用户名: 密码: 验证码:
聚酰胺膜氯化降解机理及用ADMH接枝改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反渗透膜技术作为一种重要的膜分离技术已广泛应用于海水淡化和苦咸水脱盐领域,然而聚酰胺膜对活性氯的敏感性严重制约了反渗透膜技术的进一步发展应用。本文首先探讨聚酰胺膜与活性氯的作用机理,然后采用卤胺前体ADMH对聚酰胺膜进行接枝改性,希望改善聚酰胺膜的耐氯性能。
     本文通过考察聚酰胺膜与不同pH值、不同浓度的NaClO溶液的相互作用,推断了聚酰胺膜与活性氯的作用机理,即(1)当HClO为活性氯的主要成分时,发生酰胺键的氯化,膜内氢键被破坏,膜结构也遭到一定程度的破坏;(2)当ClO-为活性氯的主要成分时,膜结构未发生改变,ClO-在膜面上和膜孔内的吸附可能是导致膜性能变化的主要原因。此外,氯溶液的浓度及与聚酰胺膜的作用时间对聚酰胺膜的氯化降解有着重要影响。
     反渗透膜过程进水中难免存在一种或多种金属离子。本文考察了金属离子Fe3+、Fe2+和Al3+对聚酰胺膜与活性氯相互作用的影响,并对金属离子催化聚酰胺膜氯化降解的机理进行了较详细的讨论。结果表明,三种金属离子均对聚酰胺膜的氯化降解起着催化作用,且按照Al3+,Fe2+,Fe3+的顺序,催化作用增强。由于Fe3+可能形成具有强氧化能力的Fe8+,加速Cl+的生成,因此催化聚酰胺膜氯化降解的能力最强。
     本文初步考察了ADMH的制备条件及ADMH与聚酰胺膜的接枝反应条件。结果表明,随着反应时间延长,ADMH的产率不断增大;反应温度对ADMH的产率及晶形没有影响;综合考虑改性及氯化后膜通量和截留率的变化,本文选定的最优接枝反应条件为,热处理温度为60℃,ADMH浓度为1% (wt),AIBA含量为ADMH的0.5% (wt)。此外,本文还考察了当氯溶液中含有金属离子时,及聚酰胺膜长期与活性氯作用时,接枝ADMH后聚酰胺膜耐氯性能的变化。结果表明,以上两种情况下,经过ADMH接枝改性后的膜耐氯性均增强,且膜结构没有遭到严重破坏。此外,接枝改性后的膜抗菌性能也增强。本文还对接枝过程和接枝改性机理进行了初步探讨。
Reverse osmosis (RO), as one of the most important membrane technology, has been widely used in purification of blackish water and seawater. However, that polyamide membrane is sensitive to chlorine hinders the further development and application of RO. In this work, the mechanism of polyamide membrane degradation was investigated at first. Then ADMH was grafted on polyamide membrane in order to improve its chlorine-resistant property.
     By investigating the effects of NaClO aqueous solution at various pH values and concentrations on the polyamide membrane, the mechanism of polyamide membrane degradation was proposed, which was, when HClO was the dominant component, chlorination of amide bond were the main cause of polyamide membrane degradation. Hydrogen bonds and membrane structure were damaged to some extent; when ClO- covered the most parts of the chlorine component, there were few changes of membrane structure. The absorption of ClO- on membrane surface and membrane holes may lead to the performance change of chlorinated membrane. In addition, both the concentration of chlorine solution and the chlorination reaction time had significant effects on polyamide membrane degradation.
     It is always inevitable that there is one kind or more kinds of metal ions in the feed of RO, which have bad effects on polyamide membrane. In this work, three common metal ions, including Fe3+, Fe2+, and Al3+, were employed in the chlorine solution to investigate their effects on polyamide membrane degradation. Moreover, their catalysis mechanism was explicitly explained. The results showed that three kinds of metal ions were all catalyzers for polyamide membrane degradation, and the catalytic ability declined following the sequence Fe3+, Fe2+, and Al3+. Fe3+ bearing the most potent catalytic ability may be due to the formation of Fe8+, a powerful oxidant, which accelerated the generation of Cl+ and made polyamide membrane chlorinated more seriously.
