用户名: 密码: 验证码:
硝化/脲酶抑制剂对土壤氮素迁移转化及油菜生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素是植物生长所必需的大量营养元素之一。近年由于农业生产中过量施用氮肥及不合理的管理措施,导致氮素以氨挥发、反硝化及硝酸盐淋溶等途径损失,氮素利用率降低。随着人们生活水平的日益提高,对蔬菜品质的要求也由单纯的满足数量型向质量型转变。研究人员提出了应用生化抑制剂来调控土壤尿素水解和氮素硝化过程,并减少蔬菜硝酸盐过量累积,对控制氮肥污染,提高氮素利用率具有重要意义。
     本论文采用温室盆栽和土柱淋溶培养试验相结合的方法,研究尿素中添加硝化抑制剂双氰胺(Dicyanamide,DCD)和脲酶抑制剂N-丁基硫代磷酰三胺(N-(n-Butyl) thiophosphoric triamide,NBPT)以及两者不同量的配合施用对油菜产量、硝酸盐及氮素利用的影响,并研究不同施肥量条件下,添加抑制剂后,90cm土柱淋溶液中硝态氮、铵态氮含量和pH值的变化,探索氮素的淋溶损失规律,实现减少氮肥环境风险,提高氮素利用率的目的。
     试验主要研究结论如下:
     1.添加硝化/脲酶抑制剂可以提高油菜产量,降低植株硝酸盐累积。当DCD施用量为纯氮量的1%、2%、3%、4%、5%时,可显著增产22.77%~33.50%,同时降低23.87%~30.51%的硝酸盐累积。NBPT在施入纯氮量的0.5%、1.0%、1.5%、2.0%、2.5%水平时,可以显著提高约30%的油菜产量,同时可以降低4.19%~32.63%的硝酸盐累积。DCD与NBPT配合施用,在DCD施用量为纯氮量0.5%,NBPT施用量为纯氮量0.25%时,油菜产量显著提高了46.22%。油菜硝酸盐含量随着两者配合施用量增加,呈现先降低后升高趋势,较低用量配比时已经能够减少硝酸盐累积。
     2.添加硝化/脲酶抑制剂可以提高氮素利用率。当DCD施用量为纯氮量3%时,油菜氮素利用率可显著提高6.66个百分点。在NBPT0.5%用量时,全氮含量、吸氮量较高,氮素利用率可提高5.65个百分点。DCD与NBPT配合施用,DCD2.0%NBPT1.0%、DCD2.5%NBPT1.25%显著提高了油菜吸氮量和氮素利用率,分别比NPK处理提高3.23和5.48个百分点。
     3.添加硝化/脲酶抑制剂对氮素残留有一定影响。添加DCD处理,在1%施用水平时显著增加了土壤氮素残留,且随着DCD施用量增加,逐渐降低,且在DCD5%水平时显著降低氮素残留。添加NBPT处理,土壤氮素残留量占尿素施入氮素的45.11%~58.29%,且多数处理比例都在50%以上。NBPT2.0%、NBPT2.5%水平显著降低了氮素残留。两者配施土壤约有44.74%~62.78%的氮素残留。在DCD0.5%, NBPT0.25%时显著降低了尿素在土壤的残留比例。
     4.低施肥量条件下,DCD可以使硝态氮淋溶达到峰值的时间延缓7天,并使峰值降低。单独添加NBPT处理,前期硝态氮更易发生淋溶,峰值较高,但之后下降很快,并在后期一直保持较低硝态氮浓度。单独添加DCD或者NBPT,不能显著降低硝态氮淋失量,DCD与NBPT混合施用,可以减少土壤淋溶液中硝态氮累积。
     5.高施肥量条件下,DCD抑制氮素淋失效果较好,而NBPT以及DCD与NBPT配合施用,在后期抑制效果较好。最终三者均可显著降低硝态氮累积淋失量(13.73%、11.61%、17.15%)。
     6.低施肥量条件下,单施DCD或NBPT,淋溶的无机氮含量增加了13.72%和1.87%,并没有减少无机氮的淋溶损失,还有可能增加原有土壤的氮素淋失,而DCD与NBPT配合施用无机氮含量降低了13.86%。在高施肥量土壤上,DCD、NBPT以及DCD与NBPT配合施用,分别可以降低无机氮损失达7.94%、13.24%、19.53%。
     7.淋溶液pH与硝态氮浓度呈负相关关系,与铵态氮浓度呈正相关关系。在高低施肥量条件下,淋溶液pH最终约下降了0.07~0.19个单位。在高施肥量条件下,硝态氮浓度达到高峰时,可使pH显著下降0.39个单位。在高施肥量时,DCD、NBPT、DCD与NBPT配施可以避免产生过低和过高的pH变化。
Nitrogen is an essential element for plant growth. Nitrogen leaching and runoff losses from arable land because of excessive nitrogen application and unreasonable management measures, which causes contaminations of underground water and surface water, have become a worldwide environmental concern. Vegetables demanded have converted from quantity to quality with the rising of living standard. So scientists have put forward biological inhibitors to control urea hydrolysis and nitrogen nitrification, and to reduce the excessive accumulation of nitrate in vegetables. It plays an important role in control nitrogen fertilizer pollution, also reduce vegetables’nitrate content and enhance the nitrogen use efficiency.
