用户名: 密码: 验证码:
“鸡—玉米—小麦”互作有机种养模式综合效益分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冬小麦-夏玉米轮作系统在我国北方农区比较常见,在目前人均耕地面积较少的情况下,如何充分、合理利用玉米田下部空间,提高自然资源利用率,是目前农业可持续发展面临的重要课题。另外,由于农田中过度使用农药化肥造成了严重的环境污染,故寻找环境友好型的生产方式,是一个重要的研究课题。
     本研究设计了一种新的生产模式—“鸡-玉米-小麦”互作有机种养模式,并比较了该模式与“玉米-小麦”轮作有机种植模式和“玉米-小麦”轮作常规种植模式的差异,旨在为全面系统地评价“鸡-玉米-小麦”有机种养模式提供理论依据,为这一新型的生态农业模式的推广应用奠定坚实的理论基础。
     本论文的研究内容主要有以下四个方面:(1)运用生态位和食物链等生态学原理设计并构建了适合北方农田(冬小麦-夏玉米轮作系统)的一种新的生态农业模式—“鸡-玉米-小麦”互作有机种养模式;(2)比较了新模式与“玉米-小麦”轮作有机种植模式对土壤环境、植株性状影响的差异,分析了新模式的经济和生态效益优势;(3)研究新模式与“玉米-小麦”轮作常规种植模式对土壤环境影响的差异,分析了新模式的经济效益,并通过能值分析比较了其生态效益优势;(4)研究该模式中物理方法诱集昆虫的效果和饲喂昆虫蛋白对鸡生长性能和肉质的影响。
     在室外调查和室内生化分析的基础上,得出如下结论:
     1.“鸡-玉米-小麦”互作有机种养模式是一个多组分、多层次、多功能、多效益的人工复合系统。这一新模式充分利用了农田空间,提高了单位耕地的利用效率。
     2.新模式改善了土壤的物理性质,提高了土壤中养分的含量。相比“玉米-小麦”轮作有机模式,新模式0~10cm和10~20cm土层的土壤容重分别降低了6.3%和1.8%;土壤总孔隙度分别提高了9.1%和3.4%;土壤水分含量分别提高了9.7%和8.5%。新模式土壤中全氮、碱解氮无论在0~10cm或10~20cm土层均比“玉米-小麦”有机轮作模式显著增加(p<0.05)。但两种模式下全磷含量无明显差异。另外,新模式0~10cm土层的有机质含量有显著上升,但10~20cm土层中增幅不明显。
     3.与“玉米-小麦”轮作常规模式相比,新模式在0~10cm和10~20cm土层中的土壤水分含量分别升高了29.2%和12.4%,土壤容重有上升趋势,土壤孔隙度有下降趋势,0~10cm和10~20cm土层中的有机质含量均有显著提高(p<0.05),全氮含量均显著下降,碱解氮差异不显著。新模式下0~10cm土层全磷含量差异不显著,但在10~20cm土层中有显著的提高。
     4.将脉冲式诱虫灯诱集的昆虫,以9%的比例混于鸡的补饲饲料中,喂养70天后,食虫鸡和纯粮食喂养鸡料肉比分别为5.3:1和10.1:1,均显著高于笼养鸡(2.0~2.5:1)。但是,相比纯粮饲喂鸡,食虫鸡生长快、肉质好、收益高,可以有效的弥补单纯有机种植模式下经济效益低下的缺陷,调动农民对有机种养的积极性。本研究中,胸肉pH值为食虫鸡>纯粮饲养鸡>笼养鸡,腿肉的pH值为食虫鸡>笼养鸡>纯粮饲养鸡;胸肉滴水损失率为笼养鸡>纯粮饲养鸡>食虫鸡,腿肉为笼养鸡>食虫鸡>纯粮饲养鸡;蒸煮损失率胸肉和腿肉均为笼养鸡>纯粮饲养鸡>食虫鸡;胸肉光泽度L﹡为纯粮饲养鸡>食虫鸡>笼养鸡,腿肉为纯粮饲养鸡最大,笼养鸡和食虫鸡差异不明显。
     5.与“玉米-小麦”轮作有机种植模式相比,新模式在生长高峰期的玉米叶面积指数显著提高18.3%,株高显著增加12.2%。新模式中玉米籽粒和玉米植株(即秸秆)干物重比“玉米-小麦”轮作有机种植模式分别高45.1%和21.0%。新模式在养鸡密度5m2/只的条件下,杂草被完全清除,而“玉米-小麦”轮作有机种植模式的杂草生物量为332.6g/m2。在系统中一盏脉冲式诱虫灯一年可以诱集鲜重为33.73kg的昆虫,减少了昆虫对作物的危害。
     6.新模式所需要的劳动力是“玉米-小麦”轮作有机种植模式的1.08倍,是“玉米-小麦”常规轮作模式的1.05倍。新模式最终收入为“玉米-小麦”有机轮作模式的4.9倍(单季),二者的产投比分别为1.5:1和2.0:1;新模式的最终收入为“玉米-小麦”轮作常规模式的3.8倍(整季),两者的产投比分别为2.3:1和1.8:1。这表明,新的生产模式可以创造更多的物质财富,并可以解决农村剩余劳动力的问题,缓解了社会就业矛盾。
     7.新模式中,有机肥和人工属于可更新的有机能,占总投入的29.6%;“玉米-小麦”轮作常规模式中人工属于可更新的有机能,占到总投入的1.81%,农药、化肥、电力和机械属于不可更新的工业辅助能,总计占到总投入的95.8%。从能值总投入上看,有机模式为常规模式22.8%;从能值产出上看,有机模式是常规模式的1.7倍。新模式中引入消费者-鸡,使养分更好的循环,因此,大大减少了系统外化学能的投入,使系统更能趋向于有机化,节约了化学能源的消耗。