     Both the preparation of ADMH and the grafting conditions were explored. The results indicated that the yield of ADMH increased with increasing reaction time, and the temperature had little effect on the yield and the crystalline of ADMH. Besides, in the scope of this work, the membrane modified by 1% (wt) ADMH and 0.5% AIBA (wt of ADMH) at 60℃had the best chlorine-resistant property. Additionally, modified membrane with ADMH showed better chlorine-resistant property and more integrated structure after treated by chlorine solution containing metal ions and after chlorinated for a long time, respectively. By grafting ADMH, the biocidal property of polyamide membrane was also improved. Furthermore, the process and the mechanism of grafting modification were proposed.
引文
[1]郑领英,膜分离与分离膜,高分子通报[J],1999,3:134-137
    [2]时钧,袁权,高从堦,膜技术手册[M],北京:化学工业出版社,2001
    [3]王晓琳,丁宁编著,反渗透和纳滤技术[M],北京:化学工业出版社,2005
    [4]高从堦,鲁学仁,张建飞等,反渗透复合膜的发展[J],膜科学与技术,1993, 3:1-6
    [5]陶氏膜产品与技术手册[M],Film Tec反渗透和纳滤元件,2003
    [6] J. Koo, N. Kim, J. Y. Koo, et al., Polyamide reverse osmosis membrane for desalination which have improved salt rejection and flux [P], US6015495-A, 2000-1-18
    [7] S. D. Arthur, Multilayer reverse osmosis membrane with improved performance - contg. polyamide: urea layer(pref. obtd. in situ) in contact with polysulphone substrate [P], US5019264-A, 1991-5-28
    [8] J. E. Cadotte, Minnetonka, Minn, D. A. Batzel, Use of inorganic ammonium catioin salts to matintain the flux and salt rejection characteristics of reverse osmosis and nanofiltration membranes during drying [P], US5658460, 1997-8-19
    [9] S. Y. Kwak, Relationship of relaxation property to reverse osmosis permeability in aromatic polyamide thin-film-composite membrane [J], Polymer, 1999, 40: 6361-6368
    [10]董晓静,胡小玲,岳红等,复合反渗透膜研究进展[J],材料导报,2002,16:52-55
    [11] M. I. Iborra, J. Lora, M. L. Alcaina, et al., Effect of oxidation agents on reverse osmosis membrane performance to brackish water desalination [J], Desalination, 1996, 108: 83-89
    [12] N. P. Soice, A. R. Greenberg, W. B. Krantz, et al., Studies of oxidative degradation in polyamide RO membrane barrier layers using pendant drop mechanical analysis [J], J. Membr. Sci., 2004, 243: 345-355
    [13] P. Xu, J. E. Drewes, C. Bellona, et al., Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications [J],Water Environment Research, 2005, 77: 40-48
    [14]俞三传,高从堦,膜技术在篕妥酆侠弥械男陆? [J],海洋通报,2001,1:83-87
    [15] G. Qin, C. K. Liu, N. H. Richman, et al., Aquaculture wastewater treatment and reuse by wind-driven reverse osmosis membrane technology: a pilot study on Coconut Island, Hawaii [J], Aquacultural Engineering, 2005, 2: 365-378
    [16]朱小莎,和慧勇,罗奖合,反渗透技术在我国电厂中的应用总结[J],热力发电,1997,6:38-43
    [17] Y. Yoon, R. M. Lueptow, Reverse osmosis membrane rejection for ersatz space mission wastewaters [J], Water Research, 2005, 39: 3298-3308
    [18] S. Casani, T. B. Hansen, J. C. Hristensen, et al, Comparison of methods for assessing reverse osmosis membrane treatment of shrimp process water [J], J. Membr. Sci., 2005, 68: 801-807
    [19]韩芸,高旭阔,王志盈,等,城市污水回用于工业生产过程中的除盐与除硬度问题的研究[J],给水排水,2003,10:55-58
    [20]高隆绪,范潇芳,张美珍,饮用纯净水的制备[J],水处理技术,1998,241:26-29
