Marber, M. S.; Patel, V. C.; Yellon, D. M. Adenosine receptor involvement in a delayed phase of myocardial protection 24 hours after ischemic preconditioning. Circulation 90:2993-3000; 1994.
    45. Dana, A.; Baxter, G. F.; Walker, J. M.; Yellon, D. M. Prolonging the delayed phase of myocardial protection:repetitive adenosine A1 receptor activation maintains rabbit myocardium in a preconditioned state. J Am Coll Cardiol 31:1142-1149; 1998.
    46. Shen, W.; Xu, X.; Ochoa, M.; Zhao, G.; Wolin, M. S.; Hintze, T. H. Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circ Res 75:1086-1095; 1994.
    47. Bolli, R.; Li, Q. H.; Tang, X. L.; Guo, Y.; Xuan, Y. T.; Rokosh, G.; Dawn, B. The late phase of preconditioning and its natural clinical application-gene therapy. Heart Fail Rev 12:189-199; 2007.
    48. Zweier, J. L.; Kuppusamy, P.; Williams, R.; Rayburn, B. K.; Smith, D.; Weisfeldt, M. L.; Flaherty, J. T. Measurement and characterization of postischemic free radical generation in the isolated perfused heart. J Biol Chem 264:18890-18895; 1989.
    49. Jin, Z. Q.; Zhou, H. Z.; Cecchini, G.; Gray, M. O.; Karliner, J. S. MnSOD in mouse heart:acute responses to ischemic preconditioning and ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 288:H2986-2994; 2005.
    50. Xuan, Y. T.; Guo, Y.; Zhu, Y.; Wang, O. L.; Rokosh, G.; Bolli, R. Endothelial nitric oxide synthase plays an obligatory role in the late phase of ischemic preconditioning by activating the protein kinase C epsilon p44/42 mitogen-activated protein kinase pSer-signal transducers and activators of transcription1/3 pathway. Circulation 116:535-544; 2007.
    51. Liem, D. A.; Manintveld, O. C.; Schoonderwoerd, K.; McFalls, E. O.; Heinen, A.; Verdouw, P. D.; Sluiter, W.; Duncker, D. J. Ischemic preconditioning modulates mitochondrial respiration, irrespective of the employed signal transduction pathway. Transl Res 151:17-26; 2008.
    52. Yamashita, N.; Hoshida, S.; Otsu, K.; Taniguchi, N.; Kuzuya, T.; Hori, M. The involvement of cytokines in the second window of ischaemic preconditioning. Br J Pharmacol 131:415-422; 2000.
    53. Guo, Y.; Wu, W. J.; Qiu, Y.; Tang, X. L.; Yang, Z.; Bolli, R. Demonstration of an early and a late phase of ischemic preconditioning in mice. Am J Physiol 275:H1375-1387; 1998.
    54. Liu, G. S.; Thornton, J.; Van Winkle, D. M.; Stanley, A. W.; Olsson, R. A.; Downey, J. M. Protection against infarction afforded by preconditioning is mediated by Al adenosine receptors in rabbit heart. Circulation 84:350-356; 1991.
    55. Liu, Y.; Downey, J. M. Ischemic preconditioning protects against infarction in rat heart. Am J Physiol 263:H1107-1112;1992.
    56. Vahlhaus, C.; Schulz, R.; Post, H.; Onallah, R.; Heusch, G No prevention of ischemic preconditioning by the protein kinase C inhibitor staurosporine in swine. Circ Res 79:407-414;1996.
    1. Baxter GF, Yellon DM. Current trends and controversies in ischemiareperfusion research. Meeting report of the Hatter Institute 3rd International Workshop on Cardioprotection. Basic Res Cardiol 2003; 98:133-136
    2. Prasad A, Stone GW, Holmes DR, Gersh B. Reperfusion injury, microvascular dysfunction, and cardioprotection:the "dark side" of reperfusion. Circulation 2009;120:2105-2112.
    3. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999;341 (Pt 2):233-249.
    4. Guo Y, Wu WJ, Qiu Y, Tang XL, Yang Z, Bolli R. Demonstration of an early and a late phase of ischemic preconditioning in mice. Am J Physiol 1998;275:H1375-1387.
    5. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 2003;285:H579-588.