“Winter wheat-summer corn”rotation system is very common in countryside of northern China. How to make full use of field space and natural resource is an important subject of sustainable agriculture under the situation induced by decreasing per capita cultivated land. Furthermore, excessive utilization of chemical fertilizer and pesticide caused severe environmental pollution.
     Our research aimed to provide theoretical basis to evaluate“chicken-corn-wheat”organic pattern systematically through comparing with“corn-wheat”organic pattern and“corn-wheat”conventional pattern, and then establish a stable basis for extending this new pattern.
     The main objectives of this paper are: (1) to design a new farming pattern-“chicken-corn-wheat”organic pattern which adapts to the farmland in northern China(winter wheat-summer corn rotation system) using niche and food chain theories; (2) to compare the differences of the soil and plant characters between the new pattern and“corn-wheat”organic pattern,and to analyse the economical and ecological advantages of the new pattern; (3) to compare the differences of soil characters of new pattern and“corn-wheat”conventional pattern and to analyse the economical benefits and ecological advantages using emergy method; (4) to study the effects of insects arrested by physical way and to analyse the effects of insects protein on the growth characters and meat quality of the chicken.
     The results based on field investigation and biochemical examination are as follows:
     1.“Chicken-corn-wheat”organic pattern is a complex system with multi-components, multi-layers, multi-functions, and multi-benefits. This new pattern took fully advantages of the field space, increased the utilization efficiency of farmland.
     2. There were improvement in the soil physical characters and increments in the soil nutrients. Compared to“corn-wheat”organic pattern, soil bulk density of new pattern was decreased by 6.3% and 1.8% repectively in 0~10cm and 10~20cm layer; soil porosity was increased by 9.1% and 3.4%, respectively; soil moisture content was increased by 9.7% and 8.5%, respectively. Total nitrogen (N) and available N in new pattern were all increased significantly compared with“corn-wheat”oganic pattern (p<0.05) either in 0~10cm or 10~20cm layer. However, there was no significant difference on total P content. Organic matter in new pattern showed significant increment in the 0~10cm layer, but nonsignificant in the 10~20cm layer.
