用户名: 密码: 验证码:
北京城市边界层低层湍流动力结构及其影响特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类的生存环境与大气边界层息息相关。进入20世纪以来,由于工业、交通的发展,尤其是城市化进程的加剧,城市边界层特征变得日趋复杂,影响因素诸多,使其物理化学过程难以认识。为了保护人类生存环境,建立城市环境良性循环的结构,进而调控城市大气污染状况,对城市边界层大气动力和大气化学特征及其相互作用机理的研究已成为直接影响社会、经济发展的重大课题。北京作为我国的首都,其城市化环境问题尤为突出和重要。本文利用“BECAPEX”大气环境科学试验北京气象塔15层梯度观测资料、三层超声风温仪观测资料以及系留气艇垂直探测资料,通过对北京城市边界层大气过程垂直动力特征的综合研究,揭示北京城市边界层不同层次湍流特征及北京地区与其它不同城市和不同类型下垫面地区湍流特征的差异,研究了不同城市灾害性天气过程沙尘天气和城市大雾天气过程的城市边界层垂直动力结构尤其是湍流垂直结构的特征及其与污染物浓度变化的关系,同时通过修正数值模式中城市下垫面动力学参数改善了模式对边界层结构的模拟效果,并进一步研究了城市下垫面特征的变化对边界层动力、热力及湍流的影响特征。初步揭示了北京城市边界层湍流动力结构模型。
     主要结论概括如下:
     (1) 对北京城市边界层垂直方向不同层次湍流特征的综合研究结果表明:在不稳定层结条件下,北京城市边界层47m和120m高度上无因次湍流速度方差(σ_u/u*、,σ_v/u*、σ_w/u*)与空气动力学稳定度参数(z’/L)之间关系符合1/3次律,无因次温度方差(σ_T/T*)符合-1/3次律,并给出相应的拟合公式。而280m高度上资料离散度较大,缺乏拟合基础;47m和120m高度的湍流通量特征比较相近,280m明显低于其它两层,在白天,近地层包含了47m和120m,而280m则已在近地层之上;在稳定层结条件下,47m高度大气边界层可按稳定度参数.z’/L分成二分区,z’/L<0.1为弱稳定区,此时相似规律可适用,z’/L>0.1为强稳定区,在此区内无因次速度方差随稳定度增大有增大趋势,而无因次温度方差则保持不变,相似规律不适用。120m和280m高度则无上述规律。
     (2) 北京城市边界层各高度无因次速度方差的大小都表现为,σ_u/u*最大,σ_v/u*次之,σ_w/u*最小。在垂直方向上,σ_u/u*随高度增加而增大,σ_v/u*、σ_w/u*随高度变化都表现为在47m和120m的值比较接近,280m处的值高于其它两层的值。城
The environment of human subsistence has a close relation with atmospheric boundary layer processes. Since 20's century, for the development of industry and traffic, especially for the quicken-up of urban trend, the characteristics of urban boundary layer (UBL) become more and more complex. Due to its too many impact factors, it is very difficult to recognize the mechanism of physical and chemical processes of UBL. So in order to protect the environment of human subsistence and set up a benign circulation structure of urban environment to control urban air pollution, study on UBL air dynamical structure characteristics and their coupling mechanism with chemical process has became an exigent project that will effect the development of society and economy. As our capital, Beijing's urban environment problem is more important and noticeable. By utilizing vertical observational data of "BECAPEX" (Beijing City Air Pollution Observation field experiment), including 15 levels gradient data, 3 levels ultra-sonic data, tethersonde profiler data and so on, the integrated studies on Beijing UBL processes vertical structure features are carried out. Characteristics of Beijing UBL turbulent vertical structure and its difference with other cities and underlying surface are disclosed. The UBL vertical dynamical structure characteristics especially its turbulent vertical structure features and their relations with pollutant concentration during different urban catastrophic events as sand/dust weather and city fog process are studied. Meanwhile, by amending aerodynamic parameters in numerical model, the simulation capacity of it is improved. Furthermore, the effects of change in urban underlying surface on UBL dynamical, thermal and turbulent structure are investigated. So the basic turbulence dynamical pattern of Beijing UBL is disclosed through all above studies. The main conclusions are as follows:(1) Integrated studies on turbulence vertical structure of Beijing UBL suggest: Under unstable condition, the normalized turbulent wind standard deviation (σ_u/μ*σ_v/μ* σ_w/μ* ) and turbulent temperature standard deviation (σ_T/T*)at height of 47 and 120m follow the Monin-Obukhov similarity theory and its normalized function are given out as well. But data at height of 280m is scattered and does not follow the M-0 theory. At day time the near surface layer includes heights of 47 and 120m while 280m has beyond it. Under stable condition, according to the value of dimensionless stability parameter (z' /L), the stable near surface layer of 47m could be divided into two regions. When z'/L<0.1 it is weak stable region where the M-0 similarity theory can be applicable. The other is strong stable region when z '/L>0.1. In this region the normalized turbulent wind standard deviation increase with stability but the normalized turbulent temperature standard deviation remain constant and the
