用户名: 密码: 验证码:
黄河源区NPP及植被水分利用效率时空特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着西部人类活动强度的日益加剧,环境和生态受到的压力将愈来愈大,缺水或水土流失造成大范围的贫困。植被水分利用效率是联系植被生态系统碳循环和水分循环的重要变量,因而具有重要的生态学和水文学意义。为了更加合理高效地利用我国西部地区有限的水资源,需要我们更全面和深入地了解该地区不同植被生态系统水分利用效率特征,从而发现并推广耗水量低而生产力高的干旱区耐旱植被,为水资源的可持续利用打好基础。
     本文选用CASA模型(Carnegie Ames Stanford Approach),结合MODIS遥感数据产品,气象数据,植被数据和土壤数据,在ENVI环境下实现对黄河源区2001-2005年净初级生产力NPP的计算;根据NPP及潜在蒸散发PET计算植被水分利用效率WUE;分析NPP,WUE的空间分布和时间变化特征;对不同植被类型下的NPP和WUE特征进行分析;分析NPP和WUE与影响因子的相关性。研究结论如下:
     1、以CASA模型为基础,结合MODIS遥感数据产品、地面气象资料和植被、土壤数据计算NPP,避免了统计模型以点代面的缺点,使NPP的估算更具科学性,且能实时地反映NPP时空变化;验证了CASA模型在黄河流域的可适用性。
     2、从NPP空间分布来看,NPP总量主要集中在源区中下部位,其次为达日站点周围地区;果洛、久治、达日三站点之间分布较为零散;达日与果洛站点以上部位NPP总量很低,最低值区域为湖泊和无植被区域。
     3、从NPP年际变化来看,在不同的区域有不同的响应。区域NPP年际变化中,2003年NPP年总量最大;年内变化中,基本上从3月开始快速增长,7月达最大值,9月以后快速减少。
     4、从不同植被类型NPP来看,年际上有着不同的变化趋势。有的植被NPP一直处于增长趋势;大部分植被NPP在2001-2003年增长,2003-2005年下降;有的植被NPP变化处于波动状态;个别植被NPP在2004年达最大值。
     5、从WUE年际变化来看,总体上呈上升趋势,2004年有所下降;年内变化中,WUE达到最大值基本在6月,7月下降较多,8月和9月有所回升,之后迅速下降。
     6、WUE年际变化趋势与NPP年际变化趋势类似。不同植被类型中,具有较高WUE值的有三种沼泽,其他植被类型中温带落叶阔叶林最高,其次为栽培植被,温带草原,盐生草甸,高寒草甸等,WUE值最低的为湖泊和无植被地段。
     7、分析源区NPP及WUE与NDVI、气温、降水、太阳辐射和海拔的相关性。发现NPP与NDVI的相关性最大,其次为气温,海拔,与降水和太阳辐射相关性较差;WUE是NPP与蒸散发的一个耦合结果,与NDVI的相关性最大,其次为太阳辐射,再次为降水量,气温,相关性最低为海拔。
With more and more human activities in West of China, the pressure on environment and ecology is getting greater. Shortage of water or soil-water loss causes poverty. Water Use Efficiency (WUE) is the key factor linking the carbon nitrogen cycle and water cycle in the vegetation ecology system; therefore it has special ecological and hydrological meaning. To use the limited water resource in West of China reasonably and effectively, we should comprehensively and deeply understand the characteristics of WUE in different vegetation ecological systems, find out and popularize the vegetations which are of low-water-consumption but high -production - capability, improve the use efficiency of irrigation water in agricultural ecosystem and prepare for the sustainable use of water resource.
