用户名: 密码: 验证码:
船尾迹的波动理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当船在水面上移动时,在船的后面会有一个V形尾迹,这个尾迹的角度是38°56′,称为经典Kelvin尾迹,Kelvin尾迹波系由扩散波和横向波组成,在两条Kelvin臂上这两个波系相交,这里波浪起伏最为明显,SAR(合成孔径雷达)的图像能显示Kelvin尾迹,对此许多学者作了研究。
     本文着重研究船行波几个问题,从理论的角度上进行分析,解释和发现了有关船行波的一些现象,本文创新之处和主要结果有:
     一、消除了粘性流体中船行波临界边的奇性。
     本论文获得了粘性流体中的船行波模态,而且可以清晰的看到粘性对船行波的影响,当粘性渐渐增加时,发现扩散波的影响渐渐消失,变成以横向波为主。还得到了船行波的速度场,速度在跨过临界边时连续变化,在临界边的外侧,色散关系虽然没有实数解,因而没有波动,但是仍存在扰动。
     二、对窄船行波的形成进行了初步的探索和研究。
     我们参考了有限翼展水翼的升力理论,建立了马蹄涡与自由面相互作用的模型,发现马蹄涡跟自由面作用的时候,在尾迹上中间是一个相对平坦的区域,过了一定的角度范围,变成相对强烈震荡得区域,我们很准确的得到了这个角度的很简单的代数关系式,怀疑这个平坦区域到震荡区域的交接处可能对SAR得有着重要的影响。另外,考虑到水下物体(如水下潜艇)的情形,有可能存在圆涡,我们也初步研究了圆涡与自由面的相互作用。
     三、研究在有限水深理想流体中的船行波
     有限深船行波得到解析式很难,因为有双曲函数的关系,我们推广了Radko的方法,研究了Froude数对船行波态的影响,搞清楚了一些规律。
As is well known, when a ship moves on the water, there are steady V-shaped waves behind it. The wake angle is 38°56′and is usually called the Kelvin ship wave. The Kelvin wave system is composed of diverging waves and transverse waves. At the two Kelvin arms diverging waves and transverse waves intersect. There the undulation is especially obvious. Synthetic Aperture Radar (SAR) images of the sea surface can show the Kelvin wakes with many studies on it. Many scholars have also studied the waves including regarding the water as an inviscid fluid and as viscous fluid.
     Some problems about ship waves are investigated and analyzed theoretically in this dissertation. some new phenomena about ship waves have been explained and obtained. The originalities and the main results in this dissertation are:
     1.The singularity at the critical lines of ship waves on a viscous fluid is avoided.
     The ship waves mode on a viscous fluid have been obtained. The effect of viscosity on ship waves can been seen clearly. When the viscosity become bigger, the effect of diverging waves disappears slowly and transverse waves dominates. The velocity fields are also obtained. The velocity changes continuously on the critical lines. At the outside of the critical lines, the dispersive relation has no real solution, but the disturbances still exist.
     2. The formation of narrow ship waves has been explored and studied
     The paper makes reference to the lifting theory of the submerged hydrofoil of finite span and establishes a model of the interaction between a submerged horseshoe vortex and a free surface far from the ship. smooth region. In the region with an included angle of just a few degrees the free surface is smooth. Then the fast oscillation begins when the angle becomes larger. We get the exact angle expression. It is trusted that this region has important effect on the SAR image of narrow V-images. In addition, the interaction between a submerged circle vortex and a free surface has also been considered. The circle vortex could be exist if the submerged body such as a submarine moves under the water.
     3. Study the ship waves on an ideal fluid of finite depth
     It's difficulty to obtain the expression of wave elevation because of the hyperbolic function. We extended Radko's method and studied the effects of Froude number on ship wave modes and made some phenomena clear.
引文
1. Akylas, T.R. Unsteady and nonlinear effects near the cusp lines of the Kelvin ship-wave pattern [J]. Journal of Fluid Mechanics 1987, Vol.175: 333-342.
    2. Allen, R.E The effect of interference and viscous effects in the Kelvin ship-wave problem [J]. Journal of Fluid Mechanics 1968, Vol.34: 417-421.
    3. Ammicht.E. Free surface and surface tension effects on submerged bodies [J]. Jouranl of Engineering Mathematics 1979, Vol.13 No.4: 327-338.
