用户名: 密码: 验证码:
模式识别中图像匹配快速算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像匹配算法的研究是模式识别学科研究的一个分支,该问题的核心是找到两幅图像在空间上或几何上的最佳映射函数,使得通过该映射函数能够将两幅图像相似的部分尽可能地进行重叠。在很多的研究领域,图像匹配算法的准确性及计算效率都对研究的最终结果起到了至关重要的作用。图像匹配由于其应用背景的广泛性和数据获得的多样性,导致了各种匹配算法的适用范围也具有一定的局限性。
     在图像的获取方式中,有一类是先获取物体的一系列投影数据然后通过这些数据还原出物体内部的时域图像,现代影像诊断医学中CT(Computerizedtomography)、PET(Positron Emission Tomography)等都是通过类似的方法得到人体的内部图像。对于此类图像的匹配目前是在恢复后的时域图像中完成的。本文对目前常见的投影模型如RT(Radon Transform)变换、DBT(DivergentBeam Transfrom)变换,以及在模式识别中常用的HT(Hough Transform)变换从性质和实现上进行了研究,并分析了它们之间的转换关系。在此基础上,本文对此类途径获取的图像提出了一种新的图像匹配思路:直接在投影域利用投影数据来对时域图像进行匹配,这样避免了对已经存在一定误差的时域图像来进行匹配。根据本文所调查的资料,由于变换参数之间所存在的复杂依赖关系,目前还没有研究能够完全在投影域中完成对存在仿射变换图像的匹配。在本文中提出了一种基于投影变换的快速图像匹配算法,该算法完全在投影域分离了参数之间的依赖关系,可以直接对所获得的投影数据使用基于FFT的运算和最小二乘方法就能完成对时域中两幅完全重叠且存在仿射变换图像的匹配,算法对在该背景下获得图像的匹配具有很高的计算效率与对噪声的鲁棒性。通过数值仿真说明,该算法与目前最新的类似研究相比(如[113])在计算效率上有了大幅的提高。该算法同样适用于普通图像的匹配,与目前常见的基于FFT的快速匹配算法相比在效率和准确性上也都具有一定的优势。为了保证所提出的快速算法对参数估计的准确性,本文同时还提出了一种改进的相位相关算法,该算法克服了传统方法对低频信号匹配误差较大的缺陷,并且在实际应用中获得了较好的匹配效果。
     论文还对目前经典的图像匹配算法从基于图像全局灰度值的和基于图像局部特征的角度进行了系统的总结,分析了各种算.法所具有的优势和局限性,并介绍了目前应用最为广泛的基于图像特征点的SIFT(Scale Invariant FeatureTransfrom)算法,以及一种基于图像全局灰度值一阶矩的快速匹配方法。
The study of image registration algorithm is one of the branches in the field of Pattern recognition. The core of the problem is to find the best mapping function between two images where one image is a transformed version of the other. This mapping function needs to make the similar part of the two images overlapped as much as possible. The efficiency and accuracy of image registration algorithm plays an important role in the final results in many fields. Since image registration has an extensive application area with widely varied data sources, so far different methods are somewhat limited only to certain application problems.
     Among the image acquisition approaches, one of them is to acquire a series of projecting data at first, then we could recover the image of the inner part of the objects through these data. Both CT(Computerized Tomography) and PET(Positron Emission Tomography) in modern diagnostic medical imaging obtain the image of inner human body through similar methods. Registration of this kind of images are accomplished in the recovered time domain images. This thesis focuses on the study of the nature and realization of some common projecting models, such as RT(Radon Transform), DBT(Divergent Beam Transform) and HT(Hough Transform) which is frequently used in the pattern recognition research. The work in this thesis also includes the analysis of the switching relationships between them and makes a summary of fast algorithms for RT. On the basis of these, the thesis puts forward a new idea for registrating the images obtained from projection data. The idea is registrating the images only from their projections. In this way, we can avoid registrating images which already contain some errors when recovered from projection. So far no results have been obtained that solves the recognition problem completely in the projection domain due to coupling of transform parameters. We develop a novel algorithm based on this new idea for such parameter decoupling in the projection domain. The algorithm can accomplish the registration of two images which have affine tranform relationship through using FFT and least squares method on their projecting data. Simulation shows that the proposed algorithm has a high computational efficiency and is robust to noise. Compared with the state-of-the-art approaches such as [113], the proposed algorithm has a big improvement, in computational efficiency. The algorithm is also suitable for the registration of ordinary images. It also has some advantages in computation efficiency and accuracy compared to the image registration algorithms based on FFT. For the accuracy of the parameter estimation in the proposed fast algorithm, the thesis also puts forward an improved Phase Correlation method. The method overcomes the defect of the traditional method which has a big error in low-frequency signal registration. The improved Phase Correlation method achieves quite good registration effects in the proposed fast algorithm.