     In this thesis, based on CASA model (Carnegie Ames Stanford Approach) in ENVI, with MODIS products, meteorological data, vegetation and soil data, NPP (Net Primary Productivity) in yellow river region from 2001 to 2005 is obtained. The spatial distribution and temporal change characters of NPP are analyzed. According to NPP and potential evapotranspiration, WUE in yellow river region from 2001 to 2005 is obtained and also its spatial distribution and temporal change characters are analyzed. The NPP and WUE between different kinds of vegetation are analyzed; the relationship between influence factors and NPP and WUE is analyzed. The research conclusions are as follows:
     1. Based on CASA model, with MODIS high temporal resolution data products, meteorological data, vegetation and soil data, NPP in Yellow River source region is calculated. In this way, the shortcoming in the traditional statistic model can be avoided, the precise of NPP can be improved and the temporal and spatial variation of NPP can be reflected better; the applicability of CASA model in yellow river source region is validated..
     2. As to the spatial distribution of NPP, most of the quantity is in the mid lower part of the source region Quantities around Tongde station and Henan station are relatively concentrative and Dari station and its surrounding followed; In contrast, NPP distributed in Guoluo station, Jiuzhi station and Dari station is scattered, the part above Dari station and Guoluo station has rather low quantity, the lowest region is lakes and the bare mountains with a high elevation.
     3. As to the temporal change of NPP, different regions have different responses. For the whole region, NPP in 2003 reaches maximum; As to the month change, NPP grows rapidly in March, reaches the maximum in July, and reduce rapidly in September.
     4. As to different kinds of vegetations, they have different tendencies in NPP change between 2001 and 2005. Some vegetations are in the increased tendency all through, some grow between 2001 and 2003 and reduce between 2003 and 2005, others are always fluctuant and several reaches maximumin 2004.
     5. As to the temporal change of WUE, it increases between 2001 and 2005 as a whole, but that in 2004 decreased a little. Referring to the mensal mean value in every year, WUE reaches the maximum in June, decreases much in July, and rallies in August and September, and then decreases rapidly.
     6. As to different kinds of vegetations' WUE, it has the similar tendency with that of annual change of NPP. Three kinds of swamp are high in WUE. In other kinds, the one of temperate deciduous broad-leaf forest is the highest; others are in turn as follows, cropland vegetation, temperate grassland, salinization meadow, alpine meadow, and so on. Lakes and bare regions have the lowest WUE.
     7. After analyzing the relationship between NPP, WUE and their influence factors, such as, temperature, precipitation, solar radiation, NDVI, it is easy to find out that NPP is close related to NDVI, and then temperature and elevation, precipitation and solar radiation are poorly related. Vegetation growth in the source region, especially in dry season, mainly depends on unfreezed water from frozen soil, glacier and snow. WUE is a coupling value of NPP and evapotranspiration, which is close related to NDVI, solar radiation followed, which mainly affects evapotranspiration; precipitation and temperature are poorly related to WUE and the worst one is elevation.
引文
[1]Allen.R.G.,Pereira L.S.,Raes D,et al.FAO irrigation and drainage paper No.56,crop evapotranspiration(guidelines for computing crop water requirements).FAO,Rome,1998.
    [2]Baldocchi D.A comparative study of mass and energy exchange over a closed(wheat)and an open(corn)canopy:Ⅱ.Canopy CO2 exchange and water use efficiency[J].Agricultural and Forest Meteorology,1994,67:291-322.
    [3]Baunhard R L.Mldel infiltration into sealing soil[J].Water Resources Res.1990,26(1):2497-2505.
    [4]D.J.Undersander,S.Christiansen.Interactions of water variables and growing degree days on heading phase of winter wheat[J].Agricultural and Forest Meteorology,Volume 38,Issues 1-3,October 1986,Pages 169-180
    [5]Field,B.C.,J.T.Randerson,and C.M.Malmstorm.Global net primary combining ecology and remote sensing[J].Remote Sensing of Environment,1995,51:74-88.
    [6]Foley J.A.,Net Primary Productivity in the terrestrial biosphere:The application of a global model[J].Journal of Geophysical Research 99(D 10),1994,20:773-783
    [7]Fung I.Y.,Tucker C.J.,Prentice K.C.,Application of advanced very high resolution radiometer vegetation index to study of atmosphere-biosphere exchange of CO2[J].Journal of Geophysical Research,1987,92:2999-3015
    [8]Gangopadhyaya etal.Measurement and estimation of evapotranspiration.1966,Tech.Note.83,World meterological Organization(WMO),Geneva,Switzerland.