     This experiment had adopted pot experiment and soil column in greenhouse, to study the effects of nitrification inhibitor Dicyanamide (DCD) and urease inhibitor N- (n-Butyl) thiophosphoric triamide (NBPT) and the two combined application on rape growth and nitrogen utililization, also to study nitrogen migration and transformation when different fertilizer levels applied in 90cm soil column, including nitrate-N, ammonium-N and pH monitored in leaching water.
     The experiments results showed as follows:
     1. When nitrification/urease inhibitor added, it could improve the rape yields, and reduce nitrate content in rape. When DCD was applied to urea for the amount of 1%, 2%, 3%, 4%, 5% of nitrogen application, it could significantly increase the biomass of rape and reduce the rape nitrate accumulation by 22.77%~33.50% and 23.87%~30.51%, respectively. Add NBPT to urea could significantly improve the rape yield by 30% and reduce nitrate accumulation highly by 32.63% when was at 0.5%, 1.0%, 1.5%, 2.0%, 2.5%. DCD and NBPT combined application could increase the yield of rape, and when DCD was at 0.5%, NBPT was at 0.25%, it reached significant level by 46.22%. The nitrate in rape showed decreased first and then increased. When the inhibitors were in lower level, they were able to reduce nitrate accumulation.
     2. When nitrification/urease inhibitor added, it could enhance N use efficiency. When DCD 3% was applied to urea, it could significantly improve nitrogen use efficiency by 6.66 percentage points. When NBPT was at 0.5%, the total N and N uptake were higher than others, and N use efficiency could be improved by 5.65 percentage points. Application of DCD and NBPT mixed, DCD2.0%NBPT1.0%, DCD2.5%NBPT1.25% significantly increased N uptake and nitrogen utilization, respectively, higher compared to NPK by 3.23 and 5.48 percentage points.
     3. When nitrification/urease inhibitor added, it had some effects on N residue. The nitrate content in soil decreased with DCD applied more. When DCD was at 1%, it could significantly increase N residue, while at 5%, decreased significantly. NBPT resulted in about 45.11% ~ 58.29% N residue in the soil, and most treatments were more than 50%. When NBPT was at 2.0%、2.5%, it could significantly reduced N residue. DCD and NBPT combined application had resulted in about 44.74% ~ 62.78% of the N residue, and when DCD0.5%, NBPT0.25% significantly reduced the proportion of urea in the soil.
