用户名: 密码: 验证码:
北大别造山后伸展过程构造热年代学与变形模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大别造山带位于中国东部,是印支期扬子板块俯冲于华北板块之下形成的陆—陆碰撞造山带。该造山带北部区域又经过造山后穹隆作用,最终形成了大别造山带现今的构造格局。
     北大别穹隆构造主要由混合岩化片麻岩和大量早白垩世岩体组成,南、北边界分别为五河-水吼剪切带与晓天-磨子潭剪切带。野外观察显示,北大别穹隆北部边界晓天-磨子潭剪切带总体走向NWW-SEE,倾向NNE或NE,糜棱面理倾角多为20~40°,矿物拉伸线理呈现一致的NWW-SEE向。野外S-C组构、旋转残斑,显微构造(S-C组构、残斑拖尾、“云母鱼”构造)以及石英C轴组构均指示了该剪切带一致的上盘向NWW的剪切指向。穹隆南部边界五河-水吼剪切带东段走向NWW-SEE,倾向SEE-SE,糜棱面理倾角多为60°左右,矿物拉伸线理陡倾,侧伏角约为60°S甚至倾向。野外和显微构造观察以及糜棱岩中石英C轴组构均指示五河—水吼剪切带与晓天-磨子潭剪切带具有一致的上盘向NW-NWW的剪切指向。北大别穹隆南、北边界剪切带内糜棱面理和矿物拉伸线理与其相邻的灰色片麻岩面理和拉伸线理产状协调,糜棱岩与片麻岩的变形连续。南—北方向上横切北大别穹隆的构造剖面上,穹隆北部边界临近区域片麻岩面理倾向NE-NNE,倾角20~40°左右;腹部片麻理倾角逐渐变缓多在10°左右,且倾向不稳定;继续向南片麻理逐渐转变为高角度南倾,至南部边界区域倾角为50~60°。片麻岩内S-C组构、旋转残斑以及石英C轴组构测量均指示了上盘向NWW的运动特征。北大别穹隆内片麻岩与其边界剪切带糜棱岩连续、协调的变形组构产状及岩石变形特征,均指示片麻岩与糜棱岩一起经历了同一流动变形过程。依据片麻理产状在穹隆内的分布特征,推测北大别穹隆内片麻岩与边界剪切带糜棱岩形成于穹隆作用早期的近水平状态,遭受造山后隆升作用改造后呈现为中部上拱的“背形”形态。北大别穹隆内南—北方向上混合岩化片麻岩多分布于穹隆构造腹部,东—西方向上西部较东部分布广泛,指示北大别穹隆的隆升幅度中部较南、北两侧大,西部隆升幅度较东部大。
     对晓天-磨子潭剪切带和五河-水吼剪切带内糜棱岩矿物变形的显微观察表明,糜棱岩中石英普遍动态重结晶,重结晶型式以颗粒边界迁移(GBM)为主,甚至出现高温条件下颗粒边界缩减动态重结晶型式。糜棱岩中长石也发生了广泛的动态重结晶,主要以鼓胀式重结晶型式(BLG)与颗粒边界旋转重结晶型式(SR)共存。利用矿物动态重结晶型式与变形温度直接的关系,这两条剪切带糜棱岩变形温度均在600~650°之间。按早白垩世大别造山带地温梯度(>30°)计算,两剪切带均形成于中地壳深度。尝试用角闪石Al压力计算表明,晓天—磨子潭剪切带变形平均压力为5.21 Kba,也指示了18.3 km的中地壳变形深度。
     野外对晓天-磨子潭剪切带与其相邻岩体及火山岩接触关系的观察表明,剪切带的形成至少不晚于早白垩世岩浆活动时间。位于磨子潭镇南部的早白垩世火山岩直接覆盖于剪切带糜棱岩之上,说明原本处于地壳深部的韧性剪切带被抬升至地表之后,火山岩喷发至地表,表明剪切带应形成于该期岩浆活动之前。本次工作通过对受控于晓天-磨子潭剪切带发育的未变形岩体的U-Pb锆石年代学的测试也证实,剪切带至少在130 Ma时已停止活动。从晓天—磨子潭剪切带糜棱岩中选取了角闪石和黑云母矿物进行了40Ar/39Ar年代学研究,获得的年龄结果介于120-142 Ma之间,皆被解释为冷却年龄。剪切带糜棱岩所记录的年龄在空间上表现出明显的东早西晚的规律,揭示了晓天-磨子潭剪切带西段的平均抬升速度小于东段。剪切带中段的XM31-2糜棱岩中角闪石给出了142 Ma的坪年龄,记录剪切带活动的开始时间应早于142 Ma,同时也揭示了北大别穹隆活动早期中部首先冷却抬升。北大别穹隆内早白垩世变形(片麻状)岩体都给出了早于132 Ma的年代学数据,沿晓天—磨子潭剪切带东段分布的未变形岩体给出了130 Ma结晶年龄,指示下地壳流动的截止时间为132 Ma。本次测试样品XM24-3和52-1都分别给出了界于132~127 Ma之间的十分相近的角闪石和黑云母冷却年龄,表明在此期间北大别穹隆经历了十分快速的抬升和冷却。前人从五河-水吼剪切带中获得的40Ar/39Ar年龄数据(~130 Ma)与晓天-磨子潭剪切带冷却时间相近。这些年代学研究指示了晓天-磨子潭与五河-水吼剪切带形成于同一时代,共同经历了早白垩世北大别穹隆作用的改造。北大别的下地壳流动与水平拆离剪切带的活动发生在145-132Ma期间,132 - 127 Ma期间发生了快速抬升与穹隆形成,这时早期的剪切带被动抬升而不再发生活动。
     本次研究利用原始水平剪切带模型,通过变形模拟进一步定量计算了晓天-磨子潭与五河-水吼剪切带受北大别穹隆改造详细过程,并揭示了穹隆构造的几何学、运动特征。模拟计算获得了原始水平剪切带剪切方向为上盘向NWW(280°)运动,运动学涡度为0.95。通过将理论水平剪切带绕各自不同的空间轴旋转适当角度,理论计算所获得的剪切带面理、拉伸线理产状在赤平投影上很好拟合了晓天-磨子潭剪切带东段的晓天剖面、中断的磨子潭剖面、西段的丁铺剖面和五河-水吼剪切带的水吼剖面上实测剪切带糜棱面理与线理产状分布特征,指示了两边界剪切带早期为同一韧性剪切带,也表明晓天-磨子潭剪切带各段内产状与运动学的现今不协调特征是遭受后期不均一改造的结果。理论计算的面、线组构产状与晓天-磨子潭剪切带实测面、线组构产状的拟合,需要绕东—西向水平轴将理论水平模型南部向上旋转,而拟合五河-水吼剪切带时需要绕东—西向水平轴将理论模型北部向上旋转,指示了北大别穹隆是中部上拱的运动过程,证实了穹状隆升的“背形”构造形态。模拟晓天-磨子潭剪切带西段剖面的产状时,理论模型绕东—西向轴南部向上旋转的角度大于东段,并且模拟剪切带中段剖面的产状分布时,需绕南—北向水平轴将理论模型西部向上旋转,表明北大别穹隆过程中西部抬升幅度大于东部。
     北大别穹隆的运动学性质体现了典型的下地壳韧性流动的特征。大别造山带印支期陆—陆碰撞以及高压-超高压折返过程使得造山带地壳显著加厚。相对于造山带东部的扬子克拉通,北大别穹窿区域“储存”巨量侧向重力势能。在中国东部岩石圈减薄背景下,随着北大别区域下地壳的逐渐升温、软化,造山带内下地壳物质韧性流动性增强,北大别下地壳岩石在重力的驱动下发生了重力跨塌,产生了下地壳物质向南东东流动,并在韧性流动的上部边界产生了近水平的、上盘向北西西的韧性剪切带。在重力均衡作用下,下地壳物质的流出是北大别穹隆区域发生了“背形”隆升的动力来源之一。
The Dabie orogenic belt (DOB), located in eastern China, was developed due to continent-continent collision between the South China block and North China block. After post-orogenic doming, the tectonic framework of the northern DOB formed.