     3. Compared with“corn-wheat”conventional pattern, the soil moisture cotents of new pattern were increased by 29.2% and 12.4% in the 0~10cm and 10~20cm layers respectively; the soil bulk density was increased and soil porosity got reduced; organic matter was increased significantly (p<0.05) both in the 0~10cm and 10~20cm layers; total N content was decreased significantly and available N content had little change; total P content had little change in the 0~10cm layer but was increased significantly in the 10~20cm layer.
     4. Insects were mixed with the chicken feed according to the proportion of 9%, which were arrested by the Pesticidal lamp. After 70 days feeding, the ratio between the weight of feed and chicken is 5.3 : 1 and 10.1 : 1 of insect-feed chicken and pure grain-feed chicken, respectively. Futhermore, the insect-feed chicken had higher growth rate, better meat quality and higher profit than the pure grain-feed chicken. So it can compensate the shortage of the low profit of organic pattern without chicken and increase the positivity of farmer for organic farming. We compared the meat qualities of insect-feed chicken, pure grain-feed chicken and industrial chicken. Among the treatments, the pH of breast meat and leg meat in insect-feed chicken were the highest, those of the industrial chicken were the lowest and the pure grain-feed chicken were between them. The trend in drop loss order of breast meat and leg meat was insect-feed chicken>pure grain-feed chicken>industrial chicken, industrial chicken>insect-feed chicken>pure grain-feed chicken, respectively. The order in cook loss of breast meat and leg meat was that industrial chicken>pure grain-feed chicken>insect-feed chicken; the trend in polish of breast was that pure grain-feed chicken>insect-feed chicken>industrial chicken, and polish of leg meat was the biggest in feed chicken, and there was not significant difference in the insect-feed chicken and industrial chicken.
     5. Compared with the“corn-wheat”organic pattern, the leaf area index (18.3%) and plant height (12.2%) of corn were increased significantly; the yield and biomass of residue of corn were increased by 45.1% and 21.0%, respectively. The weed in the corn field was cleared by the chicken at the density of one chicken 5m2. One lamp arrested 33.73kg insects and thus decreased the damage of insects on corn.
     6. The labor needed in the new pattern is 1.08 times higher than that of the“corn-wheat”organic pattern and 1.05 times higher than the“corn-wheat”conventional pattern. The income of the new pattern in half a year was 4.9 times of the“corn-wheat”organic pattern. The output-input ratios of new pattern and“corn-wheat”organic pattern in half a year were 1.5:1 and 2.0:1. The income of the new pattern in the whole year was 3.8 times of the“corn-wheat”conventional pattern. The output-input ratios of new pattern and“corn-wheat”conventional pattern in the whole year were 2.3:1 and 1.8:1. The new pattern can produce more wealth and can also increase job opportunities.
     7. In the new pattern, organic ferterlizer and labor which were renewable energy, accounted for 29.6% of the whole input. In the“corn-wheat”conventional pattern, labor energy was renewable and it accounted for 1.81% of whole input energy; pesticides, ferterlizer, electronic energy and mechanic energy were not renewable and accounted for 95.84% of the whole energy. The input emergy of new pattern is 22.8% of that of conventional pattern and the output emergy of new pattern is 1.7 times higher than the conventional pattern. The additon of chicken in the new pattern caused the better cycle of nutients, reduced the input of chemical energy, made the system to be organic and saved the fossil energy.
引文
[1]Yussefi M, Willer H. The World of Organic agriculture-Statistics and Future Prospects[J/OL]. International Federation of Organic Agriculture Movements (IFOAM). 2003.www.soel.de/inhalte/publikation/s/s_74. pdf.