     4. Under lower fertilization conditions, nitrate leaching in DCD treatments could delay the peak time for 7 days throughout the trial period, and also reduce the peak value. Added NBPT alone, more likely to make nitrate leach in early time, and have the higher peak, but then decreased rapidly, and maintained low nitrate concentration in later time. DCD or NBPT added alone, could not significantly reduce the accumulation of nitrate leaching, but the mixed used was able to reduce the nitrate accumulation.
     5. In the higher fertilizer conditions, DCD throughout the monitoring period had a better effect to retard nitrogen leaching, and NBPT, DCD and NBPT combined application, had a good effect in later period. The three treatments could significantly reduce 13.73%, 11.61%, 17.15% of the cumulative amount of nitrate leaching.
     6. The single DCD or NBPT application in lower fertilization conditions, inorganic nitrogen content in leaching water increased by 13.72% and 1.87%, and had no reduction on inorganic nitrogen leaching losses, but DCD and NBPT mixed treatment, reduced 13.86%. In higher fertilization conditions, DCD, NBPT and co-application of DCD and NBPT, could reduce 7.49%, 13.24%, 19.53%, respectively.
     7. pH of leaching water had a negative correlation with the concentration of nitrate content, and showed a positive correlation with the concentration of ammonium nitrogen. Under the low and high fertilizer, the pH dropped by 0.07~0.19 units at the end. When nitrate concentrations reached the peak point under higher fertilizer, it could significantly descend pH by 0.39 units. DCD, NBPT, DCD and NBPT combined application could minimize changes on too low and too high pH under high fertilization.
引文
[1]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    [2]张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    [3]杜连凤,吴琼,赵同科,等.北京市郊典型农田施肥研究与分析[J].中国土壤与肥料,2009(3):75-78.
    [4]赵同科,张成军,杜连凤,等.环渤海七省(市)地下水硝酸盐含量调查[J].农业环境科学学报,2007,26 (2):779-780.
    [5]刘勤,张新,赵言文,等.土壤植物营养与农产品品质及人畜健康关系[J].应用生态学报,2001,12(4): 623-626.
    [6]朱兆良.农田中氮肥的损失及对策.土壤与环境, 2000,9(1):1-6.
    [7]Amberger A. Research on dicyandiamide as a nitrification inhibitor and future outlook. Commun Soil Sci Plant Anal, 1989, 20(18&20):1933-1955
    [8]ZerullaW, Barth T, Dressel J,et al. 3,4-Dimethylpyrazole phosphate(DMPP)-a new nitrification inhibitor for agriculture and horticulture. Biol Fertil Soils, 2001, 34(2): 79-84.
    [9]Linzmeier W, Schmidhalter U, Gutser R. Wirkung von DMPP auf Nitrification und N-Verluste (Nitrat, NH3, N2O) von Dungerstickstoff in V ergleich zu DCD. VDLUFA Schriftenr, 1999, 52: 485-488.
    [10]Macadam X M B, Prado A, Merino P, et al. Dicyandiamide and 3,4- dimethylpyrazole Phosphate decrease N2O emissions from grassland but dicyandiamide produces deleterious effects on clover. J. Plant Physiol, 2003, 160:1517-1523.
    [11]Guiraud G,Marol C. Influence of temperature on mineralization kineticswith a nitrification Inhibitor (mixture of dicyandiamide and ammonium thiosuphate). Boil Fertil Soil, 1999, 13: 1-5.
    [12]黄益宗,冯宗炜,王效科,等.硝化抑制剂在农业上应用的研究进展[J].土壤通报,2002,33(4): 310-315.
    [13]Bending G D, Lincoln S D. Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products. Soil Biology and Biochemistry, 2000, 32: 1261- 1269.
    [14]Neufeld J D, Knowles R. Inhibition of nitrifiers and methanotrophs from an agricultural humisol by ally sulfide and its implications for environmental studies. Applied and Environmental Microbiology, 1999, 65:2461-2465.
    [15]Amberger A. Dicyandiamide as a nitrification inhibitor//Hauck R D, Behnke H. The Proceedings of Technology Workshop on Dicyandiamide. West Germany: SKW Trostberg AG. 1981: 3-17.
