用户名: 密码: 验证码:
复合结构柔性反底拱应用于软岩峒室稳定性控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下工程的围岩为软岩或因赋存深度增加呈现软岩特性的岩体时,其稳定性控制问题越发突出,其中对软岩峒室底臌的有效控制已成为决定峒室整体稳定性的关键。由于软岩峒室的破坏受软岩自身强度、采动压力、睡的作用支护形式及支护质量等多种因素的影响,目前还没有全面、统一的、合理的峒室支护理论。
     本文结合华宁集团鑫安矿的工程实际,探讨了软岩巷道的底臌机理,分析了引起该巷道底臌的因素、底臌的过程及底臌量的构成。在总结前人经验的基础上提出了复合结构柔性反底拱用于控制该巷道底臌的方法,并分析了复合结构柔性反底拱的作用机理。
     利用SAW-2000微机控制电液伺服岩石试验机等仪器设备,进行软岩峒室围岩岩石力学性质实验及柔性孔隙垫层的注浆试件单轴及常规三轴试验,得到了岩石注及浆试件破坏机理,巷道围岩及注浆试件的弹性模量、泊松比、内摩擦角等物理力学性质指标及破坏的全应力-应变曲线。实验结果得出不同围压及不同的注浆效果对注浆试件力学性质的影响显著。
     -800m胶带暗斜井及-600回风大巷底臌的影响因素包括围岩性质、水、地质构造、构造应力、巷道布置和支护形式六方面因素。这些因素的共同作用使得巷道底臌严重。其中,围岩性质、水、支护方式和构造应力是引起底臌的主要因素。
     运用有限元数值模拟软件模拟软岩峒室底板在无支护、普通刚性支护、复合结构柔性反底拱支护条件下,峒室围岩的位移、塑性区及应力分布等的变化规律。在底板未作支护的情况下,巷道表现出大变形,集中表现为拱顶下沉、两帮内敛、底板臌起。采用普通刚性反底拱与复合结构柔性反底拱均能明显控制围岩变形量,其中复合结构柔性反底拱效果更明显,突出表现在控制底臌量。比较得到了复合结构柔性反底拱措施对软岩峒室整体稳定性控制的有效性。
     将复合结构柔性反底拱应用于现场,针对修复前的施工方案存在的问题,对方案的参数、结构设计、支护材料的选择、施工组织等方面提出了相应的措施。取得了良好的支护效果,为同类软岩峒室稳定性控制技术的研究与应用提供了可行途径。
Deformation of underground project may be more serious as its adjoining rock masses being soft rock or showing soft rock features along with increase of mining depth.That how to restrain the floor heave effectively has been an important method to stability of soft rock roadway.There are lots of theories about the excavations in the soft rock,but at present,that havetn’t systematic and appropriate support theories of soft rock excavations.The deformed destruction of soft rock is led by many reasons,such as the low intensite itself,the exploiting press,underground water,support and the quality of support etc.
     This paper combines elements of the soft rock roadway engineering in Xin’an coal mine of Huaning Group, the mechanism of floor heave of the roadway is profoundly exposed.The factors resulting in its floor heave are analyzed, as well as the components of the floor heave deformation and the developing process of the floor heave are discussed.On the basis of the experience summed up by our predecessors,propose the combined supporting which is made of flexible inverted arch structure.The mechanism of composite structure for flexible inverted arch has been discussed.
     Uniaxial and triaxial compression tests about soft rock roadway and grouting specimens of flexible pore cushion were executed on SAW-2000 Electro-hydraulic Servo-controlled Rock Mechanics Testing System manufactured in Kexin testing instrument corporation.Complete process strain-stress curves and mechanism of rock failure for specimens were obtained,and mechanical parameters included peak strength,elastic modulus,Poisson’s ratio, and so on.The physical mechanics of the grouting specimens changed rapidly with the confining pressure and grouting effect.
     The factors of floor heave for the belt blind inclind shaft at -800 level and return-air roadway at -600 level including the nature of rock,water,geological structure,tectonic stress,roadway layout and supporting the form of six factors.The interaction of these factors makes the opening floor heave serious.Among them, the nature of rock,water,support means and tectonic stress are major factors.
     Numerical simulation using FLAC software calculated the stress distribution,wall rock’s displacement and plastic strain distribution of the three programs:the bare wall,the common rigidity arc,combination of flexible inverted arch structure combined bolting-grouting support.The absence of support in the bottom of the case,the tunnel show a large deformation,concentrated expression of the vault settlement,two groups of restrained,from the floor heave.The ordinary rigid composite structure against the end of Arch and flexible inverted arch could significantly control the deformation of surrounding rock,which composite structure flexible inverted arch effect was more obvious especially in the amount of floor heave control.The numerical simulation proved that the roadway at the complex rock condition uses the combined supporting of soft rock may control the stability of soft roadway well.