    [9]Goetz S J,Prince S D,Goward S N,et al.Small J.Satellite remote sensing of primary production:an improved production efficiency modeling approach[J].Ecological Modelling,1999,122:239 - 255.
    [10]Helen A.Cleugh,Ray Leuning,Qiaozhen Mu,Steven W.Running.Regional evaporation estimates from flux tower and MODIS satellite data[J].Remote Sensing of Environment,2007,106(3):285-304
    [11]Hunt J E,etal.Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during asummer drought[J].Agricultural and Forest Meteorology,2002,111:6 5-82.
    [12]J.B.Stewart,C.J.Watts,J.C.Rodriguez,H.A.R.De Bruin,A.R.van den Berg,J.Garatuza-Payan.Use of satellite data to estimate radiation and evaporation for northwest Mexico[J].Agricultural Water Management,1999,38(3):181-193
    [13]Kang Ersi.Review and prospect of hydrological studies in cold and arid regions of china[J].Journal of Glaciology and Geocrylogy,2000,22(2):178-188.
    [14]M.Pala,J.Ryan,H.Zhang,M.Singh,H.C.Harris.Water-use efficiency of wheat-based rotation systems in a Mediterranean environment[J].AGRICULTURAL WATER MANAGEMENT 2007,93:136-144
    [15]Mc Guire A.D.,J.M.Melillo,L.A.Joyce,D.W.Kicklighter,A.L.Grace,B.Moore Ⅲ,C.J.Vorosmarty.,Interactions between carbon and nitrogen dynamics in estimatin net primary productivity for potential vegetation in North America[J].Global Biogeochemical Cycles,1992,6:101-124
    [16]Monteith J.L.,Climate and the efficiency of crop Transactions of the Royal Society of London.Series B,production in Britain[J].Philosophical,1977,281:277-294
    [17]Monteith J.L.,Solar Radiation and productivity in Tropical Ecology[J],Journal of Applied ecosystems.1972,9:747-766
    [18]Potter C.S.,Randerson J.T.,Field C.B.,Matson PA.,Vitousek PM.,Mooney H.A.,Klooster S.A,Terrestrial ecosystem production:a process model based on global satellite and suiface data[J].Global Biogeochemical Cycles,1993,7:811-841.
    [19]Prince S D,Goward S N.Global primary production:A remote sensing approach[J].Journal of Biogeography,1995,22:815 - 835.
    [20]Rosenberg N J.Microclimate:The Biological Environment[M].New York:John Wiley &Sons Press,1974.
    [21]Ruimy A.,vegetation,Dedieu G.,Saugier B.,TURC-Terrestrial Uptake and Release of Carbon by a diagnostic model of continental gross productivity[J].Global Biogeocherrcical Cycle,primary productivity and net primary,1996,10:269-285.
    [22]Running S.W.,Gower S.T.,FOREST_BGC,a general model of forest ecosystem processes for regional applications.Ⅱ.Dynamic carbon allocation and nitrogen budgets[J].Tree Physiology,1991,9:147-160
    [23]Sadras,V.O.,Angus,J.F.,2006.Benchmarking water use efficiency of rainfed wheat in dry environments[J].Aust.J.Agric.Res.57,847-856
    [24]Saxton K.E.,W.J.Rawls,1.S.Romberger.Estimating generalized soil-water characteristics from texture[J].Soil Science Society American Journal,1986,50:1031-1036.
    [25]ScanlonT M,AlbertsonJ D.Canopys Cale measurements of CO_2 and water vapor exchange along a precipitation gradient in southern Africa[J].Global Change Biology,2004,10:329-341.