    [21]张慧,朱淑飞,鲁学仁,膜技术在水处理中的应用与发展[J],水处理技术,2002,28:256-259
    [22]汪洪生,陆雍森,国外膜技术进展及其在水处理中的应用[J],膜科学与技术,1999,19:17-22
    [23] J. Glater, J. W. McCutchan, S. B. McCray, et al., Effect of halogens on the performance and durability of reverse-osmosis membranes [C], ACS Symp. Ser., 1981, 171-190
    [24] J. Glater, J. W. McCutchan, S. B. McCray, et al., Halogen interactions with typical reverse osmosis membranes [C], Proc. Water Reuse Symp., 1982, 1399-1409
    [25] T. Kawaguchi, H. Tamura, Chlorine-resistant membrane for reverse osmosis II. Preparation of chlorine-resistant polyamide composite membranes [J], J. Appl. Polym. Sci., 1984, 29: 3369-3379
    [26] J. Y. Koo, R. J. Petersen, J. E. Cadotte, ESCA characterization of chlorine-damaged polyamide reverse osmosis membrane [J], Polym. Prepr., 1986, 27: 391-392
    [27] S. Avlonitis, W. T. Hanbury, T. Hodgkiess, Chlorine degradation of aromatic polyamides [J], Desalination, 1992, 85: 321-334
    [28] R. Singh, Characteristics of a chlorine-resistant reverse osmosis membrane [J], Desalination, 1994, 95: 27-37
    [29] R. Singh, Polyamide polymer solution behaviour under chlorination conditions [J], J. Membr. Sci., 1994, 88: 285-287
    [30] S. Wu, J. Xing, G. Zheng, et al., Chlorination and oxidation of aromatic polyamides II. chlorination of some aromatic polyamides [J], J. Appl. Polym. Sci., 1996, 61: 1305-1314
    [31] S. Konagaya, O. Watanabe, Influence of chemical structure of isophthaloyl dichloride and aliphatic, cycloaliphatic, and aromatic diamine compound polyamides on their chlorine resistance [J], J. Appl. Polym Sci., 2000, 76: 201-207
    [32] W. G. Light, H. C. Chu, K. A. Haddock., Reverse osmosis elements for dechlorinated and non-chlorinated feed water processing [C], AIC Symp. Ser., 1988, 130-138
    [33] N. P. Soice, A. C. Maladono, D. Y. Takigawa, et al., Oxidative degradation of polyamide reverse osmosis membrane: studies of molecular model compounds and selected membranes [J], J. Appl. Polym. Sci., 2003, 90: 1173-1184
    [34] G. C. White, The handbook of chlorination, 2nd ed. [M], Van Nostrand Reinhold: New York, 1986
    [35] C. R. Bartels, M. Wilf, K. Andes, et al., Design considerations for wastewater treatment by reverse osmosis [J], Water Sci. Technol., 2005, 51: 473-482
    [36] M. Wilf, S. Alt, Application of low fouling RO membrane elements for reclamation of municipal wastewater [J], Desalination, 2000, 132: 11-19
    [37] A. E. Allegrezza, B.S. Parekh, P. L. Parise, et al., Chlorine resistant polysulfone reverse osmosis modules [J], Desalination 1987, 64: 285-304
    [38] G. D. Kang, C. J. Cao, W. D. Chen, et al., Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane [J], J. Membr. Sci., 2007, 300: 165-171
    [39] P. R. Buch, D. J. Mohan, A. V. Reddy, Preparation, characterization and chloride stability of aromatic-cycloapliphatic polyamide thin film composite memberane [J], J. Membr. Sci., 2008, 309: 36-44
    [40] E. G. Maurin, F. Thominette, Ageing of polysulfone ultrafiltration membrane in contact with bleach solutions [J], J. Membr. Sci., 2006, 282: 198-204
    [41] Y. N. Kwon, J. O. Leckie, Hypochlorite degradation of crosslinked polyamidemembranes I. changes in chemical/morphological properties [J], J. Membr. Sci., 2006, 283: 21-26