     The supporting project has successfully been put into practice ,Pre-construction plan for the repair problems on the program's parameters,structural design , supporting the choice of materials , construction organization,set the corresponding measures,vast economic profit and technological effect has been achieved,as well as a good method to control the floor heave of similar roadway has been given.
引文
[1]曹玉亮.软岩隧道围岩稳定性分析与支护研究[D].西安:煤科总院西安分院,2007.
    [2]常庆粮,周华强,瞿群迪,等.程村矿软岩巷道底鼓控制技术[J].煤炭科学技术,2007,35(4):26-28.
    [3]陈明雄.软岩巷道底臌的综合治理[J].徐煤科技,1996,l:21-25.
    [4]陈炎光,陆士良.中国煤矿巷道围岩控制[M].中国矿业大学出版社,1994.
    [5]丁遂栋.断裂力学.北京:机械工业出版社,1997.
    [6]董方庭,宋宏伟,郭志宏等.巷道围岩松动圈支护理论[J].煤炭学报,1994,l9(l):2l-32.
    [7]段克信,松软围岩煤层开采[M],北京:煤炭工业出版社,1995.
    [8]高磊.矿山岩石力学[M].北京:机械工业出版社,1988.
    [9]韩立军,陈学伟,李山年.软岩动压巷道锚注支护试验研究[J].煤炭学报,1998,23(4):241-245.
    [10]何满潮,景海河,孙晓明.软岩工程力学[M].科学出版社,2002.
    [11]何满潮,邹正盛,邹友峰.软岩巷道工程概论[M].中国矿业大学出版社,1993.
    [12]何亚男,贺永年.双可缩联合支护控制茂名软岩动压巷道变形与防治底臌的研究[J].煤炭学报,1992,17(4):54-59.
    [13]侯朝炯,郭励生,勾攀峰.煤巷锚杆支护[M].中国矿业大学出版社,1999.
    [14]侯朝炯,何亚男.加固巷道帮、角控制底鼓的研究[J].煤炭学报,1995,20(3):1-5.
    [15]胡昕,洪宝宁,孟云梅,等.单轴压缩条件下红砂岩微细结构演化规律的试验研究[J].武汉大学学报,2007,40(4):64-68.
    [16]黄胜,刘巍,于驰.浅谈巷道底鼓的防治措施[J].矿业工程,4(5):27-29.
    [17]李树清.葛泉矿软岩大巷底鼓机理及控制研究[D].长沙:中南大大学,2004.
    [18]黄醒春.岩石力学[M].高等教育出版社,2005.
    [19]贾光胜,康立军.综放开采采准巷道护巷煤柱稳定性研究[M],煤炭学报,2002.27(1):7-10.
    [20]姜耀东,陆士良.巷道底鼓的机理研究[J].煤炭学报,1994,19(4):343-351.
    [21]姜耀东,赵毅鑫,刘文岗,等.深部开采中巷道底臌问题的研究[J].岩石力学与工程学报,2004,7,24(5):808-812.
    [22]靖洪文,等.软岩巷道围岩松动圈变形机理及控制技术研究[J].中国矿业大学学报.1999.28(6):560-564.
    [23]康红普,陆士良.巷道底臌机理的分析[J].岩石力学与工程学报.1991,4:362-373.
    [24]康红普.软岩巷道底臌的机理及防治[M].煤炭工业出版社,1993.
    [25] M.奥顿哥特.巷道底臌的防治[M].煤炭工业出版社,1985.
    [26] M.鲍莱茨基,M.胡戴克.矿山岩石力学[M].于振海,刘天泉译,煤炭工业出版社,1985.
    [27]李开学,王宏图,刘正海.巷道底鼓理论与防治技术[J].矿业安全与环保,2008,35(3):86-88.
    [28]李庶林,等.应力控制技术及其应用综述[J].岩土力学,1997,18(1):90-96.
    [29]李先炜.岩块力学性质[M].煤炭工业出版社,1983.
    [30]李永波.隧道锚喷支护施工工艺及质量检验[J].宁波大学学报,2005,18(4):538-539.
    [31]林登阁.注浆锚杆设计与应用[J].建井技术,1996(4),23-25.
    [32]凌贤长,蔡德所.岩体力学[M].哈尔滨工业大学出版社,2002.
    [33]刘高,聂德新,韩文峰.高应力软岩巷道围岩变形破坏研究[J].岩石力学与工程学报.2000,11,9(6):726-730.
    [34]刘长武,褚秀生.软岩巷道锚注加固原理与应用[M].中国矿业大学出版社,2000.