    [26]Sellers P.J.,Berry J.A.,Collatz G.J.,Field C.B.,Hall F.G.,Canopy reflectance,photosynthesis and transpirantion:Ⅲ.A reanalysis using improved leaf models and a new canopy integration scheme[J].Remote Sensing of Environment,1992,42:187-216
    [27]Tucker,C.J.,I.Y.Fung,C.D.Keeling,R.H.Gammon.,Relationship between atmospheric CO_2variations and a satellite-derived vegetation index[J].Nature,1986,319,195-199
    [28]Uchijima Z.,Seino H.Agroclimatic evaluation of the net primary productivity of natural vegetations 1 Chikugo model for evaluation net primary productivity[J].Journal of Agricultural Meteorology,1985,40:343-352
    [29]Walker B,Steffen W.,A synthesis of GCTE and related research.In:IGBP Science No 1.Stockholm:IGBP Secretariat.1997.23.
    [30]Veroustraete,F.,Patyn,J.,Myneni,R.B.,Estimation net ecosystem exchange of carbon using the Normalized Difference Vegetation Index and an Ecosystem Model[J].Remote Sensing of Enviroment,1996,58:115-130
    [31]Veroustraete,F.,Sabbe,H.,Eerman E.,Estimation of carbon mass fluxes over Europe using the C-FIX model and Euroflux data[J].Remote sensing of Enviroment,2002,83:376-399
    [32]Wu Qingbai,Zhu Yuanlin,Liu Yongzhi.Evaluating model of frozen soil environment change under engineering actions[J].Science in China Series D-Earth Sciences.2002,45(10):893-902.
    [33]Wu qingbai,Zhu Yuanlin,Liu Yonzhi.Evaluation model of permafrost thermal stability and thawing sensibility under human activity[J].Cold Regions Science and Technology,2002b,34:19-30.
    [34]陈镜明.现用遥感蒸散模式中的一个重要缺点及改进[J].科学通报,1988,33(6):454-457
    [35]陈正华.基于CASA和多光谱遥感数据的黑河流域NPP研究.兰州大学硕士学位论文,2005.
    [36]程根伟,余新晓,赵玉涛,等.山地森林生态系统水文循环与数学模拟[M].北京:科学出版社,2004:193-227.
    [37]程慧艳.黄河源区高寒草甸草地覆被变化的水文过程与生态功能响应研究[D].兰州大学博士学位论文,2007.
    [38]方精云,朴世龙,赵淑清.CO_2失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报,2001,25(5):594-602.
    [39]冯金朝,刘新明.干旱环境与植物的水分关系[M].北京:中国环境科学出版社,1998.
    [40]高彦春,王长耀.水文循环的生物圈方面(BAHC计划)研究进展[J].地理科学进展,2000,19(2):97-103
    [41]郭晓寅.黑河流域蒸散发分布的遥感研究[J].自然科学进展.2005,15(10):1266-1270
    [42]郝锐.专家查明近40年来我国江河源区的气候变化特征[EB/OL].http://news.xinhuanet.com/st/2005-03/26/content 2745932.htm,2005-03-28.
    [43]何勇,董文杰,秦大河.6KaBP中国陆地生态系统净初生产力的模拟[J].气候变化研究进展,2005,2:69-72.
    [44]黄奕龙,傅伯杰,陈利顶.生态水文过程研究进展[J].生态学报,2003,(3):580-587.
    [45]蒋高明,何维明.毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境间差异(英文)[J].植物学报,1999,41(10):1114-1124
    [46]李伏生,康绍忠,张富仓.CO_2浓度、氮和水分对春小麦光合、蒸散及水分利用效率的影响[J].应用生态学报,2003,14(3):387-393.
    [47]李贵才.基MODIS数据和光能利用率模型的中国陆地净初级生产力估算研究.中国科学院遥感应用研究所 博士学位论文,2004.
