用户名: 密码: 验证码:
金刚石砂轮微观出刃形貌的非接触检测及3D图形化评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石砂轮磨削技术是硬脆性材料精密加工的有效方法。依据磨削理论,增加有效磨粒出刃数可以减小单颗磨粒的切除深度,且减小磨粒尺寸可以防止磨粒破碎而划伤已加工的表面,实现硬脆性材料的塑性域镜面磨削加工。通常,需要采用#3000以细的金刚石砂轮,加工效率极为有限。因此,本研究提出选择较粗的#46、#60、#270金刚石砂轮实现硬脆性材料的高效塑性域镜面磨削。这就需要研究金刚石磨粒在砂轮表面如何分布、微小磨粒出刃形貌能否被参数化、磨粒微出刃参数如何影响磨削性能等关键问题。采用非接触检测技术和图形化处理技术,建立砂轮表面微观形貌的参数化模式,分析其与精密磨削性能的关系。
     首先,采用单颗#46金刚石磨粒对光学玻璃进行微纳V槽的切削试验,通过非接触激光检测构建了微V槽形状误差、V槽角度及V槽尖端半径的评价模式。结果发现,切削深度控制在0.386μm以内,可以在脆性玻璃表面发生塑性域去除加工。若要形成完整的V槽,切削深度还要控制在0.365μm以下。
     然后,利用激光检测方法获取修整修齐的#270金刚石砂轮表面的3D数据。通过砂轮微观出刃形貌的图形化处理,建立磨粒出刃高度、出刃体积、磨粒切削前角和后角等特征参数模式。结果表明,GT修齐的砂轮与理想砂轮相比,磨粒出刃高度、出刃体积和磨粒后角的平均值要小,但是,磨粒切削负前角要大。此外,在2μm的切深内,有效磨粒出刃数可增加36倍,有效磨粒出刃体积增大约194倍,使得每颗磨粒切削深度减小,磨粒切削刃的刚度增大。这导致磨削表面粗糙度减小约80%,接近塑性域磨削,但磨削力却提高了约40倍,需要更大的磨削能量。
     最后,采用修整修齐的#60金刚石砂轮对碳化硅陶瓷进行轴向镜面磨削,采用白光干涉检测方法获得砂轮工作表面的3D数据。结果表明,与出厂砂轮相比,镜面加工砂轮的磨粒出刃高度、出刃体积和出刃后角要大,但出刃前角减小,这与微细#270金刚石砂轮的GT修齐机理不一致。此外,在2μm的切深内,有效磨粒出刃数可提高约2倍,有效磨粒出刃体积提高约2倍,这与GT修齐的#270金刚石砂轮的出刃特征一致。
     综上所述,有效磨粒出刃数和有效磨粒出刃体积是衡量硬脆性材料磨削性能的主要指标,使两者增大可以实现较粗金刚石砂轮的硬脆性材料塑性域镜面加工。
Grinding technique using a diamond grinding wheel is an effective method for the precision machining of the hard and brittle materials. Based on general grinding theory, the single abrasive grain cutting depth can be reduced with increasing the active grain number, and also diamond grain break-off that does damage to the machined surface can be prevented by reducing the abrasive grain size, ultimately leading to the ductile-mode mirror grinding of hard and brittle materials. Generally, diamond grinding wheel which are finer than #3000 are used, and machining efficiency is extremely limited. Therefore, the coarse diamond grinding wheel of #46、#270、#60 are chose to realize the ductile-mode efficient grinding of hard and brittle materials in this paper. So the key problems of how diamond grains are distributed on the wheel working surface and whether micro diamond grains can be parameterized, how grain protrusion parameters influence grinding performance need to be researched. The non-contact measuring technology and graphical processing approach are used to establish the parameterization mode of grinding wheel surface topography, and the relationship between parameters and performance of accurate grinding is analyzed in this paper.
     First an optical glass cutting test with a #46 single diamond grain was conducted, the shape error, the angle and the tip arc-radius of V-groove are modeled through the non-contact laser measurement. The results show that the ductile-mode cutting of the brittle glass may be conducted using a single diamond grain when the cutting depth is less than 0.386μm. If an integrate V-groove is machined, the cutting depth still need to be less than 0.365μm.
     Then, the 3D topographical data of truncated #270 diamond grinding wheel surface has been acquired by a laser detection method. Through the graphics processing of micro protrusion topography of wheel, the grain protrusion height, grain protrusion volume, grain rake angle and clearance angle were modeled. The results show that average values of grain protrusion height, grain protrusion volume and clearance angle of truncated grinding wheel are smaller than the ones of ideal grinding wheel, but the grain rake angle of truncated grinding wheel is larger. In comparison with ideal grinding wheel, the truncated grinding wheel may increase the active grain number by 36 times and the active grain volume by about 194 times for the depth of cut of 2μm, thus leading to a decrease in grain cutting depth and an increase in grain cutting edge rigidity. Therefore, the truncated diamond grinding wheel can improve ground surface roughness of quartz glass by about 80%, but increase the grinding force has by about 40 times, thus requiring greater grinding energy.