    [16]Bremner J M, McCarty G W. Inhibition of nitrification in soil by alleo chemicals derived from plants and plant residues. Soil Science Society of America Journal, 1991, 55: 181-218.
    [17]White C S. The role of monoterpenes in soil nitrogen cycling process in ponderosa pine. Biogeochemistry, 1991, 12:43-68.
    [18]孙志梅,武志杰,陈利军.土壤硝化作用的抑制剂调控及其机理[J].应用生态学报,2008,19(6): 1389-1395.
    [19]IPCC (Intergovernmental Panel on Climate Change). Climate Change 1992. The supplementary report to the IPCC Scientific Assessment [M]. Houghton, J. T., callander, B. A. and Varney, S. K. (ed.). Cambridge University press, Cambridg, 1992.
    [20]Bremner J M, Blackmer A M. Effects of acetylene and soil water content on emission of nitrous oxide from soils [J]. Nature, 1979, 280: 380-381.
    [21]Mosier A R. Acetylene inhibition of ammonium oxidation in soil[J]. Soil Biology & Biochemistry, 1980, 12:443-444.
    [22]McCarty G W. Modes of action of nitrification inhibitors[J]. Biology and Fertility of Soils, 1999, 29: 1-9.
    [23]McCarty G W, Bremner J M. Laboratory evaluation of dicyandiamide as a soil nitrification inhibitor [J]. Communication in Soil Science and Plant Analysis, 1989, 20: 2049-2065.
    [24]Scott S M, Firestone M K, Tiedje J M. The acetylene inhibition method for short-term measurement of soil denitrification and its evaluation using nitrogen [J]. Soil sci. Soc. Am. J., 1978, 42: 611-615.
    [25]孙志梅,武志杰,陈立军,等.硝化抑制剂的施用效果、影响因素及其评价[J].生用生态学报, 2008,19(7):1611-1618.
    [26]Rajbanshi S S, Benckiser G, Ottow JCG. Effects of concentration, incubation temperatur, and repeated applications on degradation kinetics of dicyandiamide (DCD) in model experiments with a silt loam soil. Biology and Fertility of Soil, 1992, 13: 61-64.
    [27]Guiraud G, Marol C, Fardeau J C. Balance and immobi1ization of (15NH4)2SO4 in a soil after the addition of Didin as a nitrification inhibitor. Biology and Fertility of soils, 1992, 14: 23-29.
    [28]Reddy G R, Datta N P. Use of dicyandiamide on nitrogen fertilizers[J]. Journal of the Indian Society of Soil Science, 1965, 13:135-139.
    [29]Cookson W R, Cornforth I S. Dicyandiamide slows nitrification in dairy cattle urine patchs: Effects on soil solution composition,soil pH and pasture yield [J]. Soil Biology and Biochemistry, 2002, 34:1461-1465.
    [30]Jacinthe P A,Pichtel J R. Interaction of nitrapyrin and dicyandiamide with soil humic compounds. Soil Science Society of America Journal, 1992, 56:465-470.
    [31]Azam F, Benckiser G, Muller C, et a1. Release, movement and recovery of 3, 4-dimethylpyrazole phosphate (DMPP), ammonium and nitrate from stabilized nitrogen fertilizer granules in a silty clay soil under laboratory conditions [J]. Biology and Fertility of Soils, 2001, 34: 118 -125.
    [32]Weiske A, Benckiser G, Ottow JCG. Effect of the new nitrification inhibitor DMPP in comparison to DCD on nitrous oxide (N2O) emissions and methane (CH4) oxidation during 3 years of repeated applications in field experiments. Nutrient Cycling in Agro ecosystems, 2001, 60:57-64.
    [33]Fettweis U, Mittelstaedt W, Schimansky C, et a1. Lysimeter experiments on the translocation of the carbon-14-labbelled nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in a gleyic cambiso1. Biology and Fertility of Soils, 2001, 34: 126 -130.
