用户名: 密码: 验证码:
低温陶瓷与金刚石复合材料的界面结合机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石基陶瓷复合材料有着特殊的优点,在工业领域应用越来越广。但是,目前人们对高温下陶瓷结合相与金刚石界面结合情况研究较少,对界面结合机理认识不够,制约了金刚石基陶瓷复合材料性能的进一步提高。本课题在原有研究的基础上,较系统地分析研究了金刚石基陶瓷复合材料的界面结合强度、界面润湿以及界面成分和化学键等性能,以了解低温陶瓷与金刚石复合材料界面结合机理,为进一步提高金刚石基陶瓷复合材料性能提供理论指导。
     研究结果表明, Na_2O-B_2O_3-SiO_2低温陶瓷体系,具有较低的耐火度或烧结温度,能够满足金刚石陶瓷复合材料的烧结特性要求,并与金刚石形成良好的界面结合与匹配。在陶瓷结合相中添加ZnO可以在一定程度上提高陶瓷结合相对金刚石的润湿性,添加Fe_2O_3对于改善陶瓷结合相/石墨体系的润湿性无明显效果,但二者均有利于提高试样界面结合强度,尤其添加ZnO时更加明显。随温度升高、保温时间的延长,低温陶瓷结合相熔体的表面张力变小,陶瓷结合相对金刚石的润湿角变小,体系润湿性能提高。在烧结过程中,金刚石/陶瓷结合相界面处通过形成新的化学键而保证了结合相对金刚石颗粒良好的把持力。高温下,陶瓷结合相与金刚石在润湿过程中,界面并没有形成新的化学产物,没有对金刚石表面或材料界面结构等造成破坏。改善陶瓷结合相的组成可以在一定程度上改善界面的抗腐蚀性。
Diamond- vitrified bond composite materials have special advantages,and it willbe applied more widely in the field of industry. However, at present, research on theinterface between diamond grits and vitrified bond is rarely reported, the interfacecharacteristic is not very clear, this will affect the improvement of properties of thevitrified bond diamond composite materials. The interface strength, the wetting of theinterface, the interface component and the interface chemical bond of the diamondvitrifiedbond composite materials are systematically investigated base on the originalstudy in this paper, in order to understand the interface mechanism of diamondvitrifiedbond composite, provide theory instruct for improving the compositematerial properties.
     The results indicated that the low-temperature vitrified bond of Na2O-B2O3-SiO2has lower refractory or sintering temperature, which can accord with the sinteringdesire of diamond- vitrified bond composite material, and can form a good interfacewith diamond. Adding ZnO additive to the vitrified bond shows better wettabilitywith graphite substrate to some extent, and Fe2O3 additive had no significant effect forimproving the wetting of the vitrified bond/graphite system, but both can obviouslyenhance the bending strength of the composite materials, especially for ZnO. In the airatmosphere, with the increasing of temperature or under certain temperature with theincreasing of holding time in a certain range can increase the wettability of the system(to reduce the contact angle).The increase of temperature will be more beneficial tothe interface reaction, and the prolonged holding time will enable the interfacereaction more fully. In the process of sintering, through the formation of newchemical bond which guarantee the good combination of vitrified bond and diamond.There is no forming new chemical production which weakens the surfacecharacteristic of diamond and the property of the interface within the compositesduring the wetting process at high temperature. Meliorate the composition of thevitrified bond can improve the anti-corrosive of the interface to a certain extent.
引文
[1]周冬晨,赵国权,金刚石合成工艺,北京:机械工业出版社,1998,10~11
    [2]方啸虎,超硬材料科学与技术,北京:中国建材工业出版社,1998,389~390
    [3] Verholen P. Vitrified Bond cBN Wheels[J]. Industrial Diamond Review,1986.121~122.
    [4] Kane T. Superabrasive tools & materials for aerospace. In: Intertech 2000,Vancouver (BC), Canada, July 17~21
    [5] Tanaka T. Ikawa N, Ueno N, Okada S, A ceramic aspect of vitrified bond fordiamond grinding wheel. Bull Jpn Soc Prec Eng 1985.19(3): 1~3.
    [6] Ogawa S. Okamoto T, The effect of vitrified bond composition on wheel life.Bull Jpn Soc Prec Eng 1986.20(4):264~71.
    [7]王双喜等,金属结合剂金刚石磨具的研究进展,金刚石与磨料磨具工程,2006,154(4):72~75
    [8] R.standing,M.Nicholas. Mater.Sci,1978.(13):9~15
    [9]刘雄飞,李晨辉,镀膜金刚石与结合剂之间的结合状态研究,粉术冶金技术,2001,20(3):465~468
    [10]戴秋莲,徐西鹏等,金属结合剂对金刚石把持力的增强措施及增强机制评述,材料科学与工程,2002 (5):262~265
    [11]沃凌鹏,橡胶结合剂金刚石工具及其用途,磨料磨具通讯,1997(10):1~4
    [12]徐湘涛,树脂结合剂金刚石磨具用粘结剂,超硬材料与工程,2001(3):12~18
    [13]郭志猛,宋月清,陈宏霞等,超硬材料与工具,北京:冶金工业出版社,1996,159~168
    [14]邹文俊,有机磨具制造.中国标准出版社,2001(5):2
    [15]姚峻,氮化硅磨削.磨床与磨削.1997(1):15~18
    [16]沈剑云,骆灿彬等.特种陶瓷端面磨削的实验研究.金刚石与磨料磨具工程,2001(6):39~40.