    [2]Food and Agriculture Organization of the United Nations (FAO). Organic agriculture, environment and food security [M]. Environment and Natural Resources. 2002. pp. 6-48.
    [3]余庆来,崔凯.世界有机农业(食品)的发展态势[J].中国食物与营养,2003,(3):56-61.
    [4]Van Elsen T. Species diversity as a task for organic agriculture in Europe [J]. Agriculture Ecosystem&Environment,2000,101-109.
    [5]贾乃新,刘海风,王晓萍等.对有机食品、绿色食品和无公害食品发展问题的探讨[J].中国农业资料与区划,2002,23(5):60-62.
    [6]0’Riordan T, Cobb D. Assessing the consequences of conversion to organic agriculture [J].Journal of Agriculture Economics, 2001, 22-35.
    [7]Brandt K, Molgaard J P.Organic agriculture:does it enhance or reduce the nutritional value of plant food[J].Journal of the Science of Food and Agriculture,2001,924-931.
    [8]Rembialkowska E,Tijskens L M M,Vollebregt H M.Organic farming as a system to provide better vegetable quality[J].Aeta Hortieulturae,2003,604:473-479.
    [9]Colla G,Mitchell J P,Joyce B A,et a1.Soil physical properties and tomato yield and quality in alternative cropping systems[J].Agronomy Journal,2000,92(5):924.
    [10]Fernandes A L, Rodrigues G P, TestezlafR. Mineral and organomineral fertirrigation in relation to quality of greenhouse cultivated melon [J]. Scientia Agricola, 2003, 60:149-154.
    [11]Ctrruk S, Sermenli T'Mavi K, et a1.Yield and fruit quality of watermelon (Citrullus lanatus(Thumb.)Matsum.&Nakai.) and melon(Cucumis melo L.)under protected organic and conventional farming systems in a Mediterranean region of Turkey[J].Biological Agricuhure&Horticulture,2004,22(2):173-183.
    [12]卢东.有机农业典型案例生态环境效益的比较研究[D].南京农业大学硕士论文, 2003.
    [13]冉茂林等.我国稻田养鸭的发展及研究现状[J].中国畜牧杂志, 1993, 29(5): 58-60.
    [14]吉野隆雄.稻田养鸭的实用技术[M].东京:农业渔村文化协会. 1992, 10-16, 121-124.
    [15]葛凤祥等.稻田放牧鸭群控制蚊虫滋生的实验研究[J].中国媒介生物学及控制杂志,1991,2(2):77-79.
    [16]中山大学昆虫学研究所.养鸭除虫,害虫生物防治的原理方法[M].科学出版社.1984, 286-287.
    [17]Masahara M, Hideomi U. Effects of Aigamo Ducks herding on weeding and pest control of duck free ranged in Paddy fields [J]. JPn. Poulty Sci., 1993, 30:365-370.
    [18]黄璜.农业防灾抗灾救灾应用技术[M].湖南科学技术出版社.1998, 70-80.
    [19]杜道灯,陶站.稻田甲烷排放研究[J].世界农业,1993(9):43.
    [20]陶战.稻田甲烷气排放与控制的研究国外农业环境保护[J].1992, 4 (34):1-4.
    [21]陈宇良,姚亭,高金和.控制稻田甲烷排放的农业耕作条件的研究[J]农村生态环境,1993,9(增):43-47.
    [22]Isamu, Nouchi, et al., Methanism of methane transport from the rhizosphere to the atmosphere through rice plants [J]. Plant Physical,1990,94:59-66.
    [23]黄勤,魏朝富,谢德体等.不同耕作制对稻田甲烷排放通量的影响[J].西南农业大学学报,1996,18(6):436-439.
    [24]魏朝富,高明,黄勤等.耕种制度对西南地区冬水田甲烷徘放的影响[J].土壤学报,2000,37(2):157-165.
    [25]李晶,王明星,陈德章.水稻田甲烷减排方法研究[J].中国农业气象,1997,18(6): 9-14.