    [34]Irigoyen I, Mum J, Azpilikueta M, et a1. Ammonium oxidation kinetics in the presence of nitrification inhibitors DCD and DMPP at various temperatures. Australian Journal of Soil Research, 2003, 41:1177-1183.
    [35]Barth G, Von Tucher S, Schmidthalter U. Influence of soil parameters on the effect of 3,4- dimethylpyrazole phosphate as nitrification inhibitor. Biology and Fertility of Soils, 2001, 34: 98 -102.
    [36]Hendrickson L L, Keeney D R. A bioassay to determine the effect of organic matter and pH on the effectiveness of nitrapyrin (N-Serve) as a nitrification inhibitor[J]. Soil Biol. Biochemical, 1979, 11: 51-55.
    [37]Owens L B. Effects of nitrapyrin on nitrate movement in soil columns [J]. J. Environ. qual., 1981, 10(3):308-310.
    [38]Walters D T, Malzer G L. Nitrogen management and nitrification inhibitor effects on nitrogen 15 urea: Yield and fertilizer use efficiency [J]. Soil Sci. Soc. Am. J., 1990, 54:115-122.
    [39]Trenkel M E. Controlled-Release and Stabilized Fertilizers in Agriculture [M]. Paris: The International Fertilizer Industry Association, 1997.
    [40]孙志梅,武志杰,陈利军,等. 3,5-二甲基吡唑(DMP)施用后土壤硝化作用潜势及微生物群落动态变化研究[J].农业环境科学学报,2006,25(6):1518-1523.
    [41]牛治宇.利用香蕉假茎汁液进行氮肥增效剂PBP研制及其效应研究[M].华南热带农业大学硕士论文. 2003.
    [42]赵劲松. 3(5)-甲基吡唑-氮肥硝化抑制剂[J].化工进展, 1998, (5): 57-59.
    [43]朱兆华,王德汉,廖宗文,等.氨氧化木质素作为硝化抑制剂的研究.土壤与环境,2000,9(2): 132-134.
    [44]黄益宗,冯宗炜,张福珠.农田氮损失及其阻控对策研究.中国科学院研究生学报,2000,17(2):49 -58.
    [45]王天元,宋雅君,滕鹏起.土壤脲酶及脲酶抑制剂.化学工程师,2004(8):22-24.
    [46]Douglas L A, Bremner J M. A rapid method of evaluating different compounds as inhibitors of urease in soils [J]. Soil Biol Biochem, 1971, (3): 309 - 315.
    [47]Bremner J M, Douglas L A. Inhibition of urease activity in soils[J].Soil Biology and Biochemistry, 1971, 3: 297- 307.
    [48]Bundy L G, Bremner J M. Effect of substituted pbenzoquinone on urease activities in soils [J].Soil Biology and Biochemistry, 1973, 5:847- 853.
    [49]Martens D A, Bremner J M. Effectiveness of phosphoroamides for retardation of urease hydrolysis in soils [J]. Soil Science Society of America Journal, 1984, 48: 302- 305.
    [50]Mccarty G M, Bremner J M, Lee J S. Inhibition of plant and microbial urease by phosphoroamides [J].Plant and Soil, 1990b, 127:269- 283.
    [51]吴玉光.氮肥增效剂的应用效果[J].北京农业科学,1999, (17) : 33 - 35.
    [52]徐星凯,周礼恺, Oswald Van Cleemput.脲酶抑制剂/硝化抑制剂对土壤中尿素氮转化以及形态分布的影响[J].土壤学报, 2000, 37 (3): 339 - 345.
    [53]李晓鸣.氢醌在小麦吸收利用氮素中的作用[J].黑龙江农业科学, 2002, (4) : 4 - 5.
    [54]王小彬,蔡典雄.脲酶抑制剂NBPT在农业中的应用[J].中国化工, 1998, (5) : 53 - 55.
    [55]王小彬,辛景峰, Grant C A,等.尿素与脲酶抑制剂配用对春小麦植株氮吸收的影响[J].干旱地区农业研究, 1998, 16 (3) : 6 - 9.