     The North Dabie Dome (NDD) mainly consisted of migmatitic gneiss and the Early Cretaceous plutons. The NDD is bounded by the Xiaotian-Mozitan shear zone (XMSZ) to the north and the Wuhe-Shuihou shear zone (WSSZ) to the south. Based on field observation, the XMSZ, the northern boundary of NDD, strikes NWW-SEE and dips at 20-40°toward NNE or NE. The lineation in mylonite plunges NWW. The macrostructures (the S-C structure andσ-type feldspar porphyroclast) and microstructures (the S-C structure,σ-type feldspar porphyroclast and“mica fish”structure) and quartz C-axis fabrics all show top-to-NWW shear sense. The east segment of the WSSZ strikes NWW-SEE and dips at about 60°toward SE or ESE. The lineation in mylonite plunges about 60°toward S. The field structures, microstructures and quartz C-axis fabrics in the WSSZ all show top-to-NWW shear sense. The attitude of the foliation and lineation gradually varies from mylonite in the two shear zones to gneiss in the NDD and the interior of the NDD between the two shear zones also exhibit widespread, top-to-WNW ductile deformation dated as the Early Cretaceous. Across the NDD from north to south, Gneiss foliation in the northern part of the dome dips at 20-40°toward NE or NNE whereas that in the southern part dips at 50-60°towards SE or SSE. Foliation in the middle part of the dome shows variable strikes and dip angles while the lineation consistently plunges WNW or ESE. The S-C structure,σ-type feldspar porphyroclast and quartz C-axis fabrics all show top-to-NWW shear sense. All of these demonstrate that the two shear zones experienced the same flow deformation as the interior of the NDD. The gradually varying gneissositic foliation inside of the NDD indicates that the XMSZ and WSSZ were originally one flat-lying detachment shear zone with uniform top-to-WNW shear sense before doming of the NDD. The migmatitic gneiss exposes more often in the central part of the NDD than in the south and north sides and the NDD is more widely in the west than in the east, which indicated the maximum uplift happened in the central NDD and the west part of the NDD uplifted more intensively than the east part.
     By microscopic observation of oriented thin-sections the quartzes in mylonite all dynamic recrystallized, mostly by grain boundary migration recrystallization and some with grain boundary reduction recrystallization under high temperature condition. Feldspar in the mylonites shows widespread dynamic recrystallisation mainly by both bulging recrystallisation and subgrain rotation recrystallisation. All of these indicate the deformation temperature of 600~650°C. Using a geothermal gradient of >30°C/km normally for post-orogenic extension setting, the XMSZ and WSSZ formed at a middle curst level. Calculating by Al-in-hornblende geobarometer, the average pressure of 5.21 kbar was acquired, indicating depth of 18.3 km.
     The mylonite in the XMSZ was covered by the Early Cretaceous volcanic rocks north to the NDD, which suggests that the magmas erupted after mylonite in the XMSZ uplifted to surface. The zircons from the undeformed plutons along the XMSZ gave U-Pb age of 130 Ma, which shows that the movement of XMSZ ended at least before 130 Ma. A number of biotite and hornblende from mylonite in the XMSZ were collected for 40Ar/39Ar dating and a series of plateau ages from 120 Ma to 142 Ma were acquired, which were all explained as cooling age. The obtained 40Ar-39Ar ages from the western segment are significantly younger than those of the same minerals from the eastern one, denoting the west segment of the XMSZ experienced slower uplift. The middle segment of the XMSZ gives the oldest 40Ar/39Ar cooling age of 142 Ma (hornblende). On the basis of the cooling age distribution along the XMSZ, it is inferred that along an EW transverse the middle part of the NDD uplifted first during the doming. The deformed plutons in the NDD gave ages of older than 132 Ma while the undeformed ones along XMSZ gave U-Pb age of 130 Ma (this work), which shows that the middle-lower crustal ductile flow ended at about 132 Ma. Hornblende and biotite ages from the same samples of XM24-3 and XM52-1 in the XMSZ only show slight difference, indicating the NDD experienced fast cooling from 132 Ma to 127 Ma. The 40Ar/39Ar ages of the XMSZ are consistent with the 40Ar/39Ar ages of 126 Ma (biotite) and 130 Ma (muscovite) from the WSSZ, demonstrating the XMSZ and WSSZ were originally one shear zone. The lower crustal ductile flow and sub-horizontally detachment in NDD had lasted from about 145 Ma to 132 Ma and the fast uplift had been occurred between 132 Ma and 127 Ma in the NDD.
     To explore the geometric and kinematic pattern, a flat-lying shear zone theoretic model was used to quantitatively model the process that the XMSZ and WSSZ had been rebuilt by the dome. By modeling, the top-to-NWW (280°) shear sense and the kinematic vorticity number (0.95) for the original flat-lying shear zone were acquired. After rotation around a certain axis, the attitude of foliations and lineations by theoretic calculation can be respectively consistent with the natural attitude varying in the Xiaotian cross-section in east segment, the Mozitan cross-section in middle segment, the Dingpu cross-section in west segment of XMSZ and the Changpu section of WSSZ.
     The results from modeling not only prove that the XMSZ and WSSZ were originally the same flat-lying shear zone, but also indicates that the geometrical differences of the whole XMSZ resulted from asymmetrical rebuilt during doming. The south of the theoretic model must be rotated up around an east-west axis to correspond with the sections of XMSZ, and the north of theoretic model must be rotated up around the same axis to correspond with the section of WSSZ. These progresses indicated that the interior of the NDD had been uplifted higher than the north and south sides and the NDD exhibits an arch-shape as a whole. The rotation angle in the theoretic model of the Dingpu cross-section is larger than the Xiaotian cross-section and an additional rotation around a south-north horizontal axis was done in the Mozitan cross-section. These information verified that the west part of the NDD had more uplift than the east part.
     The kinematics of the NDD shows lower crustal flow. During the content-content collision and exhumation of ultra-high pressure metamorphic rocks, the crust of the NDD had been thickened and therefore a huge gravity potential energy was stored in the NDD crust relative to the adjacent South China block. During the continental-scale, extensional regime in East China, the lower crust was heated and softened and hence gravitational collapse would take place in lower crust with increasing plasticity of lower crustal rocks. When the lower crust flowed towards SEE, the flat-lying ductile shear zone with top-to-NWW shear sense came to being. Just for the lower crustal flow, the lithosphere isostatic rebound became one of the most important factors resulting in development of arch-shape of the NDD.