    [26]陶战,杜道灯,周毅等.稻田施用沼渣对甲烷排放通量的影响[J].农村生态环境学报,1994,10(3):1-4.
    [27]黄璜,杨志辉,王华.稻鸭复合生态系统甲烷排放规律研究.生态学报,2003,23(5): 104-110.
    [28]郑永华等.稻鱼鸭复合生态经济效益的初步研究[J].应用生态学报,1997,8(4): 431-434.
    [29]冉茂林.稻鸭共栖的水稻增产效应[J].宜宾科技,1991,(4):27-30.
    [30]黄磺,王华,龙江松等.稻田围栏养鸭[M].金盾出版社,2002:15-30.
    [31]颜亨梅,卢学理,朱泽瑞.“稻-蛛-螺”种养生态调控复合模式的综合效益研究[J].生命科学研究.2006, 10: 151-155.
    [32]李学军,乔志刚,聂国兴.稻-鱼-蛙立体农业生态效益的研究[J].生态学杂志.2001,20 :37-40.
    [33]叶晓伟.浙南丘陵山区梨-草-鸡复合系统的生态经济分析[D].浙江大学硕士论文.2006.
    [34]王侨.重庆三峡库区“果-草-畜”水土保持模式效益研究[D].西南大学硕士学位论文.2008
    [35]贺晓燕.山西晋中发展“四位一体”生态农业模式研究[D].西北农林科技大学硕士学位论文.2005.
    [36]孟庆岩,王兆骞,姜曙千.我国热带地区胶-茶-鸡农林复合系统物质循环研究[J].自然资源学报.2000.15(1):61-65.
    [37]张乍如.对立与统一:谈绿色革命与生物多样性.邵阳学院学报, 2008, 5(1): 91-94.
    [38]周荣荣.农业可持续发展战略取向与生态建设的跃迁[D].南京农业大学博士学位论文, 2002.
    [39]赵曦,何国松.耕地资源的可持续利用评价探讨-以湖北咸宁市为例[J].国土资源科技管理, 2004, ( 5): 17-20.
    [40]姬泓.保护耕地的核心是耕地的持续利用保护[J].河南国土资源,2005,(2): 6-7.
    [41]杨发明,陈劲,等.对建立我国可持续发展指标的一点思考[J].环境科学进展,1997,5 (6): 78-82.
    [42]Castellini C, Bastianoni S, Granai C, et al. Sustainability of poultry production using the emergy approach: Comparison of conventional and organic rearing systems [J]. Agriculture, Ecosystems and Environment , 2006, 114: 343-350.
    [43]宁理功.稻-鸭-泥鳅复合生态系统的土壤理化性状及效益研究[J].中国土壤与肥料.2007.6:28-30.
    [44]杨志辉,黄璜,王华.稻-鸭复合生态系统稻田土壤质量研究.土壤通报.2004.35.2: 117-121.
    [45]孙刚,房岩,韩国军.稻-鱼复合生态系统对水田土壤理化性状的影响[J].中国土壤与肥料.2009. 4:21-24.
    [46]王林权,周春菊,王俊儒等.鸡粪中的有机酸及其对土壤速效养分的影响[J].土壤学报.2002, 39(2):268-275.
    [47]冉茂林等.我国稻田养鸭的发展及研究现状[J].中国畜牧杂志,1993,29(5): 58-60.
    [48]许德海,禹盛苗.无公害高效益稻鸭共育新技术[J].中国稻米,2002(3):36-37.
    [49]Walz, E.. Final Results of the Third Biennial National Organic Farmers’Survey [M], Organic Farming Research Foundation, Santa Cruz, CA. 1999.
    [50]陈长青,何园球,卞新民.红壤旱地不同种植模式下NPK养分动态平衡分析[J].土壤通报.2009.40(1):81-84.