    [56]罗奇祥.几种脲酶抑制剂抑制作用的室内培养与盆栽实验[J].江南农业学报,1993,5(1): 21- 28.
    [57]Walters D T, Malzerr G L. Nitrogen management and nitrification inhibitors effects on 15N-urea: 1. Yield and fertilizer use efficiency [J].Soil Sci. Soc. Am. J., 1990, 54:115-122.
    [58]Malzer G L. Performance of dicyandiamide in the north central states [J]. Commun Soil Sci Plant Anal, 1989, 20 (19&20):2001-2122.
    [59]Yadav S N. Formation and estimation of nitrate-nitrogen leaching from corn cultivation [J]. J. Environ. Qual., 1997, 26:808-814.
    [60]Francis G S, Haynes R J, Speir T W, et al. The effects of nitrification inhibitors on leaching losses and recovery of mineralized nitrogen by a wheat crop after ploughing in temporary leguminous pasture [J]. Fertil. Res., 1995, 41: 33-39.
    [61]Ball-Coelho B R, Roy R C. Enhanced ammonium sources to reduce nitrate leaching [J]. Nutr. Cycl. Agro ecosystem, 1999, 54:73-80.
    [62]Willamson J C, Taylor M D, Torrens R S,et al. Reducing nitrogen leaching from dairy farm effluent-irrigated pasture using dicyandiamide: a lysimeter study[J].Agri. Ecosyst. Environ., 1998, 69:81-88.
    [63]Serna M D, Banuls J, Quinones A, et al. Evaluation of 3, 4-dimethylpyrazole phosphate as a nitrification inhibitor in a Citrus-cultivated soil [J]. Boli Fertil Soils,2001,32(1):41-46.
    [64]徐星凯,周礼恺,Oswald V C.脲酶抑制剂/硝化抑制剂对土壤中尿素氮转化及形态分布的影响[J].土壤学报,2000,37(3): 339-345.
    [65]Gioacchini P, Claudio A N, Giovannini C M C. Influence of urease and nitrification inhibitors on N losses from soila fertilized with urea[J]. Biol Fertil Soils, 2002, 36:129-135.
    [66]Dvaies D M,WiHiams P J. The effect of the nitrification inhibitor dicyandiamide on nitrate leaching and ammonia volatilization: A U.K nitrate sensitive areas perspective[J]. J. Environ Man, 1995, 45:263-272.
    [67]陈振华,陈利军,武志杰.脲酶-硝化抑制剂对减缓尿素转化产物氧化及淋溶的作用[J].应用生态学报, 2005, 16(2): 238- 242.
    [68]Gioacchini P, Claudio A N, Giovannini M C. Influence of urease and nitrification inhibitors on N losses from soils fertilized with urea [J]. Biol. Fert. Soils, 2002, 36: 129- 135.
    [69]Slangen H G, Kerkhoff P. Nitrification inhibitors in agriculture and horticulture: A literature review [J]. Fretil. Res., 1984, 5: 1- 7.
    [70]陈利军,史奕,李荣华.脲酶抑制剂和硝化抑制剂的协同作用对尿素氮转化和N2O排放的影响[J].应用生态学报,1995,6(4):368-372.
    [71]Bundy L G, Bremner J M. Effect of urease inhibitors on nitrification in soils[J]. Soil Biology and Biochemistry, 1974, 5: 847-853.
    [72]周礼恺,赵小燕,李荣华.脲酶抑制剂氢醌对土壤尿素氮转化的影响.应用生态学报, 1992, 3(1): 36-41.
    [73]陈利军,史奕,李荣华.脲酶抑制剂和硝化抑制剂的协同作用对尿素氮转化和N2O排放的影响[J].应用生态学报,1995,6(4):368-372.
    [74]Weiske A, Benckiaer G, Herbert T. Influence of the nitrification inhibitor 3,4- dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emission, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiment[J]. Biology and Fertility of soils,2001,34:109-117.