    similarity theory can not be applied. And this phenomenon can not be found at height of 47 and 120m at stable condition.(2) At all height of Beijing UBL, comparison of normalized turbulent wind standard deviation in different direction show that the value of σ_u/μ* is largest, then it is σ_v/μ*, σ_w/μ* is the smallest. As to vertical direction, σ_u/μ* increase as height increase. To σ_v/μ* and σ_w/μ*, their values at 47 and 120m are very close while the value at 280m is larger than that two layers. The urban underlying surface leads to the decreased normalized turbulent wind standard deviation but increased turbulent intensity in near surface of Beijing. And the impact is more remarkable in horizontal direction then in vertical direction.(3) The drag coefficient (Co) of Beijing underlying surface increases as z'/L increases but decreases as height increases. Under near-neutral condition, C_D at the height of 47m is between 0.1-1, for 120m it is 0.01-0.1, and for 280m it is 0.001-0.1 and centered near 0.01. Compared to that of the different underlying surface, C_D in near surface of Beijing has increased considerably.(4) The particle air
引文
1 Roland B Stull. An Introduction to Boundary Layer Meteorology. (扬长新译). USA: Kluwer Academic Publishers,1988, 1pp.
    2 Sorbjan Z.. Structure of the Atmospheric Boundary Layer. Prentice-Hall, NY. 1988.300pp.
    3 Schlichting H.. Boundary Layer Theory, 6th Ed. McGraw-Hill Series in Mechanical Engineerring. NY: McGraw-Hill Book Co., 1968.747pp.
    4 Hinze J. O. Turbulence (2nd ed). McGraw-Hill Series in Mechanical Engineering. NY: McGraw-Hill Book Co., 1975.790 pp.
    5 Lumley J. L., H.A. Panofsky. The Structure of Atmospheric Turbulence. Monographs and Texts in Physics and Astronomy. VolⅫ. Interscience Publ., John Wiley & Sons, 1964.239pp.
    6 Gossard E.E., W.H. Hooke. Waves in the Atmosphere, Atmospheric Infrasound and Gravity Waves-their Generation and Propagation. NY: Elsevier Scientific Publ. Co., 1975. 456 pp.
    7 Townsend A. A. The Structure of Turbulent Shear Flow (2ne Ed). Cambridge, England: Cambridge University Press, 1976. 429pp.
    8 Monin A.S., A.M. Yaglom. Statistical Fluid Mechanics. Vols 1 & 2. Edited by John Lumley. Cambridge. MA: The MIT Press, 1973. 769pp.
    9 Frost W., T.H. Moulden. Handbook of Turbulence. Vol.1. Fundamentals and Applications. NY: Plenum Press, 1977. 498pp.
    10 Roll H.U.. Physics of the Marine Atmosphere. NY:Academic Press, 1965.426pp.
    11 Tennekes H., J.L. Lumley. A First Course in Turbulence (2nd Ed). Cambridge, MA: The MIT Press, 1982. 300pp.
    12 Turner J.S.. Buoyancy Effects in Fluids, Cambridge Univ. Press, 1973.367pp.
    13 Stanisic M.M. The Mathematical Theory of Turbulence. Universitext, Springer-Verlag, NY. 1985. 429PP.
    14 Tritton D.J. Physical Fluid Dynamics. NY: Van Nostrand Reinhold, 1977. 326pp.
    15 Van Dyke M.. An Album of Fluid Motion. Stanford:The Parabolic Press, 1983.176pp.
    16 Scorer R.S.. Environmental Aerodynamics. London: Ellis Horwood, Halsted Press, John Wiley & Sons,1978. 488pp.
    17 Nieuwstadt F.T.M., H. vanDop. Atmospheric Turbulence and Air Pollution Modeling. D.Reidel Publ. Co., P.O. Box 17, 3300 AA Dordrecht, The Netherlands. 1982.358pp.