    4. Anderson, B.J. On ship waves in shallow water[C]. In Proceedings of the 1976 International Seminar on Wave Resistance 1976, 341-347. New York: Office of Naval Research
    5. Bentwich, M., Miloh, T. The unsteady matched Stokes-Oseen solution for the flow past a sphere [J]. Journal of Fluid Mechanics 1978, Vol.38 No.2: 17-32.
    6. Bessho, M. On a consistent linearized theory of the wave-making resistance of ships [J]. Journal of Ship Research 1994, Vol.38 No.2: 83-96
    7. Bikitimirov, Y.K. On solving the problem of ship motion in shallow water using the second-order approximation[C]. Proceedings of the International Serminar on Wave Resistance 1976, 1-6.
    8. Blake, J.R., Chwang. A.T. Fundamental singularities of viscous flow. Part Ⅰ. The image system in the vicinity of a stationary no-slip boundary [J]. Journal of Engineering Mathematics 1974, Vol.8: 23-29.
    9. Brard. R. Viscosity, wake and ship waves [J]. Journal of Ship Research 1970, Vol.14: 207-240.
    10. Brard. R. The representaion of a given ship form by singularity distributions when the boundary condition on the free surface is linearized [J]. Journal of Ship Research 1972, Vol.16: 79-92.
    11. Brown. E.D., Buchsbaum, S.B., Hall, R.E., Penhume, J.P., Schmitte, K.E, Watson, K.M., Wyatt, D.C. Observations of a nonlinear solitary wave packet in the Kelvin wake of a ship [J]. Journal of Fluid Mechanics 1989, Vol.204: 263-293.
    12. Carlaw, H.J., Jaegar, J.C. Conduction of Heat in Solids[M]. London: Oxford University Press, 1959.
    13. Chan, A.T., Chwang, A.T. Interaction of laminar far wake with a free [J]. Physics of Fluids 1996, Vol.8 No.2: 421-429.
    14. Chan, A.T., Chwang, A.T. Ship waves on a viscous fluid of finite depth [J]. Physics of Fluids 1997, Vol.9 No.4: 940-944.
    15. Chester, C., Friedman, B. & Ursell, F. Anestension of the method of steepest descent[C]. Proceedings of the Cambridge Philosophical Society 1957, Vol.53: 599-610.
    16. Chung, Y.K. 1983. Ship waves and ray theory [J]. Journal of Ship Research Vol.28 No.3: pp.213-217.
    17. Chung, Y.K., Lim, J.S. A review of the Kelvin ship wave pattern [J]. Journal of Ship Research 1991, Vol.35 No.3: 191-197.
    18. Chwang. A.T., Wu. T.Y. Hydromechanics of low Reynolds number flow. Part 2 Singularity method for Stokes flow [J]. Journal of Fluid Mechanics 1974, Vol.67: 787-815.
    19. Chwang. A.T., Wu. T.Y. Hydromechanics of low Reynolds number flow. Part 4 Translation of spheroids [J]. Journal of Fluid Mechanics 1976, Vol.75: 677-689.
    20. Cox, R.G. The motion of long slender bodies in a viscous fluid Part 1: General theory [J]. Journal of Fluid Mechanics 1970, Vol.44: 791-810.
    21. Crapper, G.D. Surface waves generated by a traveling pressure point [J]. Proc. of the Roy. Soc. Series A, 1964, Vol.282 No.1388, 547-558.
    22. Crapper, G.D. Ship waves in a stratified ocean [J]. Journal of Fluid Mechanics 1967, Vol.29: 667-672.
    23. Cumberbatch, E. Effects of viscosity on ship waves [J]. Journal of Fluid Mechanics 1960, Vol.44: 791-810.
    24. Dabros, T. A singularity method for calculating hydrodynamic forces and particle velocities in low_Reynolds number flows [J]. Journal of Fluid Mechanics 1985, Vol.156: 1-21.
    25. De Prima, C.R., Wu, T.Y. On the Theory of Generating Surface Waves in Water by Moving Obstacles[R]. Pasadena: California Institute of Technology. Engineering Division Report.1957, No. 21-23, 40.
    26. Debnath, L. On effect of viscosity on transient wave motions in fluids [J]. Journal of Mathematics and Physics 1969, Vol.7: 615-625.