    [35]刘长武.构造应力对巷道维护的影响[J].矿山压力与顶板管理,1999,2:22-24.
    [36]刘忠良.深部软岩巷道支护[J].煤炭科学技术,1995,23(4):5l-53.
    [37]龙驭球.有限无法概论[M],北京:人民教育出版社,1979.
    [38]卢爱红等.软岩巷道的时间效应模拟[J],矿山压力与顶板管理,2004,21,(3)1-7.
    [39]马念杰.徐州东部矿区回采巷道底臌的机理与防治[D].徐州:中国矿业大学,1984.
    [40]孟文福.注浆加固技术防治巷道底鼓的机理研究[J].中周煤炭,2009,(3):12-14.
    [41]钱鸣高,刘听成.矿山压力与控制[M].煤炭工业出版社,1991.
    [42]曲永新,谢兵,时梦熊等.地下工程建设中潜在膨胀性岩体的工程地质问题[M].北京:科学出版社,1990.
    [43]商翔宇,周国庆,赵光思,等.立井井筒地层注浆加固实测数据分析[J].岩土力学,2009,30(4):1073-1077.
    [44]史秀志,林杭,曹平.注浆效应对边坡稳定性的影响[J].中南大学学报(自然科学版),2009,40(2):492-497.
    [45]汤康民.岩土工程[M].武汉工业大学出版社,2001.6.
    [46]汤雷,陆士良.扩大锚注支护应用范围的数值研究[J].1996,14(2):125-128.
    [47]王朝晖,朱向荣,颜志平,等.软岩回采巷道底鼓机理的探讨[J].矿山压力与顶板管理,4(5):5-7.
    [48]王传兵,孔德慧.急倾斜矿井深部巷道底鼓的防治[J].煤矿开采,2002,7(4):52-56.
    [49]王金华,魏景云,宁宇,等.巷道围岩化学加固理论及其实践[J].煤炭学报,1996,21(5):481-486.
    [50]王同旭.软岩巷道变形类型与支护方式选择[J].煤矿开采,1997(l):48-51.
    [51]王伟,秦贞田.管式锚杆注浆支护技术[J].煤矿设计,1999(10):8-9.
    [52]王卫军,冯涛.加固两帮控制深井巷道底鼓的机理研究[J].岩石力学与工程学报,2005,24(5):808-811.
    [53]王卫军,侯朝炯.回采巷道底臌力学原理及控制研究新进展[J].湘潭矿业学院学报,2003,18(1):1-6.
    [54]王珠,傅均先.巷道底臌的综合治理[J].煤炭科学技术,1994,22(7):31-33.
    [55]武继森,闫加满,姜浩等.深部软岩地层中钢棚反拱支护实践[J].煤矿开采,2000,(43):41-43.
    [56]谢文兵,陆士良,殷少举.软岩铜室围岩注浆加固作用与浆液扩散规律[J].中国矿业大学学报,1998(4):406-409.
    [57]徐干成,郑颖人.岩石工程中屈服准则应用研究[J].岩土工程学报.1990,12(2):93-99.
    [58]徐学富,尚文斌.爆破锚杆卸压锚固注浆加固反拱底板技术及施工工艺[J].煤矿开采,2007,(6):46-47.
    [59]杨桂通.弹性力学[M],北京:高等教育出版社,2001.
    [60]杨庆.膨胀岩与巷道稳定[M].冶金工业出版社,1995.
    [61]杨永杰.构造应力作用下回采巷道变形特点及控制[J].山东矿业学院学报,1996,15(1):2-5.
    [62]杨永杰.软岩巷道底臌及切缝[J].矿山压力与顶板管理,1993,1:14-16.
    [63]叶明亮等,软岩井巷矿压显现规律[J],矿山压力与顶板管理,2004,21(2):31-36.
    [64]于学馥,郑颖人,刘怀恒,等.地下工程围岩稳定分析[M].煤炭工业出版社,1983.
    [65]张民庆.TSS型注浆管及其注浆技术研究与应用[J].铁道工程学报,2000,(2):50-57.
    [66]赵权.巷道底鼓机理及防治措施[J].煤炭技术,2007,26(8):49-51.
    [67]钟新谷,徐虎.管缝式锚杆防治软岩巷道底臌的实验研究[J].岩土力学,1996,l:6-21.
    [68]周建,吴世明,徐建平,环境与岩土工程[M].北京建筑工业出版社,2001.
    [69]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].科学出版社,1995.
    [70]朱新华,石雷,马义庆.中深孔注浆技术在饱和富水砂层浅埋暗挖地道中的应用[J].铁道标准设计,2005,(4):56-58.
    [71] A.W.Hays.Strata Control-The State of the Art[J].Mining Teehnolog,1993,4(3):354-358.