引文
Altenberger U. Ductile deformation of K-feldspar in dry eclogite facies shear zones in the Bergen
    Arcs, Norway[J]. Tectonophysics, 2000, 320: 107-121. Ames L, Tilton G R, Zhou G Z. Timing of collision of the Sino-Korean and Yangtze Cratons: U-Pb zircon dating of coesite-bearing eclogites. Geology, 1993, 21(4): 339-342
    Ames L, Zhou G, and Xiong B. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze Cratons, Central China. Tectonics, 1996, 15(2): 472-489.
    Anderson D J, Lindsley D H and Dabidson P M. QUILF: A Pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz[J]. Computers and Geosciences, 1993, 19: 1333-1350.
    Artyushkov E.V. Stresses in the lithosphere caused by crustal thickness inhomogeneities. Goephys. Res. 1973. 78: 7675~7708.
    Ayers C, Dunkle S, Gao S. Constraints on timing of peak and retrograde meatamorphism in the Dabie Shan ultrahigh-pressure meatamorphic belt, east- central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology, 2002, 186: 315-331.
    Ayers C, Dunkle S and Gao S. Constraints on timing of peak and retrograde meatamorphism in the Dabie Shan ultrahigh-pressure meatamorphic belt, east- central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology, 2002, 186: 315-331.
    Baird G B and Hudleston P J. Modeling the influence of tectonic extrusion and volume loss on the geometry, displacement, Vorticity, and strain compatibility of ductile shear zones. Journal of Structural Geology, 2007, 29: 1665~1678.
    Beaumont C, Jamiesont R.A, Nguyen M.H et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. National. 2001, 414: 738-742.
    Borges FS and White SH. Microstructural and chemical studies of sheared anorthosites, Roneval, South Harris[J]. Journal of Structural Geology, 1980, 2: 237-280.
    Bouchez J L. Plastic deformation of quartzites at low temperatures in an area of natural strain gradient[J]. Tectonophysics, 1997, 39: 25-50.
    Boutelier D., Chemenda A, Burg J.-P. Subduction versus accretion of intra-oceanic volcanic arcs: insight from thermo-mechanical analogue experiments. Earth and Planetary Science Letters, 2003, 212: 31-45
    Bretherton F P.The motion of rigid particles in shear flow at low Reynolds number[J].Jour Fluid Mechanics,1962,14: 284-301.
    Carswe11 D A,O Brien P I,Wilson R N,et a1.Thermobarometry of phengite bearing eclogites in the Dabie Mountains Of central China[J].J Metamorphic Geology,1997,45:239-252.
    Channel J E T, Mareschal J C. Delamination and asymmetric lithospheric thickening in the development of the Tyrrhenian Rift. Geology society special Publication, 1989, 45: 285-302
    Chauvet A and Séranne M. Extension-parallel folding in the Scandinavian Caledonides: Implications for late-orogenic processes. Tectonophysics, 1994, 238(1-4): 31-54.
    Chavagnac V, Jahn B M. Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chemical Geology, 1996, 133(1-4): 29-51.
    Chavagnac V, Jahn B M, Villa, I. M., et al. Multichronometric evidence for an in-situ origin of the ultrahigh-pressure metamorphic terrane of Dabieshan, China. 2001, Journal of Geology., 109: 633-646.
    Chemenda A I, Mattauer M, Malavieille, J. A mechanism for syn-collisional rock exhumation and associated normal faulting: Results from physical modeling. 1995, Earth and Planetary Science Letters. 132: 255-232.
    Chemenda A I, Mattauer M, Bokun A N. Continental subduction and a mechanism for exhumation of high-pressure metamorphic rocks: new modelling and field data from Oman. Earth and Planetary Science Letters 1996, 143: 73- 182.
    Chemenda A I, Hurpin D., Tang J.-C., et al. Impact of arc-continent collision on the conditions of burial and exhumation of UHP/LT rocks: experimental and numerical modeling. Tectonophysics, 2001, 342: 137–161
    Chen B, Jahn B, Wei C J. Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: trace element and Nd–Sr isotope evidence. 2002, Lithos 60: 67–88
    Chen F K, Guo J, Jiang L L, et al. Province of the Beihuaiyang low-grade metamorphic zone of the Dabie ultra-high pressure collisional, china: Evidence from ziron ages. Journal of Asian Earth science, 2003, 22: 343-352.
    Chen,Y.,Ye, K., Liu, J.B., Sun, M., 2006. Multistage metamorphism of the Huangtuling granulite, Northern Dabie Orogen, eastern China: implications for the tectonometamorphic evolution of subducted lower continental crust. J. Metamorph. Geol. 24, 633–654.
    Chopin C. Coesite an d pure pyrope in hish-grade blueschists of the western Alps:a first record and some consequences. Contrib MineralPetro1, 1984, 86:l07~ll8
    Choukroune, P., Se′guret, M., 1970. Tectonics in the Pyre′ne′es, role of compression and gravity. In: De Jong, K.A., Scholten, R. (Eds.), Gravity and Tectonics.Wiley, pp. 141– 156.
    Cong B., Zhai M., Carswell D A., et al. Petrologenisis of ultrahigh-pressure rock and their country rocks in Shuanghe of Dabieshan Mountains, central China. Eur. J. Mineral. 1995, 7: 119-138.
    Czeck D.M., Hudleston P.J. Texting models for obliquely plunging lineations in transpression: a natural example and theoretical discussion. Journal of Structural Geology. 2003, 25: 959-982.
    Davies J H, Vonblanckenburg F. Slab breakoff– a model of lithosphere detachment and its test in the magmatism and deformation of collisonal orogens. Earth Planet Science Letter, 1995, 129(1-4):85-102.
    Debelmas, J., Kerckhove, C., 1973. Large gravity nappes in the French– Italian and French–Swiss Alps. In: De Jong, K.A., Scholten, R. (Eds.), Gravity and Tectonics.Wiley, pp. 189– 200.
    De Paor D G.Rf/strain analysis using an orientation net[J].Jour Struct Geol,1988,10:323-333.
    Dodson M H. Closure temperature in cooling geochronological and petrological systems[J]. Contrib Mineral Petrol. 1973, 40(30):259-174.
    Drury M R and Urai J L. Deformation-related recrystallization processes[J]. Tectonophysics, 1990, 172:235-253.
    Dunlap W J. Neocrystallization or cooling? 40Ar/39Ar ages of white micas from low-grade mylonites. Chemical Geology. 1997, 143: 181-203.
    England P.C Some numerical investigations of large scale continental deformation. In: Hsü, K.J.(ED), Mountain Building Processes. Academic Press, New York. 1982. PP 129~139.
    England P and Moinar P. Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 1990, 18: 1173-1177.
    Essene E J. The current status of thermobarometry in metamorphic rocks[J]. Am. Miner, 1989, 74: 1-44.
    Fan W-M, Guo F, Wang Y-J, Zhang M. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie orogen? Chemical Geology, 2004 209: 27– 48.
    Faure M, Lin W, Shu L., et al., Tectonics of the Dabieshan (eastern China) and possible exhumation mechanism of ultra high-pressure rocks. Terra Nova, 1999, 11(6): 251-258.