    27. Duffy, D.G. Transform Methods for Solving Partial Differential Equations[M]. Boca Raton: CRC Press 1994.
    28. Dugan, J.P. Viscous drag of bodies moving near a free surface [J]. Physics of Fluids 1969, Vol.12 No.1: 1-10.
    29. Ekman, V.W. Ark. Mat. Aston. Fys 1906, Vol.3 No.11
    30. Fontaine, E. Faltinsen, O.M. & Cointe, R. New insight into the generation of ship bow waves [J]. Journal of Fluid Mechanics Vol.421: 15-38.
    31. Gadd, G.E. Ship wave making in theory and practice [J]. Transactions of Royal Institute of Naval Architects 1969, Vol.111: 487-505.
    32. Gregory Zilman and Touvia M iloh, Kelvin and V-like ship wakes affected by surfactants [J]. Journal of ship Research 2001, Vol.45 No. 2: 150-163.
    33. Griffin, O.M. Ship wave modification by a surface current field [J]. Journal of Ship Research 1988, Vol.32 No.3: 186-193.
    34. Gu, D.E, Phillips, O.M. On narrow V-like ships [J]. Journal of Fluid Mechanics 1994, Vol.275: 301-321.
    35. Guevel, P., Vaussy, P. & Kobus, J.M. The distribution of singularities kinematically equivalent to a moving hull in the presence of a free surface[J]. International Shipbuilding Progress 1974, Vol.21: 311-324.
    36. Havelock, T.H. The propagation of groups of waves in dispersive media, with application to waves on water produced by a traveling disturbance [J]. Proc.R.Soc.Lond. Ser: A 1908, Vol.81: 398-430.
    37. Havelock, T.H. Wave patterns and wave resistance [J]. Trans. Inst. Naw.Arch. 1934, Vol.76: 430-446.
    38. Havelock, T.H. The collected papers of Sir Thomas Havelock on Hydrodynamics [G]. Edited by Wigley, C., Ann Arbor: Office of Naval Research & United States Government Printing Office 1963.
    39. Hogben, N. Nonlinear distortion of the Kelvin ship-wave pattern [J]. Journal of Fluid Mechanics 1972, Vol.55: 513-528.
    40. Hogner, E., 1923. Ark. Mat. Aston. Fys Vol.17 No.12.
    41. Hwang, W.S. & Chwang, A.T. The development of a swirling round laminar jet [J]. Physics of Fluids 1991, Vol. 3 No.5: 986-988.
    42. Hudimac A.A. Ship waves in a stratified ocean [J]. Journal of Fluid Mechanics 1972, Vol.11: 229-243.
    43. Keller, J.B & Munk, W.H. Internal wave wakes of a body moving in a stratified fluid [J]. Physics of Fluids 1970, Vol.13: 1425-1431.
    44. Keller, J.B. Wave patterns of non-thin or full-bodied ships[C]. In the Proceedings of the 10th International Symposium of Naval Hydrodynamics: 1975, 543-547. New York: Office of Naval Research.
    45. Keller, J.B. The ray theory of ship waves and the class of streamline ships [J]. Journal of Fluid Mechanics 1979, Vol.91: 465-488.
    46. Kevorkina, J. & Cole, J.D. Perturbation Methods in Applied Mathematics. New York: Springer-Verlag, 1981.
    47. Kinoshita, T. Viscous effects on waves of thin ship[C]. In the Proceedings of the 13th Symposium of Naval Hydrodynamics: 1981, 693-706. New York: Office of Naval Research.
    48. Kochin, N.E., Kibel, I.A. & Roze, N.V. Theoretical Hydromechanics[M]. Translated by Boyanovitch, D. New York: Wiley Interscience Publishers 1964.
    49. Lamb, H. Hydrodynamics[M]. London: Dover 1932.
    50. Lanzano, P. Waves generated by a moving point source within a finite depth ocean [J]. Earth, Moon, and Planets 1991, Vol.52:233-252
    51. Lawrence, C.J. & Weinbaum. S. The force on an axisymmetric body in linearized time-dependent motion: a new memory term [J]. Journal of Fluid Mechanics 1986, Vol.189: 463-489.
    52. Lee. S.H. & Leal. L.G. Motion of a sphere in the presence of a plane interface Part 2. An exact solution in bipolar co-ordinates [J]. Journal of Fluid Mechanics 1980, Vol.89: 193-224.
    53. Lighthill, M.J. An Introduction to Fourier Analysis and Generalized Functions. Cambridge: Cambridge University Press 1958.