    6. Mykytenko J, Kerendi F, Reeves JG, Kin H, Zatta AJ, Jiang R, et al. Long-term inhibition of myocardial infarction by postconditioning during reperfusion. Basic Res Cardiol 2007; 102:90-100.
    7. Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 2004;44:1103-1110.
    8. Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res 2004;62:74-85.
    9. Heusch G, Buchert A, Feldhaus S, Schulz R. No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 2006;101:354-356.
    10. Laskey WK. Brief repetitive balloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction:a pilot study. Catheter Cardiovasc Interv 2005;65:361-367.
    11. Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L'Huillier I, et al. Postconditioning the human heart. Circulation 2005;112:2143-2148.
    12. Kloner RA, Dow J, Bhandari A. Postconditioning markedly attenuates ventricular arrhythmias after ischemia-reperfusion. J Cardiovasc Pharmacol Ther 2006;11:55-63.
    13. Shen YT, Vatner SF. Differences in myocardial stunning following coronary artery occlusion in conscious dogs, pigs, and baboons. Am J Physiol 1996;270:H1312-1322.
    14. Manintveld OC, Te Lintel Hekkert M, van den Bos EJ, Suurenbroek GM, Dekkers DH, Verdouw PD, et al. Cardiac effects of postconditioning depend critically on the duration of index ischemia. Am J Physiol Heart Circ Physiol 2007;292:H1551-1560.
    15. Skyschally A, van Caster P, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch G. Ischemic postconditioning:experimental models and protocol algorithms. Basic Res Cardiol 2009; 104:469-483.
    16. Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, et al. Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res 2008; 102:131-135.
    17. Xi L, Das A, Zhao ZQ, Merino VF, Bader M, Kukreja RC. Loss of myocardial ischemic postconditioning in adenosine A1 and bradykinin B2 receptors gene knockout mice. Circulation 2008;118:S32-37.
    18. Zhao X, He G, Chen YR, Pandian RP, Kuppusamy P, Zweier JL. Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport. Circulation 2005; 111:2966-2972.
    19. Zhu X, Liu B, Zhou S, Chen YR, Deng Y, Zweier JL, et al. Ischemic preconditioning prevents in vivo hyperoxygenation in postischemic myocardium with preservation of mitochondrial oxygen consumption. Am J Physiol Heart Circ Physiol 2007;293:H1442-1450.
    20. Dunn JF, Swartz HM. In vivo electron paramagnetic resonance oximetry with particulate materials. Methods 2003;30:159-166.
    21. Swartz HM, Dunn JF. Measurements of oxygen in tissues:overview and perspectives on methods. Adv Exp Med Biol 2003;530:1-12.
    22. Khan M, Mohan IK, Kutala VK, Kotha SR, Parinandi NL, Hamlin RL, et al. Sulfaphenazole protects heart against ischemia-reperfusion injury and cardiac dysfunction by overexpression of iNOS, leading to enhancement of nitric oxide bioavailability and tissue oxygenation. Antioxid Redox Signal 2009; 11:725-738.
    23. Hoffmeyer MR, Jones SP, Ross CR, Sharp B, Grisham MB, Laroux FS, et al. Myocardial ischemia/reperfusion injury in NADPH oxidase-deficient mice. Circ Res 2000;87:812-817.
    24. Jones SP, Trocha SD, Strange MB, Granger DN, Kevil CG, Bullard DC, et al. Leukocyte and endothelial cell adhesion molecules in a chronic murine model of myocardial reperfusion injury. Am J Physiol Heart Circ Physiol 2000;279:H2196-2201.
    25. Xu Y, Liu B, Zweier JL, He G. Formation of hydrogen peroxide and reduction of peroxynitrite via dismutation of superoxide at reperfusion enhances myocardial blood flow and oxygen consumption in postischemic mouse heart. J Pharmacol Exp Ther 2008;327:402-410.
    26. Mount PF, Kemp BE, Power DA. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J Mol Cell Cardiol 2007;42:271-279.
    27. Thibault H, Piot C, Staat P, Bontemps L, Sportouch C, Rioufol G, et al. Long-term benefit of postconditioning. Circulation 2008;117:1037-1044.