    Faure M, Lin W, Sch?rer U, Shu L S, Sun Y and Arnaud N. Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China)[J]. Lithos, 2003, 70: 213 - 241.
    Ferrill D A, Morris A P, Evans M A and Burkhard M, Calcite twin morphology: a low-temperature deformation geothermometer[J]. Journal of Structural Geology, 2004, 26: 1521-1529.
    Flinn D. The deformation matrix and the deformation ellipsoid. Journal of Structural Geology, 1979, 1: 299~307.
    Fossen H, Tikoff B. Forward modeling of non-steady deformations and the‘minimum strain path’. Journal of Structural Geology. 1997, 19(7): 987~996
    Fossen H. and Tikoff B. The deformation matrix for simultaneous simple shearing, pure shearing and volume change and its application to transpression-transtension tectonics. Journal of Structural Geology. 1993, 15: 413-422.
    Frisch W, Dunkl I, Kuhlemann J. Post-collisional orogen-parallel large-scale extension in the Eastern Alps. Tectonophysics. 2000, 239-265.
    Gapais D. Shear structures within deformed granites: mechanical and thermal indications. Geology[J], 1989, 17: 1144-1147.
    Gates AE and Glover L. Alleghanian tectono-thermal evolution of the dextral transcurrent hylas zone, Virginia Piedmont, USA[J]. Journal of Structural Geology, 1989, 11:407-419.
    Graham B. and Hudleston P J. Modeling the influence of tectonic extrusion and volume loss on the geometry, displacement, vorticity, and strain compatibility of ductile shear zones[J]. Journal of Structural Geology, 2007, 29: 1665-1678.
    Grimmer J.C, Ratschbacher L, McWilliams M, Franz L, Gaitzsch I, Tichomirowa M, Hacker B R., Yueqiao Zhang. When did the ultrahigh-pressure rocks reach the surface? A 207Pb/206Pb zircon, 40Ar/39Ar white mica, Si-in-white mica, single-grain provenance study of Dabie Shan synorogenicforeland sediments[j]. Chemical Geology, 2003, 197: 87-110.
    Hammarstrom.Zen.1986.Aluminum in hornblende: an empirical igneous geobarometer[J]. American Mineralogist, 71: 1297-1313.
    Hacker B R, Ratschbacher L, Webb L E, et al. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabieorogen, China. Earth Planet Sci Lett, 161: 215~230
    Hacker R.B, Ratschbacher L, Webb L, et al. 2000. Exhumation of ultrahigh-pressure continental curst in east central China: Late Triassic-Early Jurassic tectonic unroofing. Journal of Geophysicsl Reach., 105(10):13339-13364.
    Harris N. Channel flow and the Himalayan-Tibetan orogen: a critical review. Journal of Geological Society, London. 2007, 164: 511-523.
    Harrison T M. Diffusion of 40Ar in hornblende[J]. Contributions to Mineralogy and Petrology, 1981, 78: 324-331.
    Hay R S and Evans B. Chemically induced grain boundary migration in calcite: temperature dependence, phenomenology, and possible applications to geologic systems[J]. Contributions to Mineralogy and Petrology, 1987, 97: 77-87.
    Hirth G and Tullis J. Dislocation creep regimes in quartz aggregates[J]. Journal of Structural Geology, 1992, 14: 145-159.Hoish T D. A muscovite-biotite geothermometer[J]. American Mineralogist, 1989, 74: 565-572.
    Hollister L S, Grisson G C, Peters, E K, Stowell, H H, and Sisson V B. 1987. Confirmation of the empirical correlation of aluminum in hornblende with pressure of solidification of calc-alkaline pluton. America Mineralogist, 72: 231– 239.
    Hongn F D, Hippertt J F. Quartz crystallographic and morphologic fabrics during folding/transposition in mylonites. Journal of Structural Geology, 2001, 23: 81-92
    Huang F, Li S G, Dong F, He Y S, Chen F K. High-Mg adakitic rocks in the Dabie orogen, central China: Implications for foundering mechanism of lower continental crust. Chemical Geology, 2008, 255: 1–13.
    Iacopini D., Passchier C.W., Koehn D, et al. Fabric attractors in general triclinic flow systems and their application to high strain shear zones: dynamical system approach[J]. Jouornal of Structural Geology, 2007, 29: 298-317.
    Iacopini D., Carosi R., Montomoli C, et al. Strain analysis and vorticity of flow in the Northern Satdinian Variscan Belt: Recognition of a partitioned oblique deformation event[J]. Tectonophysics, 2008, 446: 77-96.
    Jessup M J., Law R D., Frassi C. The Rigid Grain Net (RGN): An alternative method for estimating mean kinematic vorticity number (Wm) [J]. Journal of Structural Geology. 2007, 29: 411e421.
    Jeffrey A. Handbook of Mathematical Formulas and Integrals. Academic Press, 1995, New York.
    Jiang D Z and White J C. Kinematics of rock flow and the interpretation of geological structures, with particular reference to shear zones. Journal of Structural Geology, 1995, 17(9): 1249~
    1265
    Jiang D Z and Williams P F. High-strain zones: a unified model[J]. Journal of Structural Geology, 1998, 20(8):1105-1120.
    Jiang D Z, Lin S F and Williams P F. Deformation Path in high-strain zones, with reference to slip partitioning in transpressional plat-boundary regions[J]. Journal of Structural Geology, 2001, 23: 991-1005.
    Jiang D Z. Sustainable transpression: An examination of strain and kinematics in deforming zones with migrating boundaries[J]. Journal of Structural Geology, 2007, 29: 1984-2005.
    John R R, Holdsworth R E. and Baily W. Lateral extrusion in transpression zones. Journal of Structural Geology, 1997. 19: 1201~1217.
    Yang K G, Ma C Q, Xu C H, et al. Differential uplift between Beihuaiyang and Dabie orogenic belt[J]. Science in China,Ser.D, 2000, 2: 83-89.
    Johnson M C。Rutherford M J. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera(California)[J]. Geology, 1989, 17: 837-841.
    Jones, R. R. and Tanner P W. Strain partitioning in transpression zones. Journal of Structural Geology, 1995, 19: 1201~1217.
    Kay R W, Kay S M. Delamination and delamiation magmatism. Tectonophysics. 1993, 219:177-189.
    Kern H, Jin Z M, Gao S, Popp T, Xu Z Q. Physical properties of ultrahigh-pressure metamorphic rocks fromthe Sulu terrain, eastern central China: implications for the seismicstructure at the Donghai (CCSD) drilling site. Tectonophysics [J], 2002, 354: 315– 330.
    Krantz R W. The transpressional strain model applied to strike-slip, oblique-convergent and oblique-divergent deformation. Journal of Structural Geology 17: 1125~1137.
    Law R D. Crystallographic fabrics: a selective review of their applications to research in structural geology. In: Knipe R J, Rutter E H. eds. Deformation mechanisms, rheology and tectonics[J]. Geological. Society. Special. Publication., 1990, 54: 335-352.
    Lafrance B, John Barbara E and Frost B R. Ultra high-temperature and subsolidus shear zones: examples from the Poe Mountain anorthosite, Wyoming[J]. Journal of Structural Geology, 1998, 20: 945-955.