    [51]谢育平.施用畜禽粪便稻田土壤氮磷养分迁移特征的研究[D].河北农业大学硕士学位论文,2006.
    [52]Woese K, Lange D, Boess C, et al. A Comparison of Organically and Conventionally Grown Foods-Results of a Review of the Relevant Literature [J]. Journal of the Science of Food and Agriculture, 1997, 74: 281-293.
    [53]Castellini C, Mugnai C, Dal Bosco A. Effect of organic production system on broiler carcass and meat quality [J]. Meat Science, 2002, 60: 219-225.
    [54]Tellarini V, Caporali F. An input/output methodology to evaluate farms as sustainable agroecosystems: an application of indicators to farms in central Italy [J]. Agriculture, Ecosystems and Environment, 2000, 77:111-123.
    [55]Castellini C, Bastianoni S, Granai C, et al. Sustainability of poultry production using the emergy approach: Comparison of conventional and organic rearing systems[J]. Agriculture, Ecosystems and Environment , 2006, 114: 343-350.
    [56]Odum HT. Environmental accounting: Emergy and Environmental Decision Making[M]. New York, USA: John Wyley and Sons, 1996.
    [57]Bastianoni S, Marchettini N. Ethanol production from biomass: analysis of process efficiency and sustainability[J]. Biomass and Bioenergy, 1996, 11:411-418.
    [58]Bakshi B. A thermodynamic framework for ecologically conscious process systems engineering[J]. Computers & Chemical Engineering, 2002, 26:269-282.
    [59]张耀辉.农业生态系统能值分析方法[J].中国生态农业学报, 2004, 12:181-183.
    [60]朱万斌.农业生态系统生产力的概念、计量方法与应用研究[D].博士论文,中国农业大学,2005.
    [61]裴洪芹,杨昆,刘兴允.临沂地区太阳能利用的气候条件分析[J].现代农业科技,2008,11: 347-349.
    [62]山东平邑县人民政府县志[EB/OL] http://www.agri.com.cn/maps/town/371326.htm. .1997/2009.
    [63]沈亨理.农业生态学[M].北京:中国农业出版社, 1996.
    [64]蓝盛芳.生态经济系统能值分析[M].北京:化学工业出版社, 2002.
    [65]陈阜.农业生态学[M].北京:中国农业大学出版社, 2002.
    [66]Ozkan B, Akcaoz H, Fert C. Energy input output analysis in Turkish agriculture[J]. Renew Energy , 2004,29:39-51.
    [67]Yaldiz O., Ozturk HH., Zeren Y., et al. Energy use in field crops of Turkey. In: Vinternational congress of agricultural machinery and energy[J]. Kusadas, Turkish, 1993, 12-14.
    [68]Bastianoni S. Are there desirable alternatives to a prosperous way down [M]? Dept. of Chemical and Biosystems Sciences, University of Siena-Italy, 2006.
    [69]Chen X-L. Energy Density, Water Content and Their Variations in Carnivorous and Herbivorous beetles [J]. Zoological Research, 1999, 20: 336-341.
    [70]Jorgensen SE, Odum HT, Brown MT. Emergy and Exergy Stored in Genetic Information [J]. Ecological Modelling, 2004, 178:11-16.
    [71]Canakci M, Akinci I. Energy use pattern analyses of greenhouse vegetable production [J]. Energy, 2006, 31: 1243–1256.
    [72]Kaltcshmitt M, Reinhardt GA. Ecological energy balance sheets in renewable energy source[M]. Germany: 1997 (in German).
    [73]Helsel ZR. Energy and alternatives for fertilizer and pesticide use in“Energy in world agriculture”[M]. Amsterdam: Elsevier Science Publishing, 1992.
    [74]Bogdanov I A, Bulgarian.Seasonal effect on free range egg Production[J]. World Poultry, 1977,13(6):47-49.