    28. Darling CE, Jiang R, Maynard M, Whittaker P, Vinten-Johansen J, Przyklenk K. Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts:role of ERK1/2. Am J Physiol Heart Circ Physiol 2005;289:H1618-1626.
    29. Yang XM, Philipp S, Downey JM, Cohen MV. Postconditioning's protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Basic Res Cardiol 2005;100:57-63.
    30. Penna C, Tullio F, Merlino A, Moro F, Raimondo S, Rastaldo R, et al. Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Basic Res Cardiol 2009; 104:390-402.
    31. Couvreur N, Lucats L, Tissier R, Bize A, Berdeaux A, Ghaleh B. Differential effects of postconditioning on myocardial stunning and infarction:a study in conscious dogs and anesthetized rabbits. Am J Physiol Heart Circ Physiol 2006;291:H1345-1350.
    32. Ilangovan G, Zweier JL, Kuppusamy P. Mechanism of oxygen-induced EPR line broadening in lithium phthalocyanine microcrystals. J Magn Reson 2004; 170:42-48.
    33. Swartz HM, Bacic G, Friedman B, Goda F, Grinberg O, Hoopes PJ, et al. Measurements of pO2 in vivo, including human subjects, by electron paramagnetic resonance. Adv Exp Med Biol 1994;361:119-128.
    34. Dumitrescu C, Biondi R, Xia Y, Cardounel AJ, Druhan LJ, Ambrosio G, et al. Myocardial ischemia results in tetrahydrobiopterin (BH4) oxidation with impaired endothelial function ameliorated by BH4. Proc Natl Acad Sci U S A 2007;104:15081-15086.
    35. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM. Postconditioning:a form of "modified reperfusion" protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 2004;95:230-232.
    36. Letienne R, Calmettes Y, Le Grand B. Is postconditioning effective in prevention against long-lasting myocardial ischemia in the rabbit? Physiol Res 2009;58:635-643.
    37. Schwartz LM, Lagranha CJ. Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs. Am J Physiol Heart Circ Physiol 2006;290:H1011-1018.
    38. Vinten-Johansen J, Zhao ZQ, Zatta AJ, Kin H, Halkos ME, Kerendi F. Postconditioning-A new link in nature's armor against myocardial ischemia-reperfusion injury. Basic Res Cardiol 2005;100:295-310.
    39. Lonborg J, Kelbaek H, Vejlstrup N, Jorgensen E, Helqvist S, Saunamaki K, et al. Cardioprotective Effects of Ischemic Postconditioning in Patients Treated With Primary Percutaneous Coronary Intervention, Evaluated by Magnetic Resonance. Circ Cardiovasc Interv;3:34-41.
    40. Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M. Postconditioning inhibits mitochondrial permeability transition. Circulation 2005;111:194-197.
    41. Kin H, Zatta AJ, Lofye MT, Amerson BS, Halkos ME, Kerendi F, et al. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res 2005;67:124-133.
    1. Yeqi fa, Niu ying, Ming ying zi, et al. Evaluation ischemia reperfusion injury of liver grafts and its impact up on theprogenosis of patient after liver transplantation [J]. Chin J Organ Transplant,2006;27(11):668-671
    2. Drozdz W, Sarwa A, Labza H. Clinical implication of ischemic preconditioning in protection of reperfused tissues. Przegl Lek.2006;63 (5):271-7.
    3. Z.Q. Zhao, M. Nakamura, N.P. Wang, D.A. Velez, K.O. Hewan-Lowe, R.A. Guyton, J. Vinten-Johansen, Dynamic progression of contractile and endothelial dysfunction and infarct extension in the late phase of reperfusion, J. Surg. Res. 2000;94(2):133-144.
    4. K.A. Reimer, R.B. Jennings, Myocardial ischemia, hypoxia, and infarction, in: H.A. Fozzard, E. Haber, R.B. Jennings, A.M. Katz, H.E. Morgan (Eds.), The Heart and Cardiovascular System, Raven, New York,1992, pp.1875-1973.
    5. G. Ambrosio, J.L. Zweier, C. Duilio, P. Kuppusamy, G. Santoro, P.P. Elia, I. Tritto, P. Cirillo, M. Condorelli, M. Chiariello, et al., Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow, J. Biol. Chem.1993;268 (25):18532-18541.