    Lebit H, Klaper E M, Lunebirg C M. Fold-contrlled quartz textures in the Pennine Mischabel backfold near Zermatt, Switzerland. Tectonophysics, 2002, 359: 1-28
    Leech M.L. Arrested orogenic development: eclogitization, delamination, and tectonic collapse. Earth and Planetary Science Letters. 2001, 185: 149-159.
    Lister G S, Dornsiepen U F. Fabric transitions in the Saxony granulite terrain[J]. Journal of Structural Geology, 1982, 41: 81-92. Li R W, Li S Y, Cheng Z Y, et al. Provenance of Jurassic sediments in the Hefei Basin, east-central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan. Earth and Planetary Science Letters, 2005, 231: 279– 294.ke
    Li Q L, Li S G, Zheng Y F. A high precision U-Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China: A new constraint on the cooling history. Chemical Geology, 2003, 200: 255-265.
    Li S G, Xiao Y L, Liu D L, et al. Collision of the North China and Yangtz Blocks and formation of coesite-bearing eclogites: Timing and processes[J]. Chem Geol, 1993, 109: 89-111
    Li S G, Xiao Y L, Liou D L, et al. Collision of the North China and Yangtze Blocks and formation of coesite-bearing eclogites: Timing and processes. Chemical Geology, 1993, 109: 89-111.
    Li S G, Chen Y Z, Jagouty E, et al., Geochemical and geochronological constraints on the tectonic outline of the Dabie mountains, central China:A continent-microcontinent-continent collision model. Continental Dynamics, 1998, 3: 14-31.
    Li S G, Jagoutz E, Chen Y Z, et al. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochim Cosmochim Acta, 2000, 64(6): 1077-1093.
    Li S G, Huang F, Li H. Post-collisional delamination of the lithosphere beneath Dabie-Sulu orogenic belt. Chinese Science Bullentin, 2001, 46(17): 1487-1490.
    Li S G. Exhumation mechanism of the ultrahigh-pressure metamorphicrocks in the Dabie mountains and continental collision processbetween the North and South China blocks[J], Earth Science Frontiers, 2004, 11(3): 63– 70.
    Lin S F, Jiang Dazhi and Williams P F. Transpression(or transtension) zone of triclinic symmetry: Natural example and theoretical modeling[J]. Geological Society, London, Special Pullications, 1998, 13541-13557.
    Lin, S F, Jiang, D Z. and Williams P F. Importance of differentiating ductile slickenside striations from stretching lineations and variation of shear direction across a high-strain zone. Journal of Structural Geology. 2007.29: 850-862
    Lin W, Masaki E, Faure M, et al. Survival of eclogite xenolith in Cretaceous granite intruding the Central Dabieshan migmatite gneiss dome (Eastern China) and its tectonic implications. International Journal of Earth Science, 2007, 96: 07-724.
    Lister G S and Williams P F. The partitioning of deformation in flowing rock masses. 1983. Tectonophysics 92: 1~33.
    Liu J, Ye K and Maruyama S. Mineral inclusions in zircon from gneisses in the ultrahigh-pressure zone of the Dabie Mountains. China. Journal of Geology, 2001, 109: 523-535.
    Liu Y C, Li S G, Xu S T, et al. Geochemistry and geochronology of eclogites from the northern Dabie Mountains, central China. Journal of Asian Earth Sciences. 2005, 25: 431-443.
    Liu Y-C, Li S-G, Xu S-T. Zircon SHRIMP U–Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China: Implications for decoupling within subducted continental crust. Lithos, 2007, 170–185.
    Ludwig K R. User’s manual for Isoplot 3.23: A Geochronological Toolkit for Microsoft Excel [M]. Berkeley Geochronology Center Special Publication, Berkeley, 2003, Pp1-70.
    Mainprice D, Bouchez J L and Blumendeld P. Domiant c-slip in naturally deformed quartz: implications for dramatic plastic softening at high temperature[J]. Geology, 1986, 14: 819-822.
    Mancktelow N S. and Pennacchioni G. The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites[J]. Journal of Structural Geology, 2004, 26: 47-69
    Marotta A.M, Fernàndez M, Sabadini R. Mantle unrooting in collisional settings. Tectonophysics. 1998, 296: 31-46.
    Massonne H J. Schreyer W. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz[J]. Contribmineral Petrol, 1987, 96: 212-224.
    Massonne H J, Szpurka Z. Thermodynamic properties of white micas on the basis of high-pressure experiments in the systems K2O-MgO-A12O3-Si2O-H2O and K2O-FeO-Al2Ol-Si2O-H2O[J]. Lithos, l997. 41: 229-250.
    McDougall I, Harrison T M. Geochronology and Thermochonology by the 40Ar /39Ar Method[M]. New York: Oxford University Press, 1998, 212p
    Means W D, Hobbs B E, Lister G S. et al. Vorticity and non-coaxialicy in progressive deformation [J]. Journal of Structural Geology. 1980, 2(3): 371-378.
    Means W D. An unfamiliar Mohr circle construction for finite strain. Tectonophysics, 1983. 89: 1-6. Means, W. D. Shear zones and rock history. Tectonophysics. 1995, 247: 157~160.
    Molnar P, Chen W.P. Seismicity and mountain building. In: Hsü, K.J.(ED), Mountain Building Processes. Academic Press, New York. 1982. PP 41~57
    Molnar P, Chen W.P. Focal depths and fault plane solutions earthquakes under the Tibetan Plateau. J. Geophys. Res. 1983. 88: 1180~1196.
    Nurminen K B. A recalbration of the chlorite blotile muscovite geobarometer[J]. Contrib Mineral Petro1. 1987,96: 519-522.
    Okay A I, Xu S and Sengor A M C. Coesite from the Dabie Shan ec-logites, central China. Europ J Mineral, 1989, 1: 595-598.
    Okay A I. Petrology of a diamond and coesite-bearing metamorphic terrain: Dabie Shan, China. Eur. J. Mineral. 1993, 5: 659-673.
    Olsen T S and Kohlstedt D L. Natural deformation under amphibolite facies conditions. Journal of Structural deformation and recrystallization of some intermediate plagioclase feldspars[J]. Tectonophysics, 1985, 111: 107-131.Passchier C W.Stable positions of rigid objects in non-coaxial flow—a study in vorticity analysis[J].Jour Struct Geol,1987,9:671—690.
    Passchier C W. The use of Mohr circle to describe non-coaxial progressive deformation [J]. Tectonophysics. 1988, 149: 323-338.
    Passchier C W, Trouw R A J. Microtectonics[M]. 1996, Berlin. Springer, 49-95.
    Passchier C. W. The fabric attractor. Journal of Structural Geology, 1997, 19: 113~127.
    Passchier C. W. Monoclinic model shear zones. Journal of Structural Geology. 1998. 20(8): 1121~1137.
    Passchier C. W., Trouw R. A. J. Micro-tectonics [M]. Springer-verlag Berlin Heidelberg. 2005.
    Pryer L L. Microstructures in feldspars from a major crustal thrust zone: the Grenville Front, Ontario, Canada[J]. Journal of Structural Geology, 1993, 15: 21-36.
    Ramberg H. The Scandinavian Caledonides as studied by centrifugal dynamic model. Bull. Geol. Inst. Univ. 1966. Uppsala 43.