     This thesis systematically makes a summery of the classical image registration algorithms from the point of view of the image global gray value and the image local feature. We also analyze the advantages and disadvantages of various algorithms. And an introduction of currently extensively used SIFT(Scale Invariant Feature Transform) method which is based on the image local feature points and a fast registration algorithm which is based on the first-order moment of the images is made.
引文
[1] M.K. Hu. Visual pattern recognition by moment invariants. IRE Transaction on Information theory, 1962, 8:179 - 187.
    [2] B. Zitova, J. Flusser. Image registration methods: a survey. Image and Vision Computing, 2003, 21:977 - 1000.
    [3] L.M.G. Fonseca, B.S. Manjunath. Registration techniques for multisensor remotely sensed imagery. Photogrammetric Engineering and Remote Sensing, 1996, 62:1049-1056.
    [4] E. Gulch. Results of test on image matching of ISPRS WG. ISPRS Journal of Photogrammetry and Remote Sensing, 1991, 46:1 - 18.
    [5] J. le Moigne. First evaluation of automatic image registration methods. Proceedings of International Geoscience and Remote Sensing Symposium, Seattle, Washington, 1998, 315 - 317.
    [6] D.L.G. Hill, P.G. Bathchelor, M. Holden. Medical image registration. Physics in Medicine and Biology, 2001, 46:R1 - R5.
    [7] H. Lester, S.R. Arridge.A survey of hierarchical non-linear medical image ' registration. Pattern Recognition, 1999, 32:129 - 149.
    [8] J.B.A. Maintz, M.A. Viergever. A survey of medical image registration. Medical Image Analysis, 1998, 2:1 - 36.
    [9] P.A. van den Elsen, E.-JD. Pol, M.A. Viergever. Medical image matching-a review with classificatioin. IEEE Engineering in Medicine and Biology, 1993, 12:26 - 39.
    [10] L.G. Brown. A survey of image registration techniques. Computing Surveys, 1992, 24:326 - 376.
    [11] R.I. Hartley, A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521623049, 2000.
    [12] J. Kybic, P. Thevenaz, M. Unser. Multiresolution spline warping for EPI registration. Proceedings of the SPIE: Mathematical Imaging Wavelet Applications in Signal and Image Processing, Denver,Colorado, 1999. 571 - 579.
    [13] M.H. Davis, A. Khotanzad, D.P. Flaming. A physicsbased coordinate transformation for 3D image Matching. IEEE Transctions on Medical Imaging, 1997, 16:317-328.
    [14] A. Goshtasby. Piecewise cubic mapping functions for image registration. Pattern Recognition, 1987, 20:525 - 533.
    [15] A. Goshtasby. Registration of images with geometric distortions. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26:60 - 64.
    [16] N.R. Pal, S.K. Pal. A review on image segmentation techniques. Pattern Recognition, 1993, 26:1277-1294.
    [17] A. Goshtasby, G.C. Stockman. A region-based approach to digital image registration with subpixel accuracy. IEEE Transaction on Geoscience and Remote Sensing, 1986, 24:390 - 399.
    [18] A. Roche, G. Malandain, X. Pennec. The correlation ratio as a new similarity measure for multimodal image registration.Proceedings of The First International Conference on Medical Image Computing and Computer-Assisted Intervention MICCAI' 98, 1998, 1115 - 1124.
    [19] P.E Anuta, M. Nielsen. Spatial registration of multispectral and multitem-poral digital imagery using Fast Fourier Transform. IEEE Transactions on Geoscience Electronics, 1970, 8:353 - 368.
    [20] T. Sergios, K.Koutroubas. Pattern recognition, third edition, Academic Press, 2006.
    [21] W.K. Pratt. Correlation techniques of image registration. IEEE Transactions on Aerospace and Electronic System, 1974, 10:353 - 358.
    [22] H. Hanaizumi, D.L.G. Hill, D.J. Hawkes. An automated method for registration of satellite remote sensing images. Proceedings of International Geoscience and Remote Sensing Symposim IGARSS' 93, Tokyo, Japan, 1993. 1348 - 1350.