    [75]Gioacchini P, Claudio A N, Giovannini C M. Influence of urease and nitrification inhibitors on N losses from soils fertilized with urea[J]. Biol. Fert. Soils, 2002, 36:129-135.
    [76]Lindau C W, Bollich P K, Delaune R D, et al. Methane mitigation in flooded Louisiana rice fields[J].Biol.Fertil.Soils,1993,15:174-178.
    [77]Wang ZH P, Van C O, Demeyer P, et al. Effect of urease inhibitors on urease hydrolysis and ammonia volatilization[J]. Biol. Fert. Soils, 1991a, 11:42-47.
    [78]Beyrouty C A, Nelson D W, Sommers L E. Effectiveness of phosphoroamides in retarding hydrolysis of urea surface applied to soils with various pH and residue cover [J].Soil Science, 1988b, 145:345-352.
    [79]隽英华,陈立军,武志杰,等.脲酶/硝化抑制剂在土壤N转化过程中的作用[J].土壤通报,2007,38 (4) : 773-780.
    [80]Guiraud G, Marol C,Thibaud M C. Mineralization of nitrogen in the presence of a nitrification inhibitor [J].Soil Biol.Biochem.,1989,21:29-34.
    [81]Clay D E, Malzer G L, Anderson J L, et al. Tillage and dicyandiamide influence on nitrogen fertilizer immobilization, demineralization and utilization by maize (Zea mays L) [J]. Biol. Fertil. Soils, 1990b, 9:220-225.
    [82]Wang Z P, Van C O, Li L B, et al. Effect of organic matter and urease inhibitors on urea hydrolysis and immobilization of urea nitrogen in an alkaline soil[J]. Biol.Fertil.Soils, 1991b, 11:101-104.
    [83]钟顺清,王周琼.草炭对土壤中尿素中氮的动态影响[J].干旱区研究, 2000, 17 (2): 65-69.
    [84]Shen S M, Pruden G, Jenkinson D S. Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogen[J].Soil Biology and biochemistry, 1984,16:437- 444.
    [85]Ashworth J. Comments on nitrification inhibition by nitrapyrin and volatile sulfur compounds [A]. Soil Society of America Journal, 1986, 50:268-269.
    [86]Sahrawat K L. Effect of nitrification inhibitors on nitrogen transformation, other than nitrification, in soils [J]. Advance in Agronomy, 1989, 42:279-309.
    [87]Hauck R D. Agronomic and public aspects of soil nitrogen research[C].Soil Use and Management, 1990, 6:66-70.
    [88]Francis D D, Doran J W, Lohry R D. Immobilization and up-take of nitrogen applied to corn at starter fertilizer [J].Soil Sci.Soc.Am.J, 1993, 65:235-263.
    [89]Torello W A, Wehner D T. Urease activity in a Kentucky bluegrass turf [J]. Agron. J., 1983, 75:654-656.
    [90]Chend L, Chalk P M, Freney J R, et al. Nitrogen transformations in a flooded soil in the presence and absence of rice plants:1.Nitrification[J].Nutrient Cycling in Agroecosystems, 1998, 51: 259-267.
    [91]Chalk P M, Victoria R L, Muraoka T, et al. Effect of a nitrification inhibitor on immobilization and mineralization of soil and fertilizer nitrogen [J].Soil Biology and Biochemistry, 990, 22:533-538.
    [92]Chaves B, Opoku A, Deneve S, et al. Influence of DCD and DMPP on soil N dynamics after incorporation of vegetable crop residue[J]. Biol. Fertil. Soils, 2005, 43(1): 62-68.
    [93]Rodgers G A , Widdowson F V , Penny A, et al. Effects of several nitrification inhibitors, when injected with aqueous urea , on yields and nitrogen recoveries of ryegrass leys [J]. J. Agric. Sci. Camb., 1983, 101:637-656.
    [94]卢婉芳,陈苇.稻田脲酶抑制剂的应用效果及其与环境条件的关系[J].中国水稻科学, 1992, 6(3): 135- 138.