    [48]李万寿,吴国祥.黄河源头断流现象成因分析[J].水土保持通报,2000,20(1):5-8
    [49]李英年,王启基,周兴民等.高寒草甸植物群落的环境特征分析[J].干旱区研究,1998,15(1):54-58
    [50]李英年,张法伟,刘安花等.矮嵩草草甸土壤温湿度对植被盖度变化的响应[J].中国农业气象,2006,27(4):265-268
    [51]李英年,赵亮,徐世晓等.高寒矮嵩草草甸覆被动态变化对土壤气候的影响分析[J]。干旱区资源与环境,2005,19(7):125-129
    [52]卢玲,李新,Frank Veroustraete.中国西部地区植被净初级生产力的时空格局[J].生态学报,2005,25(5):1029-1033.
    [53]卢玲,李新,Frank Veroustraete.黑河流域植被净初级生产力的遥感估算[J].中国沙漠,2005,25(6):823-830.
    [54]卢玲,李新,董庆罕等.SPOT4-VEGETATION中国西北地区土地覆盖制图与验证[J].遥感学报,2003,7(5):214-220
    [55]卢玲.中国西部地区净初级生产力及碳循环研究.中国科学院研究生院 博士学位论文,2003.
    [56]莫兴国,刘苏峡,林忠辉.基于SVAT模型的冬小麦光合作用和蒸散过程研究[J].应用生态学报,2002,13(11):1394-1398.
    [57]牛云,张宏斌,刘贤德等.祁连山主要植被下土壤水的时空动态变化特征[J].山地学报,2002,20(6):723-726.
    [58]牛云,刘贤德,张虎等.祁连山水源涵养林土壤渗透功能的分析与评价[J].西北林学院学报,2001,16(增):35-38
    [59]朴世龙,方精云,郭庆华.1982-1999年我国植被净初级生产力及其时空变化[J].北京大学学报(自然科学版).2001,37(4):563-569.
    [60]朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净初级生产力[J].植物生态学报,2001,25(5):603-608.
    [61]朴世龙,方精云.1982-1999年青藏高原植被净初级生产力及其时空变化[J].自然资源学报,2002,17(5):373-380.
    [62]任国玉,郭军.中国水面蒸发量的变化[J].自然资源学报,2006,21(1):31-44
    [63]宋克超,康尔泗,金博文等.黑河流域山区植被带草地蒸散发试验研究[J].冰川冻土,2004,26(3):349-356.
    [64]苏培玺,陈怀顺,李启森.河西走廊中部沙漠植被δ-(13)C值的特征及其对水分利用效率的指示[J].冰川冻土,2003,25(5):597-602.
    [65]苏培玺,赵爱芬,张立新等.荒漠植物梭梭和沙拐枣光合作用,蒸散作用及水分利用效率特征[J].西北植物学报,2003,23(1):11-17.
    [66]苏培玺,严巧嫡,陈怀顺.荒漠植物叶片或同化枝δ-(13)C值及水分利用效率研究.西北植物学报,2005,25(4):727-732
    [67]孙慧珍,朱晓明.原始红松林与天然次生林潜在蒸发散对比[J].东北林业大学学报,2007,35(9):40-41
    [68]孙景生,刘玉民,康绍忠,熊运章.夏玉米田作物蒸腾与棵间土壤蒸发模拟计算方法研究[J].玉米科学,1996,(1):76-80
    [69]孙景生,熊运章,康绍忠.农田蒸发蒸腾的研究方法与进展[J].灌溉排水,1993,13(4):36-38
    [70]孙睿,朱启疆.陆地植被净初级生产力的研究[J].应用生态学报,1999,10(6):757-760.
    [71]孙睿,朱启疆.植被净初级生产力及中国净初级生产力的分析[J].北京师范大学学报(自然科学版),1998,34:132-137.
    [72]陶波.中国陆地生态系统净初生产力与净生态系统生产力模拟研究.中国科学院地理科学与资源研究所博士毕业论文.2003.
    [73]王根绪,刘桂民,常娟.流域尺度生态水文研究评述[J]:生态学报,2005,4:892-903.
    [74]王根绪,沈永平,钱鞠等.高寒草地植被覆盖变化对土壤水分循环影响研究[J].冰川冻土,2003,(6):653-659.