    6. D.K. Das, A. George, X.K. Liu, P.S. Rao, Detection of hydroxyl radical in the mitochondria of ischemic-reperfused myocardium by trapping with salicylate, Biochem. Biophys. Res. Commun.1989; 165 (3) 1004-1009.
    7. H. Ueta, R. Ogura, M. Sugiyama, A. Kagiyama, G. Shin, O2-S spin trapping on cardiac submitochondrial particles isolated from ischemic and non-ischemic myocardium, J. Mol. Cell. Cardiol.1990;22 (8):893-899.
    8. Q. Chen, E.J. Lesnefsky, Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain, Free Radic. Biol. Med.2006; 40 (6):976-982.
    9. P. Venditti, P. Masullo, S. Di Meo, Effects of myocardial ischemia and reperfusion on mitochondrial function and susceptibility to oxidative stress, Cell. Mol. Life Sci.2001;58 (10):1528-1537.
    10. H.A. Sadek, K.M. Humphries, P.A. Szweda, L.I. Szweda, Selective inactivation of redox-sensitive mitochondrial enzymes during cardiac reperfusion, Arch. Biochem. Biophys.2002;406 (2):222-228.
    11. K. Veitch, A. Hombroeckx, D. Caucheteux, H. Pouleur, L. Hue, Global ischaemia induces a biphasic response of the mitochondrial respiratory chain. Anoxic preperfusion protects against ischaemic damage, Biochem. J.1992:281 (Pt 3):709-715.
    12. L. Hardy, J.B. Clark, V.M. Darley-Usmar, D.R. Smith, D. Stone, Reoxygenationdependent decrease in mitochondrial NADH:CoQ reductase (Complex I) activity in the hypoxic/reoxygenated rat heart, Biochem. J. 1991;274(Pt1):133-137.
    13. D.T. Lucas, L.I. Szweda, Declines in mitochondrial respiration during cardiac reperfusion:age-dependent inactivation of alpha-ketoglutarate dehydrogenase, Proc. Natl. Acad. Sci.1999;96 (12):6689-6693.
    14. H.M. Piper, O. Sezer, M. Schleyer, P. Schwartz, J.F. Hutter, P.G Spieckermann, Development of ischemia-induced damage in defined mitochondrial subpopulations, J. Mol. Cell. Cardiol.1985;17 (9):885-896.
    15. J.W. Park, Y.S. Chun, Y.H. Kim, C.H. Kim, M.S. Kim, Ischemic preconditioning reduces Op6 generation and prevents respiratory impairment in the mitochondria of post-ischemic reperfused heart of rat, Life Sci.1997;60 (24): 2207-2219.
    16. K. Yabe, Y. Nasa, M. Sato, R. Iijima, S. Takeo, Preconditioning preserves mitochondrial function and glycolytic flux during an early period of reperfusionin perfused rat hearts, Cardiovasc. Res.1997;33 (3):677-685.
    17. R.A. Kloner, R.B. Jennings, Consequences of brief ischemia:stunning, preconditioning, and their clinical implications:part 1, Circulation.2001; 104 (24):2981-2989.
    18. A.P. Halestrap, S.J. Clarke, I. Khaliulin, The role of mitochondria in protection of the heart by preconditioning, Biochim. Biophys. Acta 2007; 1767(8): 1007-1031.
    19. D.J. Hausenloy, A. Tsang, M.M. Mocanu, D.M. Yellon, Ischemic preconditioning protects by activating prosurvival kinases at reperfusion, Am. J. Physiol. Heart Circ Physiol.2005; 288 (2):H971-976.
    20. C.P. Baines, J. Zhang, G.W. Wang, Y.T. Zheng, J.X. Xiu, E.M. Cardwell, R. Bolli, P. Ping, Mitochondrial PKCepsilon andMAPK form signaling modules in the murine heart:enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection, Circ. Res.2002;90 (4):390-397.
    21. A. Lochner, S. Genade, E. Tromp, T. Podzuweit, J.A. Moolman, Ischemic preconditioning and the beta-adrenergic signal transduction pathway, Circulation.1999;100 (9):958-966.