    [23] R. Berthilsson. Affine correlation. Proceedings of International Conference on Pattern Recognition ICPR' 98, Brisbane, Australia, 1998, 1458 - 1461.
    [24] P.van Wie, M. Stein. A landset digital image rectification system. IEEE Transactions on Geoscience Electronics, 1977, 15:130 - 136.
    [25] R.N. Bracewell. The fourier transform and its applications. New York: McGraw-Hill, 1965.
    [26] E.D. Castro, C. Morandi. Registration of translated and rotated image using finite fourier transform. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1987, 9:700 - 703.
    [27] S. Zokai, G. Wolberg. Image registration using log-por mappings for recovery of large-scale similarity and projection transfromations. IEEE Transactions on Image Processing, 2005, 14:1422 - 1433.
    [28] G. Wolberg, S. Zokai. Robust image registration using log-polar transform. Proceedings of International Conference on Image Processing, Vancouver, BC, Canada, 2000. 493 - 496.
    [29] D. Casasent, D. Psaltis. Position, rotation, and scale invariant optical correlation. Applied Optics, 1976, 15:1793 - 1799.
    [30] Q. Chen, M. Defrise and F. Deconinck. Symmetric phase only matched filtering of fourier-mellin transforms for image registration and recognition. IEEE Transactions Pattern Analysis and Machine Intelligence, 1994, 16:1156-1168.
    [31] X. Guo, Z. Xu. An application of Fourier-Mellin transform in image Registration. Proceedings of The Fifth International Conference on Computer and Information Technology, Shang Hai, China, 2005. 619 - 623.
    [32] P. Thevenaz, Urs E. Ruttimann and Michael Unser. A pyramid approach to subpixel registration based on intensity. IEEE Transactions on Image Processing, 1998, 7:27-41.
    [33] T.M. Lehmann. A two stage algorithm for model-based registration of medical image. Proceedings of International Conference on Pattern Recognition ICPR' 98, 1998. 244 - 352.
    [34] B.S. Reddy, B.N. Chatterji. An fft-based technique for translation, rotation and scale-invariant image registration. IEEE Transactions on Image Processing, 1996, 5:1266 - 1271.
    [35] L. Lucchese, G. Doretto, G.M. Cortelazzo. A frequency domain technique for range data registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24:1468 - 1484.
    [36] P. Viola, W.M, Wells. Alignment by maximization of mutual information. International Journal of Computer Vision, 1997, 24:137 - 154.
    [37] B. Likar, F. Pernus. A hierarchical approach to elastic registration. Image and Vision Computing, 2001, 19:33 - 44.
    [38] J.P.P. Starink, E. Baker. Finding point correspondence using simulated annealing. Pttern Recognition, 1995, 28:231 - 240.
    [39] G.P. Penney, J. Weese. A comparison of similarity measures for use in 2D-3D medical image registration. IEEE Transactions on Medical Imageing, 1998, 17:586 - 595.
    [40] M. Corsini, Dellepiane, Matteo and Ponchio, Federico and Scopigno, Roberto. Image-to-Geometry Registration: a Mutual Information Method exploiting Illumination-related Geometric Properties. Computer Graphics Forum, 2009, 28(7).
    [41] M. Jenkinson, S. Smith. A global optimization method for robust affine registration of brain images. Medical Image Analysis, 2001, 5:143 - 156.
    [42] P. Thevenaz, U.E. Ruttimann, M. Unser. Iterative multiscale registration withou landmarks. Proceedings of IEEE international Conference on Image Processing ICIP' 95, Wahington DC, 1995. 228 - 231.
    [43] H.S. Sawhney, R. Kumar. True multi-image alignment and its applications to mosaicing and lens distortion correction. IEEE Transactions on Pattern Analysis and Machine Intellingece, 1999, 21:235 - 243.
    [44] R.K. Sharma, M. Pavel. Multisensor image registration. Proceedings of the Society for Information Display, 1997. 951 - 954.
    [45] P. Thevenaz, M. Unser. Spline pyramids for inter-modal image registration using mutual information. Proceedings of SPIE: Wavelet Application in Signal and Image Processing, San Diego, 1997. 236 - 247.