    [75]王根绪,程国栋,沈永平等.江河源区的生态环境变化及其综合保护研究[M].兰州:兰州大学出版社,2001,1-117.
    [76]王根绪,程国栋,沈永平等.江河源区的生态环境变化及其综合保护研究[M].兰州:兰州大学出版社,2001,21-46.
    [77]王根绪,程国栋,沈永平等.2002.土地覆盖变化对高山草甸土壤特性的影响[J].科学通报,47(23):1771-1777.
    [78]王根绪,程国栋.江河源区草地资源特征与草地生态变化[J].中国沙漠,2001,21(2):101-107.
    [79]王根绪,丁永建,王建等.近15年来长江黄河源区的土地覆被变化[J].地理学报,2004,(2):163-173.
    [80]王根绪,郭晓寅,程国栋..黄河源区景观格局与生态功能的动态变化[J].生态学报,2002,(10):1587-1598.
    [81]王根绪,李琪,程国栋等.40a来江河源区的气候变化特征及其生态环境效应[J].冰川冻土,2001,(4):346-352.
    [82]王根绪,李元寿,王一博等,长江源区高寒生态与气候变化对河流径流过程影响的初步分析[J].冰川冻土,2007,29(2):159-167.
    [83]王根绪,李元寿,吴青柏等.青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J].中国科学D辑,2006,(8):743-754。
    [84]王根绪,刘桂民,常娟.流域尺度生态水文研究评述[J].生态学报,2005,(4):892-903.
    [85]王根绪,钱鞠,程国栋.生态水文科学研究的现状与展望[J].地球科学进展,2001,16(3):314-323.
    [86]王根绪,沈永平,刘时银.黄河源区降水与径流过程对ENSO事件的响应特征[J].冰川冻土,2001,23(1):17-21.
    [87]王根绪,沈永平,钱鞠等.高寒草地植被覆盖变化对土壤水分循环影响研究[J].冰川冻土,2003,(6):653-659.
    [88]王根绪,吴青柏,王一博等.青藏铁路工程对高寒草地生态系统的影响[J].科技导报(青藏铁路建设和生态环境保护专题).2005,8-13.
    [89]王金叶,田大伦,王彦辉等.祁连山林草复合流域土壤水分状况研究[J].中南林学院学报.2006,26(1):1-5.
    [90]王书功,康尔泗,金博文等.黑河山区草地蒸散发量估算方法研究[J].冰川冻土,2003,25(5):558-563.
    [91]王树森,朱治林,孙晓敏.拉萨地区农田能量物质交换特征[J].中国科学D辑,1996,26(4).359-364.
    [92]王一博,王根绪,程玉菲等.青藏高原典型寒冻土壤对高寒生态系统变化的响应[J].冰川冻土,2006,28(5):633-641.
    [93]韦莉莉,张小全,侯振宏等.全球气候变化研究的新技术--稳定碳同位素分析的应用[J].世界林业研究,2005,18(2):16-19
    [94]吴琦,张希明.水分条件对梭梭气体交换特性的影响[J].干旱区研究,2005,22(1):79-84
    [95]吴青柏,施斌.论青藏铁路修筑中的冻土环境保护问题[J].水文地质工程地质,2002,4:14-20
    [96]徐炳成,山仑,李风民.黄土丘陵半干旱区引种禾草柳枝稷的生物量与水分利用效率.生态学报,2005,25(9):2206-2213
    [97]许红梅,高琼,黄永梅等.黄土高原森林草原区6种植物光合特性研究[J].植物生态学报,2004,28(2):157-163
    [98]杨建平.近50a长江黄河源区生态与环境变化综合研究[D].兰州:中国科学院寒区旱区环境与工程研究所博士学位论文,2006
    [99]杨建伟,梁宗锁,韩蕊莲等.不同干旱土壤条件下杨树的耗水规律及水分利用效率研究[J].植物生态学报.2004,28(5):630-636
    [100]杨启国,张旭东,杨兴国等.旱作小麦农田实际蒸散量计算模式研究[J].干旱地区农业研究,2005,23(1):34-38
    [101]杨晓光,沈彦俊,于沪宁.夏玉米群体水分利用效率影响因素分析[J].西北植物学报,1999,19(6):148-153.
