用户名: 密码: 验证码:
高土石坝抗震稳定与变形分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西部地区是我国水资源丰富的地区,正在或即将兴建一大批高坝水利水电工程。这些水利工程将有利于减轻下游区的干旱和洪涝灾害,缓解电力紧张。但西部地区处于高烈度地震带上,这些高坝一旦发生溃坝将严重威胁到人民生命财产安全,因此进行合理的地震动力分析和安全评价具有重要意义。汶川地震之后,高土石坝的抗震安全评价倍受关注。
     本文结合实际工程项目,对高土石坝抗震稳定进行了系统分析。
     根据边坡确定由若干变量控制的任意滑动面,采用Morgenstern-Price方法结合和声优化算法搜索边坡的临界滑动面及其最小安全系数,利用三个通用考题验证程序的正确性。
     以任意滑动面为基础,依据拟静力极限平衡法确定潜在滑动体。在有限元动力分析基础上计算潜在滑动体平均滑动加速度,考虑时程竖向加速度的影响得到潜在滑动体时程平均屈服加速度,将滑动体的实际滑动加速度对时间进行二次积分得到累积滑移量,以此判断坝体抗震安全度。
     结合实际工程的特点以及室内动三轴试验,本文采用了SEED简易经验法进行土石坝动强度验算。对液化区采用土体液化后残余强度进行静力稳定分析,给出坝坡失稳最危险滑动面,为土石坝设计提供依据。利用等效附加应力法研究坝顶加筋后坝坡稳定性变化。以静动力有限元分析为基础,采用等价节点力法对土石坝进行永久变形计算分析,对土石坝进行安全评价。
West china is abundant in hydropower resources, so large-scale major infrastructures such as high dams have been or to be constructed or under planning or under designing. These constructions are propitious to alleviate the disaster caused by drought and flood in the lower region, and also make for improving the structure of energy and relaxing the shortage of electricity power. Because most of western areas located in high earthquake intensity regions, so the evaluation of earthquake-resistant behavior and seismic safety of these high dams is very important. Once the dam destroyed, many people will lose their lives. After the wenchuan earthquake, people pay more attention to the seismic safety evaluation of high rockfill dams.
     In this article the slip surface was described by several variables. The factor of safety was calculated by using Morgenstern-Price method. The seismic stability analysis was based on the non-circular slip surface and the harmony search algorithm.
     Based on the non-circular slip surface, the potential sliding body was brougt forward. The time-history average yielding acceleration and the time-history average sliding acceleration was presented on the basis of time-history vertical acceleration. The accumulation of sliding displacement of potential sliding bodies was the actually sliding acceleration's twice integra-tion. Then the degree of dam's safety was judged by the potential sliding bodies'accumu-lation of sliding displacement.
     Based on real projects and Dynamic Triaxial Test, the safety factor of filter under seismic loads was estimated by Seed. Concerning part dam materials'shear strength depress after the powerful earthquake, the critical surfaces and their accumulation of sliding displacements were presented. It provided scientific basis for the design of the dam. The dam which was reinforced by Geogrid was discussed by equivalent additional stress method. The permanent deformation was calculated by equivalent nodal force method on the basis of static and dynamic element analysis.
引文
[1]李其军,陈肇和.土石坝漫坝风险理论与应用[M].北京:中国水利电力出版社,2008.
    [2]陈厚群,徐泽平,李敏.汶川大地震和大坝抗震安全[J].水利学报.2008,39(10):1158-1167.
    [3]郭诚谦,陈慧远.土石坝[M].北京:水利电力出版社,1992.
    [4]顾淦臣.土石坝地震工程[M].南京:河海大学出版社,1989.
    [5]倪汉根,金崇磐.大坝抗震特性与抗震计算[M].大连:大连理工大学出版社,1994.
    [6]张锐.高土石坝地震作用效应及坝坡抗震稳定分析研究[D].中国博士学位论文全文数据库.2008.
    [7]陈水生,沈珠江.钢筋混凝土面板坝的地震永久变形分析[J].岩土工程学报,1990,12(3):66-72.
    [8]Fellinius W. Calculation of stability of earth dams. Proceedings of 2nd International Congress of Large Dams[J],1936:445.
    [9]Bishop A. W., The use of the slip circle in the stability analysis of slopes[J]. Geotechni-que, Vol.5, No.1,1955.
    [10]Morgenstern N. R. and Price.V. E, The Analysis of the Stability of General Slip Surface [J]. Geotechnique, Vol.15, Nol,1965.
    [11]Spencer. E. A method of analysis of the stability of embankments assuming parallel interslice forces [J]. Geotechnique,1967,7(1).
    [12]Spencer. E. Thrust line criterion in embankment stability analysis[J]. Geotechnique, 1973,23(1).
    [13]Sarma. S. K. Stability analysis of embankments and slopesGeotechnique, vol.23, No.3.1973.
    [14]Janbu. N. Slope stability computations, Embankment-Dam Engineering [J].1973.
    [15]钱家欢等.土工原理与计算.中国水利水电出版社,1996.5.
    [16]Chen Z Y, Morgenstern N R. Extensions to the generalized method of slices for stability analysis. Canadian Geotechnical Journal,1983,20(1):104-119.