    22. C.P. Baines, C.X. Song, Y.T. Zheng,G.W.Wang, J.Zhang,O.L.Wang, Y.Guo, R. Bolli, E.M. Cardwell, P. Ping,Proteinkinase Cepsilon interactswith and inhibits thepermeability transition pore in cardiac mitochondria, Circ. Res.2003;92 (8): 873-880.
    23. M. Jaburek, A.D. Costa, J.R. Burton, C.L. Costa, K.D. Garlid, Mitochondrial PKC epsilon and mitochondrial ATP-sensitive K+ channel copurify and coreconstitute to form a functioning signaling module in proteoliposomes, Circ. Res.2006;99 (8):878-883.
    24. G.W. Dorn 2nd, M.C. Souroujon, T. Liron, C.H. Chen, M.O. Gray, H.Z. Zhou, M. Csukai, G. Wu, J.N. Lorenz, D. Mochly-Rosen, Sustained in vivo cardiac protection by a rationally designed peptide that causes epsilon protein kinase C translocation, Proc. Natl. Acad Sci.1999;96 (22):12798-12803.
    25. C. Penna, D. Mancardi, R. Rastaldo, P. Pagliaro, Cardioprotection:a radical view:free radicals in pre and postconditioning, Biochim. Biophys. Acta (2009).
    26. K.C. Lundberg, L.I. Szweda, Preconditioning prevents loss in mitochondrial function and release of cytochrome c during prolonged cardiac ischemia/reperfusion, Arch. Biochem. Biophys. (2006).
    27. G. Ambrosio, I. Tritto, M. Chiariello, The role of oxygen free radicals in preconditioning, J. Mol. Cell. Cardiol.1995;27 (4):1035-1039.
    28. C.P. Baines, M. Goto, J.M. Downey, Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium, J. Mol. Cell. Cardiol.1997; 29 (1):207-216.
    29. Y. Yaguchi, H. Satoh, N. Wakahara, H. Katoh, A. Uehara, H. Terada, Y. Fujise, H. Hayashi, Protective effects of hydrogen peroxide against ischemia/reperfusion injury in perfused rat hearts, Circ J.2003;67 (3):253-258.
    30. L.G. Kevin, A.K. Camara, M.L. Riess, E. Novalija, D.F. Stowe, Ischemic preconditioning alters real-time measure of 02 radicals in intact hearts with ischemia and reperfusion, Am. J. Physiol. Heart Circ Physiol.2003;284(2): H566-574.
    31. S. Matsuzaki, L.I. Szweda, K.M. Humphries, Mitochondrial superoxide production and respiratory activity:biphasic response to ischemic duration, Arch. Biochem. Biophys.2009;48487-93
    32. K. Veitch, A. Hombroeckx, D. Caucheteux, H. Pouleur, L. Hue, Global ischaemia induces a biphasic response of the mitochondrial respiratory chain. Anoxic preperfusion protects against ischaemic damage, Biochem. J.1992;281 (Pt 3):709-715.
    33. J. Chen, G.I. Henderson, G.L. Freeman, Role of 4-hydroxynonenal in modification of cytochrome c oxidase in ischemia/reperfused rat heart, J. Mol. Cell. Cardiol.2001;33 (11):1919-1927.
    34. D.T. Lucas, L.I. Szweda, Cardiac reperfusion injury:aging, lipid peroxidation, and mitochondrial dysfunction.Lucas DT et al. Proc Natl Acad Sci U S A. (1998)
    35. I. Inoue, H. Nagase, K. Kishi, T. Higuti, ATP-sensitive K+ channel in the mitochondrial inner membrane, Nature 1991;352 (6332):244-247.
    36. O. Oldenburg, Q. Qin, T. Krieg, X.M. Yang, S. Philipp, S.D. Critz, M.V. Cohen, J.M. Downey, Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection, Am. J. Physiol. Heart Circ Physiol.2004;286 (1):H468-476.
    37. T. Pain, X.M. Yang, S.D. Critz, Y. Yue, A. Nakano, G.S. Liu, G. Heusch, M.V. Cohen, J.M. Downey, Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals, Circ. Res.2000;87(6) 460-466.
    38. G. Schafer, C. Wegener, R. Portenhauser, D. Bojanovski, Diazoxide, an inhibitor of succinate oxidation, Biochem. Pharmacol.1969;18(10):2678-2681.