    Ramberg, H. Particle paths, displacement and progressive strain applicable to rocks[J]. Rectonophysics, 1975, 28: 1-37.
    Ramberg H. The role of gravity in orogenic belts. In: Mcklay, K.R, Price, N.J(Eds.), Geol. Soc. Spec. Publ. 1981. 9: 125~140.
    Ramsay J. G. and Graham R. H.. Strain variation in shear belt. Canadian Journal of Earth Sciences, 1970, 7: 786~813.
    Ramsay J. G. Shear zone geometry: a review. Journal of Structural Geology, 1980 2:1~37.
    Ratschbacher L, Hacker B R, Webb L E, McWilliams M, Ireland T, Dong Shuwen, Calvert A, Chateigner D and Wenk H-R. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault[J]. Journal of Geophysical Research, 2000, 105(10): 13303-13338.
    Reddy S M, Kelley S P, Magennis L. A microstructural and argon laserprobe study of shear zone development at the western margin of the Nanga Parbat-Haramosh Massif, western Himalaya[J]. Contributions to Mineralogy and Petrology, 1997, 128: 16-29.
    Reddy S M, Potts G J. Constraining absolute deformation ages: the relationship between deformation mechanisms and isotope systematic. Journal of Structural Geology, 1999, 21: 1255-1265.
    Rey P., Vanderhaeghe O., Teyssier C. Gravitational collapse of the continental crust: definition regimes and modes. Tectonophysics. 2001, 342: 435~449.
    Rosenberg C L. Deformation and recrystallization of plagioclase along a temperature Gradient: an example from the Bergell tonalite[J]. Journal of Structural Geology, 2003, 25: 389-408.
    Rowley D B, Xue F, Tucker Z, et al. Ages of ultrahigh pressure metamorphism and protolith orthogeneisses from the eastern Dabie Shan: U/Pb zircon geochronology. Earth Planet Science Letter, 1997, 1151: 191-203.
    Sanderson, D. J. and Marchini, W.R.D. Transpression. Journal of Structural Geology. 1984, 6: 449-458.
    Schmidt MW. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol. 110: 304-310.
    Schofield D L, Dlemos R S. Relationship between syn-tectonic granite fabric and regional P-T-t-d paths: an example from the Gander-Aralon boundary of NE Newfounelland[J]. Journal of Structural Geology, 1998, 30:459-471.
    Sedov L. I. A Course in Continuum Mechanics, Volume 1, Basic Equations and Analytical Techniques. 1971, Wolter-Noordhoff, Groningen.
    Sibson R H. Fault rock distribution and structure within the Alpine Fault Zone: a preliminary account[J]. Bulletin of the Royal Society of New Zealand, 1999, 18:55-66.
    Simpson C,De Paor.Strain and kinematic analysis in general shear zones[J].Jour Struct Geol,1993,15: 1-20.
    Simposon( D H , Thompson A 13 ,Connolly J A I) . Phase relations, singularities and thermobarometry of metamorphic assemblages constraining phengite,chlorite,biotite,K-feldspar,quartz and H 2o[j].Contrib Mineral Petrol,2000,139: 555-569.
    Smith D C. Coesite in clinopyroxene in the Caledonides an d its implications for geodynamics. Nature, 1984, 310:64l~644.
    Soblev N V, Shatsky V S. Diamond inclusions in garnets from metam orphic rocks - a new environment for diamond formation. Nature. 1990, 343(6260):742-746. Su W, Xu S and Jiang L. Coesite from quartz-jadeitite in the Dabie Mountains. eastern China Mineral Magaz, 1996, 60: 659-662.
    Spencer A.J.M. Continuum Mechanics. 1980, Longman, New York.
    Stipp M, Stünitz H, Heilbronner R and Schmid S M. The eastern Tonale fault zone: a‘natural laboratory’for crystal plastic deformation of quartz over a temperature range from 250 to 700℃[J]. Journal of Structural Geology, 2002, 24: 1861-1884.
    Suo S T, Zhong Z Q, You Z D. Extensional deformation of post ultrahigh-pressure metamorphism and exhumation process of ultrahigh-pressure metamorphic rocks in the Dabie massif,China[J], Science in China,Ser.D, 2000, 3: 3-14.
    Tapponier P, Peltzer G, Arnuijo R. On the mechanics of the collision between India and Asia, in Collision Tectonics, M P Coward, A C Rise. Geology society special Publication, London, 1986, 19: 115~157.
    Teyssier C B. Tikoff B and Markley, M. Oblique plate motion and contional tectonics. Geology 23: 447~450.
    Tikoff B and Fossen H. Simultaneous pure and simple shear: the unifying deformation matrix. Tectonophysics, 1993, 217: 267~283
    Tikoff B and Teyssier C. Strain modeling of displacement-field partitioning in transpressional orogens. Journal of Structrual Geology 1994, 75-1588.
    Tikoff B and Fossen H. Three-dimensional reference deformations and strain facies. Journal of Structural Geology. 1999, 21: 1497~1512.
    Tikoff B. and Fossen H. 1993. Simultaneous pure and simple shear: the unified deformation matrix[J]. Tectonophysics, 217: 267-283.
    Tikoff, B. and Teyssier, C. Strain modeling of displacement-field partitioning in transpressional orogens[J]. Journal of Structural Geology, 1994, 16:1575-1588.
    Tikoff B. and Fossen H. The limitations of three-dimensional kinematic vorticity analysis[J]. Journal of Structural Geology, 1995, 17(12):1771-1784.
    Truesdell C. A. The Kinematics of Vorticity. 1954, Indiana University Press, Bloomington.
    Truesdell C A. Two measures of vorticity. Journal of Rational Mechanics Analyse. 1953, 2: 173~217.
    Truesdell C A and Toupin R A. The classic field theory. In Encyclopedia of Physics. VolumeⅡ: Principles of classical mechanics and field theory, ed. S.Flügge. 1960, pp: 226~793, Springer-Verlag Berlin.
    Tullis J and Yund R A. Transition from cataclastic flow to dislocation creep of feldspar: mechanisms and microstructures[J]. Geology, 1987, 15:606-609.Van Bemmelen, R.W. Mountain Builing. Martinus Nijhoff, 1954, The Hague, 177PP.
    Tullis J and Yund R A. Diffusion creep in feldspar aggregates: experimental evidence[J]. Journal of Structural Geology, 1991, 13: 987-1000.
    Van D. Orientation analysis of localized shear deformation in quartz fibres at the brittle-ductile transition[J]. Tectonophysics, 1999, 303: 83-107.
    Velde B. Si4+ content of natura1 phengites [J]. Contrib Mineral Petrol, 1967, 14: 250-258.
    Vidal J L, Debat P and Soula J-C. Ddformation and dynamic recrystallization of K-feldspar augen in orthogneiss from Montagne Noire, Occitania, Southern France[J]. Lithos, 1980, 13: 247-255.
    Wallis S R.Vorticity analysis and recognition of ductile deformation in the Sanbagawa belt,SW Japan[J].Jour Structural Geology,1995,17: 1077-1093.
    Wallis S. Vorticity analysis and recognition of ductile extention in the Sanbagawa belt, SW Japan [J]. Journal of Structural Geology, 1995, 17(8): 1077-1093.