    [75]Lopez-bote C J., Sanz Arias R., Rey A I..Effect of free range feeding on n-3 fatty acid and a-tocopherol content and oxidative stability of eggs[J]. Animal Feed Sci Tech,1998,72:33-40.
    [76]Permin A., BisgaardM., Frndsen F.,et al. Prevalance of gastroitestonal helminths in different Poultry Production systems[J]. Brit Poultry Sci, 1999, 40:439-443.
    [77]李英,谷子林.规模化生态放养鸡[M].北京:中国农业大学出版社,2005.
    [78]谷子林.特禽标准化生产技术[M].北京:中国农业大学出版社,2003.
    [79]Rammouz R E , Babile R , Fernandez X. Effect of ultimate pH on the physicochemical and biochemical characteristics of turkey breast muscle showing normal rate of postmortem pH fall [J]. Poultry Science , 2004 , 83 :1750-1757.
    [80]Rathgeber B M., Boles J A., Shand P J.. Rapid post mortem pH decline and delayed chilling reduce quality of turkey breast meat [J]. Poultry Science, 1999 , 78:477-484.
    [81]Russell S M., Fletche r D L., Cox N A. Spoilage bacteria of fresh broiler chicken carcasses [J]. Poultry Science, 1995, 74:2041-2047.
    [82]Qiao M , Fletche r D L , Smith D P ,et al. The effect of broiler breast meat color on pH, water-holding capacity, and emulsification capacity [J]. Poultry Science, 2001, 80 :676-680.
    [83]Owens C M., Hirschler E M., Mc Kee S R., et al. The characterization and incidence of pale, soft, exudative turkey meat in a commercial plant [J]. Poultry Science, 2000, 79 :553-558.
    [84]Fletcher D L., Qiao M., Smith D P.. The relationship of raw broiler breast meat and pH to cooked meat color and pH [J]. Poultry Science, 2000, 79 :784-788.
    [85]Allen C D , Fletche r D L , Nort hcut t J K, et al. The relationship of broiler breast color to meat quality and shelf-life [J]. Poultry Science, 1998, 77 :361-366.
    [86]Allen C D , Russell S M , Fletche r D L . The relationship of broiler breast color and pH to shelf-life and odor development [J]. Poultry Science, 1997, 76:1042-1046.
    [87]马文奇,张福锁,张卫锋.关乎我国资源、环境、粮食安全和可持续发展的化肥产业[J].资源科学,2005,27:33-39.
    [88]Woese K, Lange D, Boess C, et al. A Comparison of Organically and Conventionally Grown Foods-Results of a Review of the Relevant Literature [J]. Journal of the Science of Food and Agriculture, 1997, 74: 281-293.
    [89]向洋,凌静.鸡肉品质的影响因素研究进展[J].肉类研究,2008,1:7-10.
    [90]吕家珑,张一平,王旭东,等.长期单施化肥对土壤性状及作物产量的影响[J].应用生态学报,2001,12:569-572.
    [91]李成芳,曹凑贵,展茗.稻鸭共作对稻田氮素变化及土壤微生物的影响[J].生态学报,2008,28:2115-2122.
    [92]蒋高明.美国式现代农业适合中国吗[EB/OL]? http://www.sciencenet.cn/m/user_content.aspx?id=264441,2009-10-23/2009-11-1.
    [93]郑易生.深度忧思:当代中国的可持续发展问题[M].北京:今日中国出版社.1998.
    [94]常云.发展有机食品潜力巨大[J].有机食品时代,1998,(1):8-12.
    [95]杨朝飞.中国有机食品发展对策与管理[J].环境保护,2001,(3):3-7.
    [96]陆宏芳,彭少麟,蓝盛芳,等.基塘农业生态工程模式的能值评估[J].应用生态学报,2003,14(10):1622-1626.
    [97]席运官,钦佩.稻鸭共作有机农业模式的能值评估[J].应用生态学报,2006, 17(2):237-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700