    39. A.P. Wojtovich, P.S. Brookes, The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial KATP channels, Basic Res. Cardiol.2009;1104 (2):21-129.
    40. N.N. Turan, B. Basgut, E. Aypar, M. Ark, A.B. Iskit, I. Cakici, Chemical preconditioning effect of 3-nitropropionic acid in anesthetized rat heart, Life Sci. 2008;82 (17-18):928-933.
    41. L. Wang, G. Cherednichenko, L. Hernandez, J. Halow, S.A. Camacho, V. Figueredo, S. Schaefer, Preconditioning limits mitochondrial Ca(2+) during ischemia in rat hearts:role of K(ATP) channels, Am. J. Physiol. Heart Circ Physiol.2001;280(5):H2321-2328.
    42. K. Yabe, Y. Nasa, M. Sato, R. Iijima, S. Takeo, Preconditioning preserves mitochondrial function and glycolytic flux during an early period of reperfusion in perfused rat hearts, Cardiovasc. Res.1997; 33 (3):677-685
    43. S. Matsuzaki, L.I. Szweda, K.M. Humphries, Mitochondrial superoxide production and respiratory activity:biphasic response to ischemic duration, Arch. Biochem. Biophys.2009;484:87-93.
    44. M. Ott, J.D. Robertson, V. Gogvadze, B. Zhivotovsky, S. Orrenius, Cytochrome c release from mitochondria proceeds by a two-step process, Proc. Natl. Acad Sci. USA 2002;99 (3):1259-1263.
    45. Y. Zhao, Z.B. Wang, J.X. Xu, Effect of cytochrome c on the generation and elimination of O2 S-and H2O2 in mitochondria, J. Biol. Chem.2003;278 (4):2356-2360.
    46. Baxter GF, Yellon DM (2003) Current trends and controversies in ischemiareperfusion research. Meeting report of the Hatter Institute 3rd International Workshop on Cardioprotection. Basic Res Cardiol 98:133-136
    47. Kin H, Lofye MT, Amerson BS, Zatta AJ, et al. J Cardioprotection by "postconditioning" is mediated by increased retention of endogenous intravascular adenosine and activation of A2a receptors during reperfusion. Circulation.2004; 110:111-168
    48. Vinten-Johansen J, Zhao ZQ, Zatta AJ, Kin H, Halkos ME, Kerendi F. Postconditioning-A new link in nature's armor against myocardial ischemia-reperfusion injury. Basic Res Cardiol.2005 Jul;100(4):295-310.
    49. Yangs X-M, Proctor JB, Cui L, Krieg T, Downey JM, et al. Brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardio.2004;144:1103-1110
    50. Guo J-P, Murohara T, Buerke M, Scalial R. Direct measurement of nitric oxide release from vascular endothelial cells. J Appl Physiol.1996;81:774-779
    51. Ma X-L, Weyrich AS, Lefer DJ, Lefer AM. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res.1993;72:403-412
    52. Zhao Z-Q, Corvera JS, Halkos ME, Kerendi F, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol.2003;285:H579-H588,
    53. Zhao Z-Q, Corvera JS, Wang N-P, Guyton RA, Vinten-Johansen J Reduction in infarct size and preservation of endothelial function by ischemic postconditioning:Comparison with ischemic preconditioning. Circulation.2002; (Suppl) 106:11314
    54. Kelly RA, Balligand J-L, Smith TW Nitric oxide and cardiac function. Circ Res 1996;79:363-380
    55. Balligand JL, Kobzik L. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type Ⅲ) nitric oxide synthase in cardiac myocytes. J Biol Chem.1995;270:14582-14586
    56. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM. Postconditioning:a form of "modified reperfusion" protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res.2004;95:230-232
    57. Hausenloy DJ, Tsang A, Mocanu MM, and Yellon DM. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol (Heart Circ Physiol) 2005;288:H971-H976
    58. Zhao Z-Q, Clark KL, Wang N-P, et al. Comparison of AMP579 and adenosine in inhibition of cell-cell interaction between human neutrophil and vascular endothelial cell. Drug Devel Res.2000;49:266-272
    59. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM. Postconditioning:a form of "modified reperfusion" protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res.2004;95:230-232
    60. Yang X-M, Philipp S, Downey JM, Cohen MV. Postconditioning's protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase.2005
    61. Kosieradzki M. Mechanisms of ischemic preconditioning and its application in transplantation. Ann Transplant.2002;7(3):12-20.