    18 Plate E.J.. Aerodynamic Characteristics of Atmospheric Boundary Layers. AEC Critical Review Series, US Atomic Energy Commission, Office of Information Services. Available as TID-25465 from NTIS, Springfield, VA 22151. 1971.190PP.
    19 Stull R.B.. Boundary Layer Basics, A Survey of Boundary Layer Meteorology, (available from the author), 51pp. Also published as "Atmospheric Boundary Layer", The Encyclopedia if Physical Science and Technology (edited by R. A. Meyers). Academic Press, Inc., NY. 1986.
    20 Wyngaard J. C. Workshop on the Planetary Boundary Layer. Am. Meteor. Soc, 1980, 45 Beacon St., Boston, MA 02108. 322pp.
    21 Lenschow D. H. (Ed.). Probing the Atmospheric Boundary Layer. Am. Meteor. Soc, 1986, 45 Beacon St., Boston, MA 02108. 269pp.
    22 Brutsaert W.. Evaporation into the Atmosphere, Theory, History, and Applications. D. Reidel Publ. Co., P. O. Box 17, 3300 AA Dordrecht, The Netherlands. 1982.258pp.
    23 Vinnichenko N. K., N.Z. Pinus, S. M. Shmeter, and G. N. Shur. Turbulence in the Free Atmosphere(2nd Ed.). Consultants Bureau, Plenum Publ., NY. 1980.310pp.
    24 Garratt J R. The Atmospheric Boundary Layer. Cambridge: Cambridge University Press, 1992:1-316.
    25 Lenschow D H(eds).Probing the atmospheric boundary layer.周秀骥等译,大气边界层探测,北京:气象出版社,1990,1~295.
    26 Cai Shutang, Liu Yulu. Theory of Turbulence [M]. Shanghai: Shanghai Communication University Press, 1993. 1-6.[蔡树棠,刘宇陆.湍流理论[M].上海:上海交通大学出版社,1993.1-6.]
    27 Hu Yinqiao. Boundary layer meteorology [J]. Advance in Earth Sciences,1991, 6(6):57-59.[胡隐樵.边界层气象学[J].地球科学进展,1991,6(6):57-59]
    28 Ekman VW. On the influence of the Earth rotation on ocean current [J]. Arkiv Mat Astron Fysik, 1905,2(11): 1-53.
    29 Taylor C. Eddy motion in the atmospherie [J]. Phil Trans, 1915.
    30 Taylor C. Statistical theory of turbulence, Parts1-4 [J], Pro Roy Soc A, 1935,151:421.
    31 Hinze J O. Turbulence, An Introduction to its Mechanism and Theory [M]. New York: Mc Graw-Hill Book Company, INC, 1959.158-1 564.
    32 Kolmogorov A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number [J] Dokl Akad Naud SSSR, 1941,30:301-305.
    33 Priestley C H B. Turbulent Transfer in the Lower Atmosphere [M]. Chicago: University of Chicago Press, 1959.
    34 Moinn A S, Obukhov A M. Basic laws of turbulent mixing in theatmosphere near the ground[J]. Tr Akad Nauk SSSR Geofiz inst,1954,24 (151):163-187.
    35 Blackadar A K. The vertical distribution of wind and turbulent ex2change in a neutral atmosphere[J]. J Geophys Res, 1962,67: 3095-3102.
    36 Wyngaard J C, Cote O R, lzumi Y. Local free convection, similari2ty, and the budgets of shear stress and heat flux[J]. J Atmos Sci, 1971, 28:11171-11182.
    37 Dyer A J, Bradley E F. An altemative analysis of flux-gradientrelationships at the 1976 ITCE[J]. Bound Layer Meteor,1982,22:3-19.
    38 Nieuwstadt F T M. The turbulent structure of the stable noctumal boundary layer[J]. J Atmos Sci,1984,41:2202-2216.
    39 Shao Y, Hacher J M. Local similarity relationships in a horizontalhomogeneous boundary layer[J]. Bound Layer Meteor, 1990,52:17-40.