    54. Lighthill, M.J. Studies on magneto-hydrodynamic waves and other anisotropic wave motions [J]. Philosophical Transactions of the Royal Society of London Series A 1960, Vol.252: 397-430.
    55. Liu, M. & Tao, M. Transient ship waves on an incompressible fluid of infinite depth [J]. Physics of Fluids. 2001a, Vol.13 No.12: 3610-3623.
    56. Liu, M. & Tao, M. Velocity field in ship waves on the viscous fluid [J]. Applied Mathematics and Mechanics 2002, Vol.23, No.10: 1221-1228.
    57. Liu A.K., Peng Y and Chang S.Y., Wavelet, analysis of satellite images for coastal watch[J], IEEE Jounal Of Oceanic Engneering 1997, Vol.22 No.1: 1-9.
    58. Lu, C.J., He, Y.S. Unsteady Theory of the Hydrofoil of finite span [J]. Acta Mechanica Sinica, 1985, Vol.1 No.2: 97-106.
    59. Lurye, J.R. Interaction of free-surface waves with viscous wakes [J]. Physics of Fluids 1968, Vol.10 No.2: 261-265.
    60. Mei, C.C. & Wu, Y.T. Gravity waves due to a point disturbance in a plane free surface flow of stratified fluids[J]. Physics of Fluids 1964, Vol.7 No.8: 1117-1133.
    61. Meng J.M. & Tao M.D. Zhang J. Remote sensing method for ship wake detection in SAR image [J], J. Hydrodynamics, 2001, ser. B, vol. 13(3): 122-126.
    62. Miles, J.W. Wave motion in a viscous fluid of variable depth [J]. Journal of Fluid Mechanics 1990, Vol.212: 365-372.
    63. Milgram, J.H. Theory of radar backscatter from short waves generated by ships, with application to radar(SAR) imagery [J]. Journal of Ship Research 1988, Vol.32 No.1: 54-69.
    64. Miloh, T. & Landweber, L. Ship centreplane source distribution [J]. Journal of Ship Research 1980, Vol.24 No.1: 8-23.
    65. Murata, S., Miyake, Y. Tsujimoto, Y. & Yamamoto, F. Study of three-dimensional unsteady Oseen flow [J]. Journal of Fluid Mechanics 1978, Vol.86: 609-622.
    66. Naylor, A.W.& Sell, G.R. Linear Operator Theory in Engineering and Science[M]. New York: Springer-Verlag 1982.
    67. Newman, J.N. Applications of slender-body theory in ship hydrodynamics [J]. Annual Review of Fluid Mechanics 1970, Vol. 86: 67-94.
    68. Newman, J.N. Marine Hydrodynamics[M]. Cambridge, MA: MIT Press. 1977: 402.
    69. Nishiyama, T. Lifting line theory of the submerged hydrofoil of finite span [J]. Journal of Ship Research, Februry, 1960: 1-12.
    70. Nishiyama, T. Lifting surface theory of a fully submerged hydrofoil [J]. Journal of Ship Research, March, 1965: 1-12.
    71. Olmstead, W.E. & Gautesen, A.K. Integral representations and the Oseen flow problem[G]. In Mechanics Today edited by Nemat-nasser S. Oxford: Pergamon Press. 1976 Vol.3: 125-189.
    72. Pepters, A.S. A new treatment of the ship wave problem [J]. Comm. Pure Appl.Math. 1949, Vol.2: 123-148.
    73. Plesset, M.S. & Wu. T.Y. Water waves generated by thin ships [J]. Journal of ship Research Vol.4 No.2: 25-36.
    74. Pozrikidiz, C. Boundary Integral and Singularity Methods for Linearized Viscous Flow [M]. Cambridge: Cambridge University Press 1992.
    75. Radko, T. Ship waves in a stratified fluid [J]. Journal of Ship Research 2001, Vol.45 No.1: 1-12.
    76. Reed, A.M., Milgram, J.H. Ship wakes and their radar images [J]. Annu. Rev.Fluid Mech 2002, Vol.34: 469-502.
    77. Reed, A.M., Beck, R.F., Griffin, O.M. and Peltzer, R.D. Hydrdynamics of remotely sensed Surface ship wakes [J]. Tran. Soc. Nay. Arch. Marine Eng 1990, Vol.99: 319-363.
    78. Sharma, S.d. some results concerning the wavemaking of a thin ship [J]. Journal of Ship Research 1969, Vol.13 No.1: 72-81.