    [46] D.N. Fogel. Image rectification with radial basis functions: Application to RS/GIS data integration. Proceedings of the Thirrd International Conference on Integrating GIS and Environmental Modelling, New Mexico, 1996.
    [47] R. Wiemker, K. Rohr, L. Binder. Application of elastic registration to imag-inery from airborne scanners. International Archives for Photogrammetry and Remote Sensing, 1996, XXI-B4:949 - 954.
    [48] J. Flusser, T. Suk. A moment-based approach to registration of image with affine geometric distortion. IEEE Transaction on Geoscience and Remote Sensing, 1994, 32:382 - 387.
    [49] A. Goshtasby, G.C. Stockman. Point pattern matching using convex hull edges. IEEE Transaction on Systems Man and Cybernetics, 1985, 15:631 - 637.
    [50] M. Holm. Towards automatic rectification of satellite image using feature based matching. Proceedings of International Geoscience and Remote Sensing Symposium, Espoo, Finland, 1991, 2439 - 2442.
    [51] Y.C. Hsieh, D.M. McKeown, F.P. Perlant. Performance evaluation of scene registration and stereo matching for cartographic feature extraction. IEEE Transaction on Pattern Analysis and Machine Intelligence. 1992, 14:214 - 237.
    [52] M. Sester, H. Hild, D. Fritsch. Definition of ground control features for image registration using GIS data. Proceedings of Symposium on Object Recognition and Scene Classification from Multispactral and Multisensor Pixels, Columbus, Ohio, 1998.
    [53] M. Roux. Automatic registration of SPOT images and digitized maps. Proceedings of IEEE International Conference on Image Processing ICIP' 96, Lausanne, Switzerland, 1996. 652 - 628.
    [54] P.A. Brivio, A.D. Ventura, A. Rampini. Automatic selection of control points from shadow structures. International Journal of Remote Sensing, 1992, 13:1853-1860.
    [55] S. Moss, E.R. Hancock. Multiple line-template matching with EM algorithm. Pattern Recognition Letters, 1997, 18:1283 - 1292.
    [56] W.H. Wang, Y.C. Chen. Image registration by control points pairing using the invariant properties of line segments. Pattern Recognition Letters, 1997, 18:269-281.
    [57] X. Dai, S. Khorram. Development of a feature-based approach to automated image registration for multitemporal and multisensor remotely sensed imagery. Proceedings of International Geoscience and Remote Sensing Symposium IGARSS' 97, Singapore, 1997, 243 - 245.
    [58] V. Govindu, C. Shekhar, R. Chellapa. Using geometric properties for correspondence-less image alignment. Proceedings of Inter national Conference on Pattern Recognition ICPR' 98, Brisbane, Australia, 1998, 37 - 41.
    [59] H. Li, B.S. Manjunath, S.K. Mitra. A contour-based approach to multi-sensor image registration. IEEE Transactions on Image Processing, 1995, 4:320 - 334.
    [60] H. Maitre, Y. Wu. Improving dynamic programming to solve image registration. Pattern Recognition, 1987, 20:443 - 462.
    [61] D. Shin, J.K. Pollard, J.P. Muller. Accurate geometric correction of ATSR images. Pattern Recognition, 1997,35:997 - 1006.
    [62] S.Z. Li, J. Kittler, M. Petrou. Matching and recognition of road networks from aerial images. Proceedings of Second European Conference on Computer Vision ECCV 92, Margherita, Italy, 1992.857 - 861.
    [63] H. Moravec. Rover visual obstacle avoidance. In International Joint Conference on Artificial Intelligence, 1981, 785 - 790.
    [64] C. Harris, M. Stephens. A combined corner and edge detector. Proceedings of In Fourth Alvey Vision Conference, Manchester, UK, 1988, 147 - 151.
    [65] C. Harris. Geometry from visual motion. Active Vision, 1992, 263 - 284.
    [66] Z. Zhang, R. Deriche, O. Faugeras. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence, 1994, 78:87-119.
    [67] P. Torr. Segmentation and outlier detection. Artificial Intelligence, 1994, 78:78-119.
    [68] C. Schmid, R. Mohr. Local Gray value Invariants for image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19:530 - 535.
    [69] D.G. Lowe. Object recognition from local scale-invariant feature. Proceedings of ICCV), 1998, 1150 - 1157.
    [70] D.G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60:91 - 110.
    [71] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant interest points. Proceedings of the 8th International Conference on Computer Vision, Vancouver, Canada, 2001, 525 - 531.