    Wang G C, Yang W R. Structural and chronological evidence of the Luotian dome in the core of the Eastern Dabie Mountains, central China[J]. Earth Science (Journal of China University of Geosciences), 1996, 21(5): 524-528.
    Wang J.H, Sun M, Deng S X. Geochronological constraints on the timing of migmatization in the Dabie Shan, East- Central China. Eur J Mineral, 2002, 14(3): 513-524.
    Wang Q, Derek A. Wyman, Xu Jifeng, Jian Ping, Zhao Zhenhua, Li Chaofeng, Xu Wei, Ma Jinlong and He Bin. Early Cretaceous adakitic granites in the Northern Dabia Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 2007, 71: 2609-2636.
    Wang X, Liou J G, Mao H K. Coesite-bearing eclogites from the Dabie Mountains in central China. Geology, 1989. 17: 1085-1088.
    Wang X, Liou J G.. Regional ultrahigh-pressure coesite-bearing eclogitic terrane in central China: evidence from country rocks, gneiss, marble and metapelite. Geology. 1991, 19: 133-136.
    Wang X D, Neubauer F, Genser J et al. The Dabie UHP unite, central China: a Cretaceous extensional allochthon superposed on a Triassic orogen. Terra Nova, 1998, 10: 260-267.
    Wang X M, Liou J G, Mao H K. Coesite-bearing eclogltes from the Dabie Mountains in central China. Geology. 1989, 17: 1085-1088.
    Wang Y J, Fan W M, Peng T P, Zhang H F, Guo F. Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie Orogen, Central China: Evidence from 40Ar/39Ar geochronology, elemental and Sr–Nd–Pb isotopic compositions of early Cretaceous mafic igneous rocks[J]. Chemical Geology, 2005, 220: 165– 189.
    Walshe J L. A six-component chlorite solid solution model and the systems[J]. Economic. Geology, 1986, 81: 681-703.
    Wijbrans JR, McDougall I. 40Ar/39Ar dating of white mica from Alpine high-pressure metamorphic belt on Naxos (Greece): the resetting of the argon isotopic system[J]. Contrib. Mineral. Petrol., 1986, 93: 187-194.
    White S H. Geological significance of recovery and recrystallization processes in quartz[J]. Tectonophysics, 1977, 39: 143-170.
    Wu Y-B, Zheng Y-F, Gao S, Jiao W-F, Liu Y-S. Zircon U–Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos, 2008 101: 308–322.
    Xu H J, Ma C Q, Ye K. Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U–Pb dating and geochemistry. Chemical Geology, 2007 240: 238–259.
    Xu S, Okay A L, Ji S et a1. Science. Diamond from the Dabie Shan metamorphic rocks an d its implication for tectonic setting. Science. 1992, 256:80~82.
    Yund R A and Tullis J. Compositional changes of minerals associated with dynamic recrystallization. Contrib[J]. Mineral. Petrol, 1991, 97: 346-355.
    Zhao Z F, Zheng Y F, Wei C S, Wu Y B, Chen F K, Jahn B. Zircon U–Pb age, element and C–O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos, 2005, 83: 1– 28.
    Zhao Z F, Zhen Y F, Wei C S, Wu Y B. Post-collisional granitoids from the Dabie orogen in China: Zircon U- Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 2007, 93: 248–272
    Zheng Y F, Fu B, Gong B, et al. Stable istope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth Science Review, 2003, 62(1-2): 105-161.
    Zheng Y F, Wu Y B, Chen F K, et al. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic[J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4145– 4165.
    Zhu G, Niu M L, Liu G S et al. 40Ar/39Ar Dating for the Strike-Slip Movement on the Feidong Part of the Tan-Lu Fault Belt. Acta Geologica Sinica, 2005a, 79(3):303-316.
    Zhu G, Wang Y S, Liu Guosheng et al. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone,East China[J]. Journal of Structural Geology, 2005b, 27(8):1379-1398.
    Zhu G, Liu G S, Niu M L, et al. Syn-collisional transform faulting of the Tan-Lu fault zone, East China. Int J Earth Sci (Geol Rundsch). 2009, 98: 135-155.
    陈能松,刘嵘,孙敏,李惠民,何蕾,王勤燕,张宏飞.北大别黄土岭长英质麻粒岩的原岩、变质作用及源区热事件年龄的锆石LA2ICPMS U2Pb测年约束.地球科学, 2006, 31(3): 294-300.
    从柏林,王清晨.中国超高压变质岩评述.科学通报, 1994, 39(24): 2214-2218.
    葛宁洁,李惠玉,秦礼萍,侯振辉,柏林.大别山麻粒岩和TTG片麻岩的Sr、Nd、Pb同位素地球化学.地质学报, 2001, 75(3): 379-384.
    葛宁洁,夏群科,吴元保,侯振辉,秦礼萍,柏林.北大别燕子河片麻岩的锆石U-Pb年龄:印支期变质事件的确定.岩石学报. 2003, 19(3): 513-516.
    龚松林,陈能松,刘嵘,杨勇.北大别黄土岭麻粒岩中黑云母过剩Ar的成因解释和Ar同位素热年代学研究启示.现代地质. 2007, 21(2): 226-231
    侯振辉,李曙光,陈能松,李秋立,柳小明.大别造山带蕙兰山铁镁质麻粒岩Sm-Nd和锆石
    SHRIMP U-Pb年代学及锆石微量元素地球化学. 2005,中国科学(D)辑地球科学, 35(12):1103-1111.
    侯泉林,刘庆,李俊,等.大别山晚中生代剪切带特征及年代学制约.地质科学, 42(1): 114-123.
    江来利,刘贻灿,吴维平,等.大别山超高压变质岩的变形历史及折返过程[J].地质科学, 1999, 34(4): 432 - 441.
    江来利,吴维平,刘贻灿,等.东大别超高压变质带构造研究进展.自然科学进展, 2003, 13(12): 1338-1246.
    江来利,吴维平,储如东,等.大别造山带东段扬子陆块和华北陆块间缝合带的位置.地球科学, 2005, 30(3): 264-274.
    江来利, Wolfgang S,陈福坤,等.大别造山带北部卢镇关杂岩的U-Pb锆石年龄.中国科学(D辑), 2005, 35(1): 411-419.
    李曙光,黄芳,李晖.大别-苏鲁造山带碰撞后的岩石圈拆离.科学通报, 2001, 46(17): 1487-1491.
    李曙光,黄芳,周红英,等.大别山双河超高压变质岩及其北部片麻岩的同位素组成——对超高压岩石折返机制的制约.中国科学(D辑), 2001, 31(12): 977-984.
    李曙光,杨蔚.大别造山带深部地缝合线与地表缝合线的解耦及大陆碰撞岩石圈楔入模型:中生代幔源岩浆岩Sr-Nd-Pb同位素证据.科学通报, 2002, 47(24): 1898-1905.
    李曙光.大别山超高压变质岩折返机制与华北-华南陆块碰撞过程.地学前缘, 2004, 11(3): 63-70.
    李曙光,李秋立,侯振辉,杨蔚,王莹.大别超高压变质岩的冷却史及折返机制.岩石学报, 2005, 21(4): 1117-1124.
    林伟,王清晨, Faure, M,等. 2005.从北淮阳构造带的多期变形透视大别山构造演化.中国科学(D辑), 35(2): 127 - 139.