    [72] An-Zeng Hua,Ming-Qing You.Rock failure due to energy release during unloading and application to underground rock burst control[J].Tunneling and Underground Space Technology,2001,16:241-246.
    [73] Atewell PB.Tunneling and site investigations[J].Geotechnical Engineering of Hard Soils/Soft Rocks,1993,3:1767-1790.
    [74] Akai R,Ohnishi Y.Strength and deformation of rock[A].In:proc. of the 5th ISRM[C].[s.l.],1982:40-45.
    [75] Brown ET.Puting the NATM into Perspective[J],Tunneling Special Issue,1990(7):76-79.
    [76] Brantberger M,Stille H,Eriksson M.Controlling grout spreading in tunnel grouting-analyses and development of the GNT-method[J]. Tunneling and Underground Space Technology,2000,15(4):343-352.
    [77] Chun,Byung-Sik,Choi,Chang-Sik,Shin Chang-Beum,et al.Effectiveness of grouting for river crossing tunneling[A].Grouting and deep mixing[C].Proc conference,Tokyo,1996(1):275-278.
    [78] Diering JAC,Laubsscher D H.Practical approach to the numerical stress of mass mining operations.Inst.Metal[A].1987.14(1):17-21.
    [79] Dowing C.H.Earth quake stability of rock tunnel[J].Tunnels and Tunnelling.June 1979:15-20.
    [80] E.Detournay,Elasto-plastic modle of deep tunnel for a rock with variable dilatancy,Rock Mech.Rock Eng,1986,19(2):99-108.
    [81] E.Hock and Brow E.T.Brown,Underground Excavations in Rock[M].Austin& Sons Ltd,Herford,England,1980.
    [82] F.0.Franelss.Weak Roek Tunelling.A.A.Balkmea Press,1997.
    [83] Gesel.M.Design of Tunnels in Swelling Rock,Roek Mech.And Rock Eng,1987.20(4):219-242.
    [84] HARAMY K.Floor heave analysis in a deep coal mine,Proe.of the 27th U.S.SynlPosium on Rock Mechanics[C],Rotterdam:Alabama,1986,520-525.
    [85] He Manchao.Current Condition for Mechanics of Soft-rock in China Rock Engineering[J].The Korean Ins.of Min.Energy Press,1996:425-433.
    [86] He Y N.Analysis of loose zone around the roadway in soft rock [J].Joumal of China Coal Society,1991,16(2):63-69.
    [87] Kidybinski.Strata Control in Deep Mines[J].A.A.Balkema press,1990.
    [88] L.Adler.Evaluating double elasticity in drill cores under flexure.Int J Rock Mech Min Sci & Geomech Abstr,1970,7:357-370.
    [89] Lu Shiliang , Jiang Yaodong . Mechanisma and Control of Floor Heave in Roadway[J].Journal of China University of Mining&Technology,1997,7(1):1-5.
    [90]L.R.Alejano,E.Alonso.Considerations of the dilatancy angle in rocks and rock masses[J].International Journal of Rock Mechanics & Minig Sciences,2005,42:481-507.
    [91]P.A.Vermeer,R.de Borst.Non associated plasticity for soils.concrete and rock,1984,29(3):3-64.
    [92]P.Pandey,D.P.Singh.Deformation of Rock in Different Tensile tests.Engineering Geology,1986,1(22):281-292.
    [93]R.E.Muller.Monitoring of Pumping Tests and Grouting Operations.Rock Mechanics and Rock Engineering,1984,17(1):51-59.
    [94]R.Chen,R.Chen.Measurement of rock elastic moduli in tensin and in compression and its practical significance,Can.Geotech.J,1993,30:338-347.
    [95]Rockway D.j.Investigation into the Efects of Weak Floor Conditions on the Stability of Coal Pillar[J].United States Bureau of Mines Open File RePort Final, 1979:237-243.
    [96]Spang K,Egger P,Action of fully-grouted bolts in jointed rock and influence ,Rock Mechanics and Rock Engineering,1990,23(3):31-35.
    [97] Trkmen Sedat,OzgzeNuri.Grouting a tunnel cave-in from the surface:a case study on Kurtkulag irrigation tunnel , Turkey . Tunneling and Underground Space Technology,2003,18(4):365-375.
    [98] WILSONAH.The stability of tunnel in soft rock at depth [J].Proc.Conf.on rock Engineering,University Newcasale upon Tyne,1987,18(3):511-515.
    [99] W.C.Moss,Y.M.Gupta.A constitutive model describing dilatancy and cracking in brittle rocks,1982,81(B4):2985-2998.
    [100]Yesilnacar , MI . Grouting applications in the Sanliurfa tunnels of GAP ,Turkey[J].Tunneling and Underground Space Technology,2003,18(4):321-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700