    79. Sozou, C. 1979. Development of the flow field of a point force in an infinite flow field [J]. Journal of Fluid Mechanics 1979, Vol.91: 541-546.
    80. Tao, M., Liu, M. & Ren, J. A study of velocity field in ship waves [J]. Journal of Hydrodynamics Ser.B 2001, Vol.13 No.4: 42-47.
    81. Thomson, W. On ship waves[C]. Proc.Inst.Mech.Eng. Reprint. 1891. In Popular Lectures and Addresses London: MacMillan.1887a, Vol.3: 450-500.
    82. Thomson, W. Deep water ship waves[G]. In Mathematical and Physical papers Vol.4, edited by Thomson, W. London: Blackwell Press.1910: 303-306.
    83. Timour Radko, Ship waves in a stratified fluid [J]. Journal of Ship Research 2001, Vol.45 No.1: 1-12.
    84. Torsvik, T., Dysthe, K. Influence of variable Froude number on waves generated by ships in shallow water [J]. Physics of fluids 2006, Vo.18 No.6
    85. Townsend, A.A. The Structure of Turbulent Shear Flow[M]. Cambridge: Cambridge University Press 1956.
    86. Tuck, E.O. On line distribution of Kelvin sources [J]. Journal of Ship Research 1964, Vol.12 No.2:105-112.
    87. Tulin, M.P. & Miloh, T. Ship internal waves in a shallow thermocline: the supersonic case [M]. Pro. 18th Symp. Naval Hydrodyn 1991:567-581.
    88. Ursell, F. On Kelvin's ship-wave pattern [J]. Journal of Fluid Mechanics 1960, Vol.8: 418-431.
    89. Wehausen, J.V. Use of Lagrangian coordinates for ship wave resistance (first and second-order thin-ship theory) [J]. Journal of Ship Research 1969, Vol.13 No.1: 12-22.
    90. Wehausen, J.V. & Laitone, E.V. Surface waves. In Handbuch der Physik 8/3: Stromungsmechanik, edited by Fliigge S. Berlin: Springer-Verlag. 1960:446-778
    83. Whitham, G.B. Linear and nonlinear waves[M]. New York: Wiley Interscience Publishers 1974.
    91. Wilson, M.B. A Michell-Oseen Theory of thin ships. Ph.D. thesis, California Institute of Technology 1971.
    92. Wong, R. Asymptotic Approximations of Integrals. New York: Academic. 1989.
    93. Wu,Y.T. A theory of Hydrofoils of finite span [J]. Journal of the American Society of Naval Engineering, 1954, Vol.ⅩⅩⅩⅢ,No.3: 207-216.
    94. Wu,Y.T. Generation of upstream advancing solitons by moving disturbances [J]. Journal of Fluid Mechanics 1987, Vol.184: 75-99.
    95. Yeung, K.C.,Jin, S.L. A review of the Kelvin ship wave pattern [J]. Journal of Ship Research 1991, Vol.35 No.3: 191-197.
    96. Yeung, R.W., Nguten, T.C. Waves generated by a moving source in a two-layer ocean of finite depth [J]. Journal of Engineering Mathematics 1999, Vol.3 No.2: 85-107.
    97. Yih, C.S. & Zhu, S. Patterns of ship waves [J]. Quarterly of Applied Mathematics 1989, Vol.47: 17-33.
    98. Yuan Yeli. Formulation of sea wave high-frequence spectrum and basis of SAR image analysis[J]. Oceanologia et. Limnologia Sinca. 1997, Vol. ⅩⅩⅨ(supplement).
    99. Zilman, G. Kelvin and V-like ship wakes affected by surfactants [J]. Journal of Ship Research 2001, Vol.45 No.2: 150-163.
    100.李家春,周显初.数学物理中的渐近方法[M].北京:科学出版社,2002.
    101.胡嗣柱,倪光炯.数学物理方法[M].上海:复旦大学出版社,1985.
    102.刘应中,缪国平.海洋工程水动学基础[M].北京:海洋出版社,1991.
    103.王竹溪,郭敦仁.特殊函数概论[M].北京:北京大学出版社,2001.
    104.吴锤结,马晖杨.漩涡,湍流与自由表面的相互作用[J].力学进展,1997,27(3):342-357.
    105.梅强中.水波动力学[M].北京:科学出版社,1984.
    106.邹志利.水波理论及其应用[M].北京:科学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700