    刘贻灿,李曙光,徐树桐等. 2001.大别山北部榴辉岩的Sm—Nd年龄测定及其对麻粒岩相退变质时问的制约.地球化学,30(1): 79-87.
    刘贻灿,李曙光.大别山下地壳岩石及其深俯冲.岩石学报, 2005, 21(4): 1059-1066.
    刘贻灿,江来利,储如东,等.大别山北部卢镇关杂岩的Pb同位素特征及大地构造属性.矿物岩石, 2004, 24(4): 53-58.
    刘贻灿,李曙光,徐树桐.北大别片麻岩的超高压变质证据-来自锆石提供的信息.岩石学报,2006, 22(7): 1827-1832.
    马昌前,杨坤光,明厚利,林广春.大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据[J].中国科学(D辑). 2003, 33(9): 817-827.
    石永红,王清晨,林伟.大别山太湖地区榴辉岩岩石学、矿物成份和P-T条件特征及其所揭示的构造含义[J].岩石学报, 2006, 22(2): 414 - 432.
    孙先如,孙灏,杜建国,张勇,张绵,王真,雷能忠.北大别饶拔寨退变质榴辉岩的地球化学特征.岩石学报. 2000, 16 (02): 203-219.
    索书田,钟增球.大别地块超高压变质省构造学——以东冲河为例[J].地质科技情报, 1999, 18(1): 1-7.
    索书田,钟增求,游振东.大别地块超高压变质期后伸展变形及超高压变质岩石折返过程.中国科学(D辑), 2000a, 30(1): 9-17.
    索书田,钟增求,游振东,周汉文.大别-苏鲁超高压和高压变质带碰撞后韧性伸展构造框架.安徽地质, 2000b, 10(3): 212-215.
    索书田,钟增求,游振东.大别-苏鲁超高压-高压变质带伸展构造格架及其动力学意义.地质学报, 2001, 75(1): 14-24.
    王清晨,林伟. 2002.大别山碰撞造山带的地球动力学.地学前缘, 9(4): 257 - 265.
    王道轩,刘网,李双应.等.大别超高压变质岩折返至地表的时间下限:大别山北麓侏罗世砾岩中发现榴辉岩砾石[J].科学通报, 2001, 46(14): 1216-1220.
    王国灿,杨巍然.大别山核部罗田穹隆形成的构造及年代学证据.地质科学, 1996, 21(5): 524-528.
    王国灿,杨巍然.大别造山带中新生代隆升作用的时空格局—构造年代学证据.地质科学, 1998, 23(5): 461-467.
    王清晨,林伟.大别山碰撞造山带的地球动力学.地学前缘, 2002, 9(4): 257-265.
    王勇生,朱光. 2004.多硅白云母压力计在退变质作用中的稳定性探讨.矿物岩石, 24(4): 20~27.
    王勇生,朱光,陈文等.郯庐断裂带热年代学信息及其与大别造山带折返的关系[J].地球化学, 2005, 34(3): 193-214.]
    吴元保,陈道公,程昊,夏群科.北大别饶拔寨退变质榴辉岩的地球化学特征.地震地质. 2000, 22(增):99~103。
    吴元保,陈道公, DELOULE E.夏群科,李彩贤,程昊.北大别片麻岩的锆石U-Pb年龄离子探针测定及其地质意义.地质论评. 2001, 47(3): 239- 244.
    吴元保,唐俊,张少兵,赵子福.北大别两期混合岩化作用: SHRIMP锆石U-Pb年龄证据.科学通报. 2007, 52(8): 939-944
    夏群科,郑永飞, E.Deloule.2003.大别山碰撞后火山岩的锆石U—Pb年龄和氧同位素组成.高校地质学报, 9(2): 163-169.
    夏群科,郑永飞,葛宁洁, Deloule E.北大别北部黄土岭片麻岩的锆石U-Pb年龄和氧同位素组成:古老的原岩和多阶段历史.岩石学报. 2003, 19(3): 506- 512.
    谢智,陈江峰,张巽,等. 2001.大别造山带北部石竹河片麻岩的锆石U-Pb年龄及其地质意义.岩石学报, 16(2): 139-144.
    谢智,高天山,陈江峰.北大别燕子河片麻岩的锆石U-Pb年龄:印支期变质事件的确定.科学通报, 2004, 49(16): 1653-1659.
    许长海,周祖翼, Reiners P. W,马昌前.大别造山带140-85Ma热窿伸展作用—年代学约束.中国科学(D辑), 2001, 31(11): 925-937.
    徐树桐,苏文,刘贻灿.大别山东段高压变质岩石的金刚石.科学通报, 1991, 36(17):1318-1321.
    徐树桐,江来利,刘贻灿,等.大别山区(安徽部分)的构造格局和演化过程.地质学报, 1992, 66(1): 1-15.
    徐树桐,刘贻灿,江来利,等.大别造山带的构造格局和演化.北京:科学出版社, 1994, 1-174.
    薛怀民,董树文,刘晓春.北大别东部白垩纪埃达克质火山岩及其锆石U-Pb年代学.地球化学. 2002, 31(5): 455-463.
    颜怀学,金福全,吕培基,等.关于中国南北板块在北淮阳地区界线的探讨.石油与天然气地质, 1988, 9(2): 125-131.
    郑祥身,金成伟,翟明国,石永红.北大别灰色片麻岩原岩性质的探讨: Sm-Nd同位素年龄及同位素成分特点.岩石学报, 2000, 16(2): 194-198.
    郑永飞,陈福坤,龚冰.大别-苏鲁造山带超高压变质岩原岩性质:锆石氧同位素和U-Pb年龄证据.科学通报, 2003, 48(2): 110-120.
    张国伟,董云鹏,赖绍聪,等.秦岭一大别造山带南缘勉略构造带与勉略缝合带.中国科学, 2003, 33(12): 1121-1135.
    张泽明,钟增球,游振东,胡开明.北大别木子店石榴辉石岩的麻粒岩相退变质作用.地球科学. 2000, 25(3): 295-301
    赵子福,郑永飞,魏春生,吴元保.大别山中生代酸性岩浆岩锆石U-Pb定年、元素和氧同位素地球化学研究.岩石学报. 2004, 20(5): 1151-1174.
    杨坤光,马昌前,许长海,杨巍然.北淮阳构造带与大别造山带的差异性隆升.中国科学(D辑). 29(2): 97-103.
    周建波,郑永飞,李龙,.扬子板块俯冲的构造加积楔.地质学报, 2001, 75(3): 338-352.
    周祖翼, Perter W. R,许长海,等, 2002.大别造山带白垩纪热隆伸展作用-锆石(U-Th)/He年代学证据.自然科学进展, 12(7): 763-766.
    钟增求,索书田,张宏飞,等.桐柏-大别碰撞造山带的基本组成与结构.地球科学, 2001, 26(6): 560-567.
    朱光,王道轩,刘国生等.郯庐断裂带的伸展活动及其动力学背景[J].地质科学, 2001, 36(3):269-278.
    朱光,谢成龙,王勇生,牛漫兰,刘国生.郯庐高压走滑韧性剪切带特征及其40Ar/39Ar定年.岩石学报. 2005, 21(6): 1687-1702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700