    40 周秀骥,长江三角洲低层大气物理化学过程和生态过程的相互作用。中国气象科学院年报(英文版),1999.
    41 周秀骥,李维亮,中国地区大气臭氧变化及其对气候环境的影响——国家自然科学重大基金项目,中国气象科学院年报(英文版),1997.
    42 罗云峰,李维亮,周秀骥,20世纪80年代中国地区大气气溶胶光学特征的平均状况分析,气象学报,2001,59(1):77-86.
    43 周培源.关于Reynolds求似应力方法的推广和湍流的性质[J].中国物理学报,1940,(4):1-33.
    44 苏从先.关于层结大气中近地层湍流交换的基本规律[J].气象学报,1959,30(1):114-118.
    45 周秀骥.湍流分子动力学理论[J].大气科学,1977,(4):300-305.
    46 周明煜.大气边界中湍流场的团块结构[J].中国科学,1981,(5):614-622.
    47 苏从先,胡隐樵.绿洲和湖泊的冷岛效应[J].科学通报,1987,10:756-758.
    48 赵鸣.自由对流与稳定层结边界层风廓线的解析表达和边界层顶的抽吸速度[J].大气科学,1992,16(1):18-28.
    49 胡隐樵,张强.论大气边界层的局地相似性[J].大气科学,1993,17(1):10-20.
    50 胡隐樵,高由禧.黑河实验(HEIFE)—对干旱地区陆面过程的一些新认识[J].气象学报,1994,52(3):285-296.
    51 张强,胡隐樵.局地相似性在近地面层大气中的一个应用[J].气象学报,1994,52(2):212-222.
    52 Oke,T.R., Cleugh, H.A, Grimmond,S.et al. The distinction beween canopy and boundary-layer urban heat island, Atomsphere.1976, 14:268-277.
    53 Roth, M. Review of atmospheric turbulence over cities. J.R.Meteorol.Soc. 2000,126:941~990.
    54 李晓莉.中尺度模式城市冠层参数化方案的设计及北京城市边界层结构的数值模拟研究,博士论文,3pp.
    55 Roth M. Oke T. R., Relative efficiencies of turbulence transfer of heat, mass and momentum over a patchy urban surface. J. Atmos. Sci. 1995,52:1863~1874.
    56 Rotach, M.W., Turbulence close to a rough urban surface. PartⅠ: Reynolds stress. Boundary-Layer Meteo. 1993a,65:1~28.
    57 Feigenwinter, C., Vogt R., Parlow E. Vertical structure of selected turbulence characteristics above an urban canopy. Theor. Appl. climatol., 1999, 62, 51-63.
    58 Rafailidis S., Influence of building areal density and roof shape on the wind characteristics above a town. Boundary-Layer Meteo.. 1997,85:255-271.
    59 Oke T.R., Cleugh,H.A., Grimmond, S.,Schimid,H.P., Roth ,M, Evaluation of spatially-averaged fluxes of heat, mass and momentum in the urban boundary layer.. Weather and Climate, 1989,9
    60 Changnon, S.E. METROMEX: A review and summary. Meteorological Monographys. Vol. 40. American Meteorological Society, Boston,USA,1981.
    61 Jack H. Shreffier, Urban-Rural Differences in Tower-Measured Winds, St Louis, J. Appl. Met. 1979, 18 (7): 829-335.
    62 Jack H. Shreffier, Heat Island Convergence in St. Louis during Calm Periods, J. Appl. Met, 1979, Vol. 18: 1512-1520.
    63 Dupont E. Menut L. Carissimo B., Comparison between the atmospheric boundary layer in Paris and its rural suburbs during the ECLAP experiment. Atmos. Environ, 1999, 33(6):979~994.
    64 Menut L. Flamant C. Pelon J., Urban boundary layer height determination from lidar Measurements over the Paris area. Appl. Opt. 1999,38:945~954.
    65 Svensson G., A numerical model for chemical and meteorological processes in atmospheric boundary layer. Part 2: a case study of air quality simulation in Athens. Greece. J. Appl. Meteorol. 1995,35:955~973.
    66 Svensson G., Model simulation of air quality in Athens, Greece, during the MEDCAPHOT-TRQACE campaign. Atmos. Environ. 1998,32:2239~2268.