    [72] T. Lindeberg. Feature detection with automatic scale selection. IJCV, 1998, 30:79-116.
    [73] Y. Dufournaud, C. Schmid, R. Horaud. Matching images with dierent resolutions. Proceedings of CVPR, 2000, 612 - 618.
    [74] B.B. Hansen and B.S. Morse. Multiscale image registration using scale trace correlation. Proceedings of CVPR, 1999, 202 - 208.
    [75] K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. Proceedings of European Conference on Computer Vision(ECCV), Copenhagen, Denmark, 2002, 128 - 142.
    [76] F. Schaffalitzky, A. Zisserman. Viewpoint invariant texture matching and wide baseline stereo. Proceedings of the 8th International Conference on Computer Vision, Vancouver, Canada, 2001.636 - 643.
    [77] D. Tell and S. Carlsson. Wide baseline point matching using affine invariants computed from intensity profiles. Proceedings of ECCV, 2000, 814 - 828.
    [78] T. Tuytelaars and L.V. Gool. Content-based image retrieval based local affinely invariant regions. Proceedings of Visual99, 1999, 493 - 500.
    [79] A. Baumberg. Reliable Feature Matching Across Widely Separated Views. Proceedings of the International Conference on Computer Vision and Pattern Recongnition, 2000, 774 - 781.
    [80] J. Shi, C. Tomasi. Good feature to track. Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 1994, 593 - 600.
    [81] A. Rosenfeld, M. Thurston. Edge and curve detection for visual scene analysis. IEEE Transactions on Computer, 1971, 20:562 - 569.
    [82] A.R. Hanson, E. M. Riseman. A parallel computational structure for scene analysis. Computer and Information Science, 1973.
    [83] S. Tanimoto, Klinger. Structured computer vision. New York, 1980..
    [84] J.L. Crowley. A Representation for Visual Information[D]. Carnegie-Mellon, 1981.
    [85] G. Crowley, A..C. Parker. A representation for shape based on peaks and ridges in the dierence of low-pass transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6:156 - 170.
    [86] T. Lindeberg. Scale-space theory: A basic tool for analysing structures at dierent scales. Journal of Applied Statistics, 1994, 21:224 - 270.
    [87] J.J. Koenderink. The structure of images. Biological Cybernetics, 1984, 50:363 - 396.
    [88] K. Mikolajczyk. Detection of local features invariant to affine transforma-tions[D]. France:Institut National Polytechnique de Grenoble, 2002.
    [89] Y. Wan, W. Chiu. A transform method for fast generalized image registration. Proceedings of IEEE International Conference on Acoustics Speech, and Signal Processing, ICASSP' 04, 2004.
    [90] J.Verhaeghe, D. Van De Ville, I. Khalidov. Dynamic PET Reconstruction UsingWavelet RegularizationWith Adapted Basis Functions. IEEE Transactions on Medical Imaging, 2008, 27(7):943 - 959.
    [91] C.X. Wangab, W. E. Snyderab, G. Bilbrob. Performance evaluation of filtered backprojection reconstruction and iterative reconstruction methods for PET images. Computers in Biology and Medicine, 1998, 28(1):13 - 25.
    [92] A. Mallpn. and P. Grangeat. Three-dimensional PET reconstruction with time-of-flight measurement. Physics in Medicine and Biology, 1992, 37(3):717 - 729.
    [93] D. Finch. The attenuated X-ray transform: recent developments. In: GUhlmann, (eds.). Proceedings of Inside Out: Inverse problems and Applications, Mathematical Sciences Research Institute Publications. Cambridge University Press, 2004.
    [94] K.I. Kim, R. P. Tewarson, Y. Bizais. Inversion for the Attenuated Radon Transform with Constant Attenuation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 1984, 31(1):538 - 542.
    [95] J.-M. Wagner and F.Noo. Three-dimensional image reconstruction from exponential parallelbeam projections. IEEE Transactions on Nuclear Science, 2001, 48(3):743 - 749.
    [96] F. Noo and J.-M. Wagner. Image reconstruction in 2D SPECT with 180-degrees acquisition. Inverse Problems, 2001, 17:1357 - 1371.
    [97] F. Noo, R. Clackdoyle. 3D Image Reconstruction from Exponential X-ray Projections: a Completeness Condition and an inversion Formula. Proceedings of Nuclear Science Symposium Conference Record, 2001 IEEE, San Diego, USA, 2002, 1725 - 1726.