    [17]杨明成.边坡稳定性分析的条分法及临界滑动面的确定[D].博士学位论文.重庆:后勤工程学院,2003.
    [18]郑颖人,时卫民,杨明成.不平衡推力法与Sarma法的讨论[J].岩石力学与工程学报,2004,23(17):3030-3036.
    [19]陈祖煜.土质边坡稳定分析原理方法程序[M].中国水利水电出版社,2003.
    [20]郑颖人,叶海林,黄润秋.地震边坡稳定性分析探讨[C].第十一届中国科技协会,2009.
    [21]刘汉龙,费康,高玉峰.边坡地震稳定性时程分析方法[J].岩土力学,2003,24(4):553-556.
    [22]苏超,李俊宏,任青文.有限单元法在高拱坝坝肩动力稳定分析中的应用[J].河海大学学报(自 然科学版),2003,31(2):144-147.
    [23]张伯艳,陈厚群,杜修力等.拱坝坝肩抗震稳定分析[J].水利学报,2000,(11):55-59.
    [24]薄景山.三峡重庆库区区域滑坡灾害的综合研究报告[R].哈尔滨:中国地震局工程力学研究所,2003.
    [25]李育枢,高广运,李天斌.偏压隧道洞口边坡地震动力反应及稳定性分析[J].地下空间与工程学报,2006,2(5):738-743.
    [26]郑颖人,叶海林,黄润秋.地震边坡破坏机理及其破裂面的分析探讨[J].岩石力学与工程学报,2009,28(8):1714-1723.
    [27]郑颖人,陈祖煜,王恭先等.边坡与滑坡工程治理[M].北京:人民交通出版社,2007.1.
    [28]Ambraseys NN. The seismic stability of earth dams[D]. London, University of London,1959.
    [29]Newmark N M. Effects of earthquakes on dams and embankments[J]. Geotechnique,1965, 15(2):139-160.
    [30]倪汉根,金崇磐.大坝抗震特性与抗震计算[M].大连:大连理工大学出版社,1994.12.
    [31]李亮,王玉杰,王秋生等.土坡稳定分析中模拟任意滑动面的新策略及其效率分析[J].水利学报,2008,39(5):535-541.
    [32]张鲁渝,郑颖人,简化Bishop法的扩展及其在非圆弧滑面中的应用[J]岩土力学,2004,25(6),927-934.
    [33]朱大勇,李焯芬,黄茂松等.对3种著名边坡稳定性计算方法的改进[J].岩石力学与工程学报,2005,24(2),183-194.
    [34]李亮,迟世春,褚雪松.基于修复策略的改进和声搜索算法求解土坡非圆临界滑动面[J].岩土力学,2006,27(10),1714-1718.
    [35]李亮,智能优化算法在土坡稳定中的应用[D].大连理工大学.2006.
    [36]Kennedy J, Eberhart R. Particle swarm optimization[C]. In:IEEE. International confere-nce on Neural Networks. Perth, Australia:IEEE Service Center, Piscataway, New Jersey, 1995,1942-1948.
    [37]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]. In:Proceeding of the 6th international symposium on micro machine and human science, Nagoya, Japan,1995: 39-43.
    [38]刘汉龙,费康,高玉峰.边坡地震稳定性时程分析方法[J].岩土力学.2003,24(4):553-560.
    [39]Makdisi F I, Seed H B. Simplified procedure for estimation dam and embankment earthqua-ke induced deformations[J]. Journal of the Geotechnical Engineering Division, ASCE, 1978,104(GT7):849-868.
    [40]水利部水利水电规划设总院.DL5073-2000水工建筑物抗震设计规范[S].北京:中国水利水电出版社,2002.
    [41]李红军.高土石坝地震变形分析与抗震安全评价[D].大连理工大学,2008.
    [42]栾茂田,金崇磐,林皋.非均布荷载作用下土坡的稳定性[J].水利学报,1990,(1):65-72.
    [43]Ling HI, Leshchinsky D, Yoshiyuki M. Soil slopes under combined horizontal and vertical seismic accelerations[J]. Earthquake Engineering and Structural Dynamics,1997,26(12): 1231-1241.
    [44]栾茂田.李湛.范庆来.土石坝拟静力抗震稳定性分析与坝坡地震滑移量估算[J].岩土力学,2007,(2):224-230.
    [45]陈国兴.岩土地震工程学[M].北京:科学出版社,2007.
    [46]张锐,迟世春,林皋等.地震加速度动态分布及对高土石坝坝坡抗震稳定的影响[J].岩土力学,2008,29(4):1072-1076.
    [47]李湛.土石坝地震永久变形及抗震稳定性数值分析方法研究[D]大连理工大学,2006.
    [48]SEED H B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes[J]. Geotechnical Engineering Division, ASCE,1979,105(2):201-255.
    [49]SEED H B, IDRISS I M. Ground motions soil liquefaction during earthquakes[M]. Berkeley AC:Earthquake Engineering Research Institute,1982.
    [50]赵川,周亦唐,土工格栅加筋碎石土大型试验研究[J].岩土力学,2001,22(4):419-422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700