    [42] Y. N. Kwon, J. O. Leckie, Hypochlorite degradation of crosslinked polyamide membranes II. changes in hydrogen bonding behavior and performance [J], J. Membr. Sci., 2006, 282: 456–464
    [43] J. Glater, M. R. Zachariah, Mechanistic study of halogen interaction with polyamide reverse-osmosis membranes [C], ACS Symp. Ser., 1985, 345-358
    [44] A. Kumar, G. Bhattacharjee, Oxidation of aromatic amines by N-chloroanilides: direction of polarity of the nitrogen-chlorine bond [J], J. Chem. Soc., Perkin Trans., 1986, 2: 61-64
    [45] J. J. Deadman, M. Jarman, R. McCague, et al., A benzoquinone di-imine from the oxidation of pentafluoroaniline by hypochlorite. X-ray crystal structure and possible formation via pentafluorophenylnitrene [J], J. Chem. Soc., Perkin Trans., 1989, 2: 971-975
    [46] N. P. Soice, A. R. Greenberg, W. B. Krantz, et al., Studies of oxidative degradation in polyamide RO membrane barrier layers using pendant drop mechanical analysis [J], J. Membr. Sci., 2004, 243: 345-355
    [47] J. Gabelich, T. I. Yun, B. M. Coffey, et al., Effects of aluminum sulfate and ferric chloride coagulant residuals on polyamide membrane performance [J], Desalination, 2002, 150: 15-30
    [48]姚剑军,张立武,聚合硅酸硫酸铝的絮凝性能及改性研究[J],应用化工,2007,36:475-477
    [49]衣守志,段瑛博,张丽红,海水淡化预处理-聚硅酸氯化铁的性能及应用领域[J],工业水处理,2008,26:17-20
    [50] A. P. Murphy, J. Wat, Accelerated deacetylation of cellulose acetate by metal salts with aqueous chlorine [J], Pollut. Control Fed., 1991, 63: 177-180
    [51] A. P. Murphy. Deterioration of cellulose acetate by transition metal salts in aqueous chlorine [J], Desalination, 1991, 85: 45-52
    [52] R. A. Dufner, D. Carl, A. P. Murphy, et al., Reduction of oxoselenium anions by iron(II) hydroxide Zingaro, Environment International [J], 1997, 23: 299-304
    [53] C. J. Gabelich, J. C. Frankin, F. W. Gerringer, et al., Enhanced oxidation of polyamide membranes using monochloramine and ferrous iron [J], J. Membr. Sci., 2005, 258: 64-70
    [54] I. C. Tessaro, J. B. A. da Silva, K. Wada, Investigation of some aspects related tothe degradation of polyamide membranes: aqueous chlorine oxidation catalyzed by aluminum and sodium laurel sulfate oxidation during cleaning [J], Desalination, 2005, 18: 275-282
    [55] A. P. Murphy, B. Murugaverl, R. L. Riley, Chlorine resistant polyamide for chlorine resistant membrane, comprises reaction product of amine, and acid chloride monomer modified with electron-withdrawing groups that exhibit sufficient activity to minimize chlorination [P], US2008277333-A1, 2008-11-13
    [56] R. V. Stevens, K. T. Chapman, H. N. Weller, Convenient and inexpensive procedure for oxidation of secondary alcohols to ketones [J], J. Org. Chem., 1980, 45: 2030-2032
    [57] J. S. Louie, I. Pinnau, I. Ciobanu, et al., Effects of polyether-polyamide block copolymer coating on performance and fouling of reverse osmosis membranes [J], J. Membr. Sci., 2006, 280: 762-770
    [58] W. E. Mickols, Composite membrane with polyalkylene oxide modified polyamide surface [P], US6280853B1, 2001-8-28
    [59] T. Shintani, H. Matsuyama, N. Kurata, Development of a chlorine-resistant polyamide reverse osmosis membrane [J], Desalination, 2007, 207: 340-348