    [17]魏源迁,国外硬脆材料最新加工技术,.磨床与磨削,1998(2):37~39
    [18] R.Komanduri.Technological Advance in Fine Abrasive Proeess. Annals ofCIRP,Vol:1997(2):46
    [19]朱山民,陈以珊.金刚石磨具制造,北京:机械工业部机床工具工业局,1984:8~35
    [20]李志宏,陶瓷磨具制造,北京:中国标准出版社,2000,26~27
    [21] Kuan-Hong Lin , Shih-Feng Peng , Shun-Tian Lin. Sintering parameters andwear performances of vitrified bond diamond grinding wheels, InternationalJournal of Refractory Metals & Hard Materials 25 (2007) 25~31
    [22]郑文虎,张玉林等,难切削材料加工技术问答.北京出版社,2001.8: 105
    [23]夏晓风译,陶瓷加工材料对金刚石砂轮的修锐,三磨科技.1992(2):42
    [24] Yiyang Zhou,Mark Atwood.Wear and self-sharpening of vitrified bond diamondwheels during sapphire grinding.Wear 219 (1998) 42~45
    [25] Qingshun Bai,Yingxue,Yao and Shuodong Chen. Research and development ofpolycrystalline diamond woodworking tools. International Journal of RefractoryMetals & Hard Materials 20 (2002) 395~400
    [26]金刚石磨具制造,机床工业出版社,1983: 315~350.
    [27]侯永改,王改民,刘方晓,添加剂对低温陶瓷结合剂性能影响,陶瓷研究,2002,17(3):1~4
    [28] Cressie E, Holcombe. Ceramic-bonded abrasive grinding tools. US: 5366524,1994
    [29] Qi Dongxin, Lundberg. Low Temperature Bond for Abrasive Tools.US: 5863308,1999
    [30] Gary M. Vitreous Bond Compositions for Abrasive Articles.US: 6123744, 2000
    [31] Sigalas, Iacovos, Robert. Abrasive Body. US: 5649984, 1997
    [32]胡福增,陈国荣,材料表界面,上海:华东理工大学出版社,2007,219~222
    [33]曾晓雁,吴懿平,表面工程学,北京:机械工业出版社,2001,15~17
    [34] Eustathopoulos N, Nicholas MG, Drevet B. Wettability at high temperatures.Boston: Pergamon,1999.15~17
    [35] Sobczak N. Improvement of wetting in metal/ceramic systems. In:Bellosi A,Kosmac T, Tomsia AP, editors. Interfacial science in ceramic joining. NATOASI Series, 58. Kluwer; 1998. 27~42.
    [36] Eustathopoulos N, Sobczak N, Passerone A, Nogi K. Measurements of contactangle and work of adhesion at high temperature. Mater Science, 2005,(22)71~80.
    [37] L.H. Sharpe, H. Schonhorn, Chem. Eng. News 15(1963)67.
    [38] M. Romand, M. Charbonier, Le vide Les couches minces,1991.256
    [39] P.Vantomme, P.Deprez, A.Cornet. Study of glass–ceramic materials interfaces.Materials Letters,1998 (36),315~319.
    [40]林增栋,金刚石表面金属化技术,中国发明专利,CN85.1.00286.2.
    [41]藏建兵,超硬材料表面镀覆技术及应用,金刚石与磨料具工程。2000,(4):7~12
    [42]徐西鹏,吴健,沈剑云等,结合剂中金刚石固位机理及提高同位能力的技术,中国有色金属学报,1998(2):8~10
    [43]汤东华,洪跃生,钴基结合剂对金刚石把持力的研究,华侨大学报,1994,15(3):353~357
    [44]中国磨料磨具工业公司,磨料磨具技术手册,兵器工业出版社.1992:288.
    [45]卞景盛,吴建中,新刑金属陶瓷结合剂CBN砂轮,金刚石与磨料磨具工程,1998(5):26~27.
    [46]吴刚,材料结构表征及应用,北京:化学工业出版社,2002,3~8
    [47]戴达煌,周克崧,袁镇海等,现代材料表面技术科学,北京:冶金工业出版社,2004,553~575
    [48]陆佩文,无机材料科学基础,武汉:武汉理工大学出版社,2003,101~104
    [49]杜希文,原续波,材料分析方法,天津:天津大学出版社,2006,28~29
    [50]张国定,金属基复合材料界面问题,第九届全国复合材料学术会议论文集,世界图书出版社
    [51] Xiaoping Shu. Thermoelastic delamination of composite laminates with weakinterfaces, Composite Structures ,2008. (84) :310~318
    [52] H.K. Lee ,S.H. Pyo. An elastoplastic multi-level damage model for ductile matrixcomposites considering evolutionary weakened interface, International Journal ofSolids and Structures ,2008. (45): 1614~1631
    [53] Y.M. Lim, S.K. Shin, M.K. Kim. A study on the effect of externally bondedcomposite plate–concrete interfaces, Composite Structures, 2008.82(3): 403~412
    [54] F. Fan, W. Tang,S. Liu, et al. An effort to enhance adhesion of diamond coatingsto cemented carbide substrates by introducing Si onto the interface Surface &Coatings Technology ,2006 (200) :6727~6732
    [55] Sheng-Fang Huang, Hsien-Lung Tsai, Shun-Tian Lin. Effects of brazing routeand brazing alloy on the interfacial structure between diamond and bondingmatrix Materials Chemistry and Physics ,2004 (84) :251~258
    [56]张书森,金刚石磨具低温结合剂的研究,郑州:郑州大学出版社,2004,55~59
    [57]张红霞,王改民,华勇,陶瓷金刚石砂轮结合剂的探讨与研制,中国陶瓷,2003,39(1):38~40
    [58]武汉钢铁学院编,硅酸盐物理化学,北京:冶金工业出版社,1990.34~45
    [59]西北轻工业学院,玻璃工艺学,北京:中国轻工业出版社,1982.64~78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700