    [98] J. Frank. Three-dimensional electron microscopy of macromolecular assemblies. San Diego:Academic Press, 1996.
    [99] W. Hoppe and R. Hegerl. Three-dimensional structure determination by electron microscopy. New York: Spinger Verlag, 1980.
    [100] F. Natterer and F. Wubbeling. Mathematical Methods in image Reconstruction. Monographs on Mathematical Modeling and Computation, New York: Society for Industrial and Applied Mathematics, 2001.
    [101] A.G. Ramm and A.I. Katsevich. The radon transform and local tomography. Boca Raton: CRC,1996.
    [102] R.A. Brooks and G.Di Chiro. Theory of image reconstruction in computed tomography. Radiology, 1975, 117:561 -572.
    [103] Z.-P. Liang and P. C. Lauterbur. Principles of magnetic resonance imaging. New York: IEEE,1999.
    [104] S.R. Deans. The radon transform and some of its applications. New York: Wiley, 1983.
    [105] B. Gustafsson. Mathematical for computer tomography. Physica Scripta, 1996, T61:38-43.
    [106] H.P. Hiriyannaiah. X-ray computed tomography for medical imaging. IEEE Transactions on Medical Imaging, 1997, 14(2):42 - 59.
    [107] A.K. Louis and F. Natterer. Mathematical problems of computerized tomography. Proceedings of the IEEE, 1983, 71(3):379 - 389.
    [108] Joseph O'Rourke. Computational geometry in C, second edition, Cambridge University, 1998.
    [109] Basic principles of CT scanning. Technical report, 2005. http://www.impactscan. org/slides/impactcourse/basic principles of ct.
    [110] K. T. Smith, D. C. Solmon, S. L. Wagner. Mathematical aspects of divergent beam radiography. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(5):2055 - 2058.
    [111] S. Alliney, S. Matej, I. Bajla. On the possibility of direct Fourier reconstruction fromdivergent-beam projections. IEEE Transactions on Medical Imaging, 1993, 12(2):173 - 181.
    [112] E.Y. Sidky, C. Kao, X. Pan. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. Journal of X-Ray Science and Technology, 2006, 14(2): 119 - 139.
    [113] F. Hjouj, D.W. Kammler. Identification of reflected, scaled ,translated, and rotated objects from their radon projections. IEEE Transaction on Image Processing, 2008, 17:301 - 310.
    [114]K.Jafari-Khouzani "and H.Soltanian-Zadeh.Radon transform orientation estimation for rotation invariant texture analysis.IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(6):1004- 1008.
    [115]S.Tabbone and L.Wendling.Technical symbols recognition using twodimensional radon transform.In Proceedings of 16th International Conference on Pattern Recognition,France,2002,200-203.
    [116]H.AL-Yousefi and S.S.Udqa.Recognition of arabic characters.IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(8):853-857.
    [117]V.Chandran,B.Carswell,B.Boashash.Pattern recognition using invariants defined from higher order 2-D image inputs.IEEE Transactions on Image Processing,1997,16(5):703-712.
    [118]S.D.You and G.E.Ford.Object recognition based on projection.Proceedings of International Joint Conference on Neural Networks,IJCNN.,1992,31-36.
    [119]W.E.Snyder04,H.Qi.Machine Vision.Cambridge University,2004.
    [120]杨占龙.基于特征点的图像配准与拼接技术研究[博士学位论文].西安:西安电子科技大学,2008.
    [121]廖斌.基于特征点的图像配准技术研究[博士学位论文].湖南:国防科学技术大学,2008.
    [122]P.Toft.The radon tranform theory and implementation[D].Denmark University,1996.
    [123]R.O.Duda,P.E.Hart.Use of the Hough Transformation to Detect Lines and Curves in Pictures.Comm.ACM,1972,15:11-15.
    [124]Y.Wan,N.Wei.A fast algorithem for recognizing translated,rotated,reflected and scaled objects from only their projections.IEEE Signal Processing Letters,2010,17:71-74.
    [125] R.C. Gonzalez, R.E. Woods. Digital image processing, second edition, Prentice Hall, 2003.
    [126] M.van Ginkel, C.L. Luengo Hendriks and L.J. van Vliet. A short introduction to the Radon and Hough transforms and how they relate to each other. Technical Report, Imaging Science and Technology Department Faculty of Applied Science, Delft University of Technology, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700