    [60] S. Konagaya, H. Kuzumoto, O. Watanabe, New reverse osmosis membrane materials with higher resistance to chlorine [J], J. Appl. Polym. Sci., 2000, 75: 1357-1364
    [61] Y. S. Kim, S. R. Yoon, J. Koo, et al., Polyamide composite membrane for resistance chlorine, comprises porous support and polyamide film, which is formed on porous support, where amide bond of polyamide film is alkylated [P], KR2008089807-A, 2008-10-8
    [62] S. Wu, C. Zheng, G. Zheng, Truly chlorine-resistant polyamide reverse osmosis composite membrane [J], J. Appl. Polym. Sci., 1996, 61: 11147-1148
    [63] Z. Wu, X. Zhao, Y. He, et al., Oxidation-resisting composite reverse osmosis membrane for water treatment process, has polyamide layer which is arranged on polysnlfone support layer, where polyamide layer is dipped into persulphate liquid and dried to obtain membrane [P], CN101147846-A, 2008-3-26
    [64] T. Shintani, H. Matsuyama, N. Kurata, et al., Development of a chlorine-resistant polyamide nanofiltration membrane and its field-test results [J], J. Appl. Polym. Sci., 2007, 106: 4174-4179
    [65] M. H. Liu, D. H. Wu, S. C. Yu, et al., Influence of the polyacyl chloride structureon the reverse osmosis performance, surface properties and chlorine stability of the thin-film composite polyamide membrances [J], J. Membr. Sci., 2009, 326: 205-214
    [66] M. M. Jayarani, P. R. Rajmohanan, S. S. Kulkami, et al., Synthesis of model diamide, diester and esteramide adducts and studies on their chlorine tolerance [J], Desalination, 2000, 130: 1-16
    [67] M. M. Jayarani, S. S. Kulkami, Thin-film composite poly(esteramide)-based membrane [J], Desalination. 2000, 130: 17-30
    [68] J. Kim, S. Kwak, C. Kim, et al., Composite reverse osmosis membrane - comprising polymeric porous support, with an ultra thin aromatic polyester or polyester=polyamide copolymer layer [P], US5593588-A, 1997-1-14
    [69] S. Konagaya, M. Tokai, H. Kuzumoto, Reverse osmosis performance and chlorine resistance of new ternary aromatic copolyamides comprising 3, 4’-diaminodiphenylsulfone and a comonomer with a carboxyl group [J], J. of Appl. Poly. Sci., 2001, 80: 505-513
    [70]杨栋梁,纤维素纤维卤胺化整理的性能探讨——可再生性耐久的抗菌和农药解毒功能[J],印染,2001,2:46-49
    [71] Y. Y. Sun, G. Sun, Novel regenerable N-halamine polymeric biocides. I. synthesis, characterization, and antibacterial activity of hydantoin-containing polymers [J], J. Appl. Polym. Sci., 2001, 80: 2460-2467
    [72] Y. Y. Sun, G. Sun, Novel regenerable N-halamine polymeric biocides. II. grafting hydantoin-containing monomers onto cotton cellulose [J], J. Appl. Polym. Sci., 2001, 81: 617-624
    [73] Y. Y. Sun, G. Sun, Novel regenerable N-halamine polymeric biocides. III. grafting hydantoin-containing monomers onto synthetic fabrics [J], J. Appl. Polym. Sci., 2001, 81: 1517-1525
    [74] Y. Y. Sun, G. Sun, Synthesis, Characterization and antibacterial activities of novel N-halamine polymer beads prepared by suspension copolymerization [J], Macromolecules, 2002, 35: 8909-8912
    [75] Y. Y. Sun, G. Sun, Durable and regenerable antimicrobial textile materials prepared by a continuous grafting process [J], J. Appl. Polym. Sci., 2002, 84: 1592-1599