     Finally, the axial-feed mirror grinding on the silicon carbide ceramics was ground by using the truncated #60 diamond grinding wheel, the 3D data of wheel working surface are measured by using white light interference detection. The results show that grain protrusion height, grain protrusion volume, and clearance angle are larger compared with the factory wheel, but the grain rake angle is smaller, which is different from the truncation mechanizations of finer #270 diamond grinding wheel. In addition, the truncated #60 diamond grinding wheel can increase the active grain number by about twice and active grain volume by about twice for the depth of cut of 2μm, which accords with the feature of the truncated #270 diamond grinding wheel.
     As a result, active grain number and active grain volume can be regarded as main parameters to evaluate the grinding performance. Increasing these parameters may realize the ductile-mode mirror grinding of hard and brittle materials using a coarser diamond grinding wheel.
引文
[1]刘家豪,傅建中,陈子辰.超精密加工的关键技术及发展趋势[J].机电工程, 2001, 18(5): 19-21
    [2]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社, 2004: 10-15
    [3]李长河,丁玉成,卢秉恒.硬脆材料高效精密磨粒加工技术[J].精密制造与自动化, 2008, 2: 14-17
    [4]赵波,焦锋,向道辉.浅谈磨削加工技术的发展趋势[J].机械工人(冷加工), 2004, 9: 13-15
    [5]孟剑锋,李剑峰,孟磊.金刚石工具加工硬脆材料时的磨损及其影响因素的研究现状.[J].工具技术.2004,38(3):6-8
    [6]何聪华,袁慧.精密金刚石砂轮的制造、修整及其磨削机理研究进展[J].超硬材料工程, 2008, 20(4): 30-36
    [7]张建刚,林彬,于思远,韩建华.磨削技术发展现状与趋势[J].机械工人(冷加工), 2002, 11: 25-27
    [8]李长河,丁玉成,卢秉恒.硬脆材料高效精密磨粒加工技术[J].精密制造与自动化. 2008, 2: 14-17
    [9]孙春华,尚广庆.硬脆材料加工机理的研究[J].金刚石与磨具磨料工程, 2002, 4(130): 51-53
    [10]霍凤伟,郭东明,金诛吉等.细粒度金刚石砂轮形貌测量与评价[J].机械工程学报, 2007, 43(10): 108-113
    [11] Linke B. Dressing process model for vitrified bonded grinding wheels [J ]. CIRP Annals -Manufacturing Technology, 2008, 3: 73-83
    [12] M. M. Islam, A. Senthil Kumar, S. Balakumar, et al. Characterization of ELID grinding process for machining silicon wafers [J ]. Materials Processing Technology, 2007, 6: 1-10
    [13] SUZUKI K,UEMATSU T,NAKAGAWA T.On-machinetruing/dressing of metal bond grinding wheel with electro-discharge machining[J].Ann.CIRP, 1991, 40(1): 363-366
    [14]谢晋,汤勇,田牧纯一.金刚石砂轮金属结合剂的气中单脉冲电火花放电去除机理[J],机械工程学报, 2007, 43(7): 93-98
    [15] M. Schopf, I. Beltrami, M. Boccadoro, D. Kramer, ECDM (Electro Chemical DischargeMachining), a new method for trueing and dressing of metal-boned diamond grinding tools, 2001, 50 (1): 125–128
    [16] J. Xie, J. Tamaki, Ground surface integrity of granite by using dry electro-contact discharge dressing of #600 diamond grinding wheel, Journal of Materials Processing Technology. 2009, 209: 6004–6009
    [17] J. Xie, J. Tamaki, In-process evaluation of grit protrusion feature for fine diamond grinding wheel by means of electro-contact discharge dressing, Journal of Materials Processing Technology, 2006, 180(1-3): 83–90
    [18] X. Kang, J. Tamaki, A. Kubo, Y. Machida, K. Tanaka, Effect of cutting edge truncation on the grinding mechanism—theoretical analysis and the experimental investigation, Journal of the Japan Society for Abrasive Technology, 2007, 51 (5): 296–301