    67 http://urban.11nl.gov/background.html
    68 Rotach M. W., Overview on the Basel Urban Boundary Layer Experiment-BUBBLE. Proceedings of the AMS Conference on 4d Urban Environment Symposium, 2001
    69 徐祥德,汤绪等.城市化环境气象学引论.气象出版社,2002。
    70 徐祥德,卞林根,丁国安等,城市大气环境观测工程技术与原理,北京:气象出版社,2003.
    71 Bowne, N. E. and Ball. J. T., Observational Comparison of Rural and Urban Boundary Layer Turbulence, J. Appl. Meteorol. 1970, 9: 862-873.
    72 Brook, R. R., The Measurement of Turbulence in a City Environment, J. Appl. Meteorol. 1972, 11: 443-450.
    73 UNO et al, An observational Study of the Structure of the Nocturnal Urban Boundary Layer, Boundary Layer Meteore. 1988, 45: 59-82.
    74 Badger, Recent Advances in Wind Engineering, APSOWEⅡ, 1989, 139-146.
    75 周淑贞等,城市气候学,北京:气象出版社,1994.
    76 陆龙骅,卞林根,程彦杰等,冬季北京城市近地层的气象特征,应用气象学报,2002,13(特刊):34~41.
    77 赵德山、洪钟祥,北京地区气溶胶及其化学元素浓度和气象条件的关系,大气科学,1983,7(2),153-161.
    78 陈辉,胡非,任丽红,石立庆,北京冬季二氧化硫污染和气象条件的关系,气候与环境研究,2000,5(3):287-295.
    79 李宗恺,潘云仙,孙润桥,空气污染气象学原理及应用,北京:气象出版社,1985.
    80 刘小红,洪钟祥等,北京地区严重大气污染的气象和化学因子,气候与环境研究,1999,4(3):231-236.
    81 张仁健,王明星,戴淑玲等,北京地区气溶胶粒度谱分布初步研究,气候与环境研究,2000,5(1):85-89.
    82 杨东贞,于海青,丁国安等,北京地区冬季低空大气气溶胶分析,应用气象 学报,2002,13:113-126.
    83 Kim J.J, Balk J.J. A Numerical study of thermal effects on flow and pollution dispersion in urban street canyons. J.Appl.Metero. 1999,38,1250~1261.
    84 桑建国 刘辉志等.街谷环流和热力结构的数值模拟.应用气象学报,2002,13(特刊):82~91.
    85 Myrup L. O., A numerical model of the urban heat island. J. Appl. Meteo., 1969,8:908~918.
    86 Morgan, D.L, Myrup L., Microclimate within am urban area. Ann. Assoc.Amer. Geogr., 1977,67: 55~65.
    87 Tapper N.J.,Tyson P.D., Owens I.F., Modeling the winter urban heat island over Christchurch. J. Appl. Meteo,1981,20 (4).
    88 边海等.天津城市夜间热岛的数值模拟,地理学报,1988(2).
    89 Johnson G. T., Oke T. R., Styen D. G., Simulation of surface urban heat islands under 'ideal' conditions at night part 1: theory and tests against field data. Boundary-Layer Meteo., 1991,56(2):275~294.
    90 Oke T.R., Johnson G.T., Steyn D.G., Simulation of surface urban heat island under "ideal" conditions at night Part 2: Diagnosis of causation. Boundary-Layer Meteo.,1991,56(3):339~358.
    91 Arnfield J., Herbert J.M. , Johnson G.T., A numerical simulation investigation of urban canyon energy budget variations. In Proceeding of 2th AMS Urban Environment Symposium, 1998.
    92 Ca V., Asaeda D., Ashie Y., Development of a model for the evaluation of urban thermal environment. J. Wind.Eng.Ind.Aerodyn. 1999,81:181~196.
    93 Kusaka H., Kondo H., et al, A simple single-layer canopy model for atmospheric model: comparison with multi-layer and slab models. Boundary-Layer Meteo, 2001,101 (2):329~358.
    94 Uno I, Ueda H. Numerical modeling of nocturnal urban boundary layer. Boundary-Layer Meteo, 1989,49(1):77~98.
    95 Brown ,M.J., Williams M.D.An urban canopy parameterization for mesoscale meteorological models. Proceedings of the AMS Conference on 2nd Urban Environment Symposium 2-7 november 1998, Albuquerque, NM, Amer. Meteor. Soc. 144-147.