    [76] Y. Y. Sun, G. Sun, Novel refreshable N-halamine polymeric biocides: N-chlorination of aromatic polyamides [J], Ind. Eng. Chem. Res., 2004, 43:5015-5012
    [77] Y. Y. Sun, G. Sun, Novel refreshable N-halamine polymeric biocides: grafting hydantoin-containing monomers onto high performance fibers by a continuous process [J], J. Appl. Polym. Sci., 2003, 88: 1032-1039
    [78] L. Y. Wang, J. Xie, L. X. Gu, Preparation of antimicrobial polyacrylonitrile fibers: blending with polyacrylonitrile-co-3-allyl-5,5-dimethylhydantoin [J], Polymer Bulletin, 2006, 56: 247-256
    [79] S. Liu, G. Sun, Radical graft functional modification of cellulose with allyl monomers: chemistry and structure characterization [J], Carbohydrate Polymers, 2008, 71: 614-625
    [80] S. Liu, G. Sun, Functional modification of poly(ethylene terephthalate) with an allyl monomer: chemistry and structure characterization [J], Polymer, 2008, 49: 5225-5232
    [81] G. Sun, X. J. Xu, Durable and regenerable antibacterial finishing of fabrics: chemical structures source [J], Textile Chemist and Colorist, 1999, 31: 31-35
    [82] J. Lin, C. Winkleman, S. D. Worley, et al., Biocidal Polyester [J]. J. Appl. Polym. Sci., 2002, 85:177-182
    [83] G. Sun, Bioactive Fibers and Polymers [C], ACS Symp. Ser., 2001, 243-252
    [84] L. Qian, G. Sun, Durable and regenerable antimicrobial textiles: chlorine transfer among halamine structures [J], Ind. Eng. Chem. Res., 2005, 44: 852-856
    [85] L. Qian, G. Sun, Durable and regenerable antimicrobial textiles: improving efficacy and durability of biocidal functions [J], J. Appl. Polym. Sci., 2004, 91: 2588-2593
    [86] K. Tan, S. K. Obendorf, Development of an antimicrobial microporous polyurethane membrane [J], J. Membr. Sci., 2007, 289: 199-209
    [87] Y. Sun, T. Y. Chen, S. D. Worley, et al., Novel refreshable N-halamine polymeric biocides containing imidazolidin-4-one derivatives [J], J. Polym. Sci., Part A: Polymer Chemistry, 2001, 39: 3073-3084
    [88]王留阳,顾利霞,卤胺化合物在制备抗菌纤维中的应用[J],上海纺织科学,2005,33:25-26
    [89]苏保卫,克林霉素磷酸酯乙醇水溶液的纳滤浓缩及其传递特性的研究:[博士学位论文],天津:天津大学,2004
    [90]四川大学工科基础化学教学中心、分析测试中心,分析化学[M],北京:科学出版社,2001
    [91] J. D. Skrovanek, S. E. Howe, P.C. Painter, et al., Hydrogen bonding in polymers, infrared temperature studies of an amorphous polyamide [J], Macromolecules, 1985, 18: 1676-1683
    [92] D. J. Skrovanek, P. C. Painter, M. M. Coleman, Hydrogen bonding in polymers, infrared temperature studies of nylon 11 [J], Macromolecules, 1986, 19: 699-705
    [93] S. Belfer, Y. Purinson, O. Kedem, Surface modification of commercial polyamide reverse osmosis membranes by radical grafting: an ATR-FTIR study [J], Acta Polym., 1998, 49: 574-582
    [94]顾惕人,朱步瑶,李外郎,表面化学[M],北京:科学出版社,1994
    [95]黄玉东,聚合物表面与界面技术[M],北京:化学工业出版社,2003
    [96] T. W. G. Solomons, Fundamentals of organic chemistry [M], 3rd ed., Wiley, New York, 1990
    [97]天津大学分析化学教研室,实用化学分析[M],天津大学出版社, 1998
    [98] R. N. Wenzel, Resistance of solid surfaces to wetting by water [J], Ind. Eng. Chem., 1936, 28: 988-994
    [99] Y. Chen, L. Wang, H. J. Yu, et al., Synthesis, characterization, and antibacterial activities of novel N-halamine copolymers [J], J. Mater. Sci., 2007, 42: 4018-4024

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700