    [19] X. Kang, J. Tamaki, A. Kubo, Effect of cutting edge truncation on ductile-regime grinding of hard and brittle materials, International Journal of Manufacturing Technology and Management, 2006, 9: 183–200
    [20]党希敏.圆弧形金刚石砂轮修整及修整效果评价[D].广州:华南理工大学, 2007
    [21]史建茹,崔江红.砂轮修整器修整效果的地貌评价方法[D].科技信息, 2008: 570-574
    [22]党希敏,谢晋.金刚石砂轮中磨粒出刃的分形分析[J].装备制造技术. 2007(2): 14-19
    [23] Rasigni M, Rasigni G. Validity of surface roughness study using microdensitometer analysis of electron micrographs of surface replicas[J]. J. Opt. Soc. Am., 1981, 71(12): 1549-1550
    [24] Fujii T, et al. Scanning Tunneling Microscope with Three Dimensional interferometer for Surface Roughness Measurement[J]. Rev Sci Instrum, 1995, 66: 2504-2507
    [25]郧建平.基于白光干涉的表面形貌接触和非接触两用测量系统的研究[D].武汉:华中科技大学, 2008
    [26]王文卓,李大勇,陈捷.表面粗糙度非接触式测量技术研究概况[J].机械工程师, 2004, 11: 6-9
    [27]贾平平.螺旋复杂曲面数控抛光技术的研究[D].沈阳:沈阳工业大学, 2008
    [28]万瑾,黄元庆.激光三角法测量的研究[J].三明学院学报, 2006, 23(4): 361-364
    [29]卢晋人,黄元庆.激光三角法测量表面形貌[J].厦门大学学报, 2004, 43(1): 50-52
    [30] Gu, Min. Principles of Three Dimensional Imaging in Confocal Microscopes. Singapore: World Scientific, 1996
    [31]孟广政,张志三,聂玉昕.共焦扫描激光显微镜[J].光谱学与光谱分析, 1995, 15(1): 105-1081
    [32]孙大乐,吴琼,刘常升.激光共聚焦显微镜在磨损表面粗糙度表征中的应用[J].中国激光, 2008, 35(9): 1409-1414
    [33]吴开杰,李刚,虞启琏.基于线扫描方式的激光共焦显微镜的研究[J].仪器仪表学报, 2002, 23(3): 134-135
    [34]郑俊丽,赵学增,周莉莉.表面粗糙度的激光非接触检测方法[J].激光与红外, 2003, 35(3): 148-150
    [35]谢晋.光学非球面的超精密加工技术及非接触检测.[J].华南理工大学学报, 2004, 32(2): 94-98
    [36] Tamamu. 3D shape measurment of diamond abrasive grain utilizing laser scanning microscope[D].日本:北见工业大学, 2003
    [37] Balsubramanian N. Optical system for surface topography measurement. U.S. Patent No.4340306, 1980
    [38] Groot P, Deck L. Surface profiling by analysis of white-light interferogram in the spatia frequency[J]. J. Mod. Opt., 1995, 42(2): 389-401
    [39]郧建平.基于白光干涉的表面形貌接触和非接触两用测量系统的研究[D].武汉:华中科技大学, 2008
    [40] Schmit J, Olszak A. High-precision shape measurement by white-light interferometry with real-time scanner crrection[J]. Appl. Opt, 2002, 41(26): 5943-5950
    [41]常素萍.基于白光干涉轮廓尺寸与形貌非接触测量方法和系统[D].武汉:华中科技大学, 2007
    [42]戴蓉.基于垂直扫描工作台的白光干涉表面形貌测量系统研究[D].武汉:华中科技大学, 2007
    [43]惠梅.表面微观形貌测量中相移干涉术的算法与实验研究[D].西安:中国科学院西安光学精密机械研究, 2001
    [44]邹明山.复杂自由曲面的数控自适应精密铣削加工[D].广州:华南理工大学, 2008
    [45] J. Xie, J. Tamaki, Ground surface integrity of granite by using dry electro-contact discharge dressing of #600 diamond grinding wheel, Journal of Materials Processing Technology 209 (2009) 6004–6009
    [46]金涛,童水光.逆向工程技术[M].北京:机械工业出版社, 2003: 112-125
    [47] Besl P J, Mckay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256
    [48]张宗华,彭翔,胡小唐. ICP方法匹配深度图像的实现[J].天津大学学报, 2002, 35(5): 571-576
    [49]胡洁,郭绍忠,陈海勇.基于遗传禁忌搜索的网格资源选择算法[J].计算机工程与设计, 2007, 28(3): 512-514
    [50]王凌,郑大钟.邻域搜索算法的统一结构和混合优化策略[J].清华大学学报:自然科学版. 2000, 40(9): 125-128
    [51]徐飞等编著. Matlab应用图像处理[M].西安:西安电子科技大学出版社, 2002: 76-82
    [52]罗军辉,冯平,哈力旦-A等编著. Matlab7.0在图像处理中的应用[M].北京:机械工业出版社, 2005: 42-49
    [53]庄司克熊.磨削加工技术[M].北京:机械工业出版社, 2007: 80-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700