    96 Martilli A, Clappier A, Rotach M.W., A urban surface exchange parameterization for mesoscale models. Boundary-Layer Meteo .,2002,104(2):261~304.
    97 Hjelmfelt M. R.,Numerical simulation of effects St. Louis on mesoscale boundary layer airflow and vertical air motion: simulation of urban vs non-urban effects. J. Appl. Meteo., 1982,1339-1257.
    98 Seaman N. L., Ludwig F. L., Donall E.G., et al, Numerical studies of urban planetary boundary-layer structure under realistic synoptic conditions, J. Appl. Meteo., 1989,28(6):760~781.
    99 Sailor D.J, Simulated urban climate response to modification in surface albedo and vegetative cover.. J. Appl. Meteo., 1995, 34(9): 1694~1704.
    100 Taha H., Modeling impacts of increased urban vegetation on ozone air quality in south coast air basin. Atmos. Environ.1996,30 (12): 3423—3430.
    101 Taha H., Modeling the impacts of large-scale albedo changes on ozone air quality in south coast air basin. Atmos. Environ. 1997,31 (9): 1667~1676.
    102 Taha H., Modifying a mesoscale meteorological model to better incorporate urban heat storge:bulk-paramterization approach. J. Appl. Meteo,1999,38(4):466~473.
    103 Grimmond C.S.B.,Cleugh H.A., An objective urban heat storage model and its comparison with other schemes. Atmos. Environ. 1991,25B(3):311~326.
    104 Troude F, Dupont E., Cariddimo B.,et al , Mesoscale meteorological simulation in Paris: comparisons with observations during the experiment ECLAP, Boundary-Layer Meteo. 2001,99( 1 ):21 ~51.
    105 Troude F., Dupont E., et al, Relative influence of urban and orographic effects for low wind conditions in the Paris area. Boundary-Layer Meteo. 2002, 103(4):
    106 Khan S. M., Simpson R. W., Effect of a heat island on the meteorology of a complex urban airshed, Boundary-Layer Meteo. 2001,100(3):487~506).
    107 Kanda M, Inoue Y. Numerical study on cloud lines over an urban street in the Tokyo. Boundary-Layer Meteo, 2001, 98(2) : 251~273.
    108 Tang Youhua, Miao Manqian, Numerical studies on urban heat island associated with urbanization in Yangtze Delta Region. Advance in Atmospheric Sciences, 1998,15(3):393~403.
    109 杨梅学,陈长和.复杂地形上的城市热岛的数值模拟.兰州大学学报(自然科学版),1998,34(3):117~124.
    110 Masson Valery. A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteo, 2000,94(2):357~397.
    111 Han Zhiwei et al, Numerical Study of Local Circulation and Species in Chongqing during spring time, Chinese Journal of Atmospheric Sciences, 2001, 25(3), 294-304.
    112 徐敏,蒋维梅,季崇萍等,北京地区气象环境数值模拟研究.应用气象学报,2002,13(特刊):62~68.
    113 杨玉华,徐祥德等.北京城市边界层热岛的变化周期模拟,应用气象学报,2003,14(1):61~67.
    114 李晓莉,何金海,毕宝贵等.MM5模式中城市冠层参数化方案的设计及其数值试验,气象学报,2003,61(5):526~538.
    115 Baklanov A. Rasmussian A., Fay B., Possibilities and shortcomings of NWP models to provide meteorological data for UAP forecasting. 2001, Proceedings of Urban Air Quality conference. Louraki(Greece).
    116 WMO, Report of the meeting of experts on atmospheric urban pollution and the role of national meteorological services (A system for environmental pollution monitoring and research) No.115,NMSs WMO-TD No.801 (GENEVA. 7-11 October 1996).
    117 王明星,大气化学,北京:气象出版社,1999年,180-183.
    118 Oke, T. R., The energetic basis of the urban heat island. Quart, J. Roy. Meteor Soc., 1982, 108: 1-24.
    119 Hanna, S. R., J. V. Ramsdell, and H. E. Cramer, Urban Gaussian diffusion parameters. Modeling the Urban Boundary Layer. Amer. Meteor. Soc., Boston. 1987: 337-379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700