    [95]Nelson L B, Hauck R D. Nitrogen fertilizers: progress and problems [J]. Agricultural Science Review, 1965, 3: 38-47.
    [96]Malzer G L. Performance of dicyandiamide in the north central states [J]. Soil Sci. Plant Anal. , 1989, 20(19 &20): 2001-2122.
    [97]傅柳松,刘超,吴方正.铝和双氰胺降低蔬菜硝酸盐积累的效应研究[J].环境污染与防治,1994, 16(3): 4-6.
    [98]胡勤海,傅柳松.双氰胺对蔬菜硝酸盐积累抑制作用的研究[J].环境污染与防治,1991,13(l):6-8.
    [99]舒冬妮,齐鑫山,阚建军.双氰胺抑制蔬菜积累硝酸盐的试验研究[J].农业环境护,1992, 11(4): 176-178.
    [100]Sud K C, Sharmo R C. Effect of thiourea on use efficiency by Potato in shumla hills. J. India Potato Association, 1992, 19(3-4):139-143.
    [101]许超,吴良欢,张立民,等.含硝化抑制剂DMPP氮肥对小白菜硝酸盐累积和营养品质的影响.植物营养与肥料学报,2005,4(1):22-28.
    [102]Macdama, X.M.B., Del Prado A., Merino P, et al. Dicyandiamide and 3, 4-dimethyl Pyrazole Phosphate decrease N2O emissions from grassland but dicyandiamide produces deleterious effects in clover. J. Plant Physi, 2003, 160(12):1517-1523.
    [103]黄益宗,冯宗炜,张福珠.硝化抑制剂硝基吡啶在农业和环境保护中的应用.土壤与环境,2001,10(4):323-326.
    [104]Pasda G, Hahndel R, Zerulla W. Effects of fertilizers with the new nitrification inhibitor DMPP (3, 4-dimethyl Pyrazole Phosphate) on yield and quality of agriculture and horticultural crops. Biol. Fertil. Soils, 2001, 34:85-97.
    [105]Jae Hong Lee, Ho Jin Lee, Byan Woo Lee. Effect of urease inhibitor, nitrification inhibitor, and slow-release fertilizer on nitrogen fertilizer loss in direct-seeding rice, Korean J. Crop sci., 1999 44 (3):230-235.
    [106]郑福丽,李彬,李晓云,等.脲酶抑制剂的作用机理与效应[J].吉林农业科学,2006,31(6):25-28.
    [107]Barth G, von Tucher S, Schmidthalter U. Influence of soil parameters on the effect of 3, 4- dimethylpyrazole phosphate as nitrification inhibitor. Biology and Fertility of Soils, 2001, 34: 98-102.
    [108]王艳萍,谭大凤.影响硝化抑制剂效力的因素[J].青海大学学报(自然科学版),1996,14(2).
    [109]UIIrich W R. Transport of nitrate and ammonium through plant membranes [G]//Mengel K, Pilbeam D J. Nitrogen metabolism of plants[M]. Oxford Science. Oxford: Clarendon Press, 1992: 121 -137.
    [110]Klein H, Priebe A, Jager H J. Porrescine and spermidine in pees: effect of nitrogen source and potassium supply [J]. Physiology Plant, 1979, 45:497-499.
    [111]宁国辉,刘树庆,张笑归.脲酶抑制剂的研究进展[J].河北环境科学,2003,11(4): 30-33.
    [112]孙爱文,石元亮,张德生.硝化/脲酶抑制剂在农业中的应用[J].土壤通报,2004,35(3):357-361.
    [113]王小彬.关于几种土壤脲酶抑制剂的作用条件[J].植物营养与肥料学报,1998,4(3):211-218.
    [114]赵略,孙庆元,于英梅,等.脲酶抑制剂nBPT对土壤脲酶活性和脲酶产生菌的影响[J].大连轻工业学院学报,2007,26(1):24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700