    [102]杨针娘,胡鸣高,刘新仁等.高山冻土区水量平衡及地表径流特征[J].中国科学D 辑,1996,(6):567-573.
    [103]于贵瑞,王秋凤.我国水循环的生物学过程研究进展[J].地理科学进展,2003,22(2):111-117
    [104]喻方圆,徐锡增,Robert D.Guy.水分和热胁迫处理对4种针叶树苗木气体交换和水分利用效率的影响[J].林业科学,2004,40(2):38-44
    [105]张士锋,贾绍凤,刘昌明等.黄河源区水循环变化规律及其影响[J].中国科学E辑技术科学,2004,34(增刊Ⅰ):117-125
    [106]张士锋,刘昌明,夏军,等.降水径流过程驱动因子的室内模拟试验研究[J].中国科学D辑,2004,34(3):280-289.
    [107]张岁岐,山仑.植物水分利用效率及其研究进展[J].干旱地区农业研究,2002,20(4):1-5.
    [108]张宪洲.我国自然植被净初级生产力的估算与分布[J].自然资源.1993(1):15-21.
    [109]张新时.研究全球变化的植被一气候分类系统[J].第四纪研究,1993 5:157-169.
    [110]张新时.植被的PE(可能蒸散)指标与植被-气候分类(二)-几种主要方法与PEP程序介绍[J].植物生态学与地植物学学报,1989,13(3):197-207.
    [111]张新时.植被的PE(可能蒸散)指标与植被-气候分类(三)-几种主要方法与PEP程序介绍[J].植物生态学与地植物学学报,1993,17(2):97-109.
    [112]张新时.植被的PE(可能蒸散)指标与植被-气候分类(一)-几种主要方法与PEP程序介绍[J].植物生态学与地植物学学报,1989,13(1):1-9.
    [113]张学龙,车克钧,王金叶等.祁连山寺大隆林区土壤水分动态研究[J].西北林学院学报.1998,13(1):1-9.
    [114]张寅生,蒲建辰,太田岳史.青藏高原中部地面蒸发量观测计算与特征分析[J].冰川冻土,1994,16(2):166-172.
    [115]张寅生,蒲健辰.青藏高原中部唐古拉山口邻近地区气候特征[J].冰川冻土,1994,(1):41-48.
    [116]赵家义.用水力蒸发器测定农田蒸发的试验研究[J],地理集刊,1980(12):84-97
    [117]郑度.青藏高原自然地域系统研究[J].中国科学D辑,1996,26(4):336-341
    [118]周才平.青藏高原主要生态系统净初生产力的估算[J].地理学报,2004,59(1):74-79.
    [119]周广胜,张新时.自然植被第一性生产力模型初探[J].植物生态学报,1995,19(3):193-200.
    [120]周广胜,郑元润,陈四清.自然植被净初级生产力模型及其应用[J].林业科学,1998,34(5):2-11.
    [121]周国逸,潘淮侍.林地土壤的降雨入渗规律[J].水土保持学报.1990,4(2):35-38.
    [122]朱文泉,潘耀忠,龙中华等.基于GIS和RS的区域陆地植被NPP估算-以中国内蒙古为例[J].遥感学报,2005,9(3):300-307.
    [123]朱文泉.中国陆地生态系统植被净初级生产力遥感估算及其与气候变化关系的研究.北京师范大学博士毕业论文.2005
    [124]朱志辉.自然植被净初级生产力估计模型[J].科学通报,1993,38(15):1422-1426.
    [125]朱治林,孙晓敏.内蒙古半干旱草原能量物质交换的微气象方法估算[J].气候与环境研究,2002,7(3):351.358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700