    62. Karck M, Rahmanian P, Haverich A. Ischemic preconditioning enhances donor heart preservation. Transplantation.1996 Jul 15;62(1):17-22.
    63. Kirsch M, Farhat F, Gamier JP, Loisance D.Acute brain death abolishes the cardioprotective effects of ischemic preconditioning in the rabbit. Transplantation.2000 May 27;69(10):2013-9.
    64. Kirsch M, Bertrand S, Gamier JP, et al. Pretreatment with a potassium-channel opener before prolonged cardiac storage:an evaluation in an experimental brain death model. Ann Thorac Surg.1999 Jun;67(6):1623-9; discussion 1630.
    65. Sindram D, Rudiger HA, Upadhya AG, Strasberg SM, Clavien PA. Ischemic preconditioning protects against cold ischemic injury through an oxidative stress dependent mechanism. J Hepatol.2002 Jan;36(1):78-84.
    66. Ricciardi R, Schaffer BK, Kim RD, et al. Protective effects of ischemic preconditioning on the cold-preserved liver are tyrosine kinase dependent. Transplantation.2001 Aug 15;72(3):406-12.
    67. Serafin A, Rosello-Catafau J, Prats N, Xaus C, Gelpi E, Peralta C. Ischemic preconditioning increases the tolerance of Fatty liver to hepatic ischemia-reperfusion injury in the rat. Am J Pathol.2002; 161 (2):587-601.
    68. Totsuka E, Fung JJ, Urakami A, et al. Influence of donor cardiopulmonary arrest in human liver transplantation:possible role of ischemic preconditioning. Hepatology.2000 Mar;31(3):577-80.
    69. Adam R, Arnault I, Bao YM, Salvucci M, Sebagh M, Bismuth H.Effect of ischemic preconditioning on hepatic tolerance to cold ischemia in the rat. Transpl Int.1998; 11 Suppl 1:S168-70.
    70. Ogawa T, Nussler AK, Tuzuner E, et al. Contribution of nitric oxide to the protective effects of ischemic preconditioning in ischemia-reperfused rat kidneys. J Lab Clin Med.2001 Jul;138(1):50-8.
    71. Ogawa T, Mimura Y, Hiki N, Kanauchi H, Kaminishi M. Ischaemic preconditioning ameliorates functional disturbance and impaired renal perfusion in rat ischaemia-reperfused kidneys. Clin Exp Pharmacol Physiol.2000 Dec;27(12):997-1001.
    72. Gasparri RI, Jannis NC, Flameng WJ, Lerut TE, Van Raemdonck DE.Ischemic preconditioning enhances donor lung preservation in the rabbit. Eur J Cardiothorac Surg.1999 Dec;16(6):639-46.
    73. Du ZY, Hicks M, Winlaw D, Spratt P, Macdonald P. Ischemic preconditioning enhances donor lung preservation in the rat. J Heart Lung Transplant.1996 Dec;15(12):1258-67.
    1. A novel approach of prophylaxis to HBV recurrence after liver transplantation, Pan T, Cai M(co-auther),Tang L, Zhou LQ, Li BJ, Zhu T, Li HZ, Li SY, Xiao X, Chen ZS. Virology.2008 Dec 5;382(1):1-9. Epub 2008 Oct 21.
    2. Increased CD4+CD25+Foxp3+ regulatory T cells in tolerance induced by portal venous injection. He F, Chen Z, Xu S, Cai M, Wu M, Li H, Chen X Surgery. 2009 Jun;145 (6):663-74. Epub 2009 Apr 19.
    3. Ming Cai, Yuanjing Li,, Yi Xu, Harold M, Swartz, Guanglong He et al. Late phase ischemic preconditioning attenuates hyperoxygenation in reperfused myocardium via up-regulation of mitochondrial respiratory function(待发表)
    4. Ming Cai, Yuanjing Li,, Guanglong He et al. NOS/NO Induces Myocardial Hyperoxygenation And Regulates Myofibroblast Transformation Via TGF-01 Signaling In The Reperfused Heart(待发表)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700