用户名: 密码: 验证码:
面向SMT的锥束CT图像重构关键理论与BGA焊点检测算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日新月异的电子消费产品(笔记本电脑、智能手机、PDA、MP4、GPS等)、工业控制电子产品、国防尖端电子信息装置等都需要各种规模电子集成度的电路板组装产品,它是各种智能设备与终端的核心。随着半导体技术摩尔规律的作用,集成电路的集成度越来越高,表面贴装技术(Surface Mounted Technology,SMT)这种新型电子装联技术,彻底改变了传统的通孔插装技术,使电子产品向微型化、轻量化方向发展。而面向SMT的微焦X射线精密检测设备是针对电路板组装结构性缺陷检测的关键设备。为了提高X射线检测系统自动化程度,本文深入研究了智能化的检测算法和重建算法。主要研究内容如下:
     (1)基于X射线的检测过程中,由于康普顿效应和X射线能量不稳定会发生散射等现象,降低图像质量。本文在对图像增强方法进行总结和分析的基础上,提出了基于鲁棒估计的Retinex图像增强方法。该方法将一些不符合假设的图像数据称为“出格点”,根据鲁棒估计可以求出不受出格点影响的估计结果,把边界像素作为出格点进行分区域处理。论文中的增强算法是利用Malik和Perona提出的各向异性扩散的两种边界终止函数的凸组合形式作为新的边界终止函数,从而增加了图像的对比度,克服边界附近被严重模糊从而产生伪影的问题。
     (2)为了能够准确、快速地从X射线图像中把BGA焊点分割出来,提出了基于模式识别理论中的Fisher准则函数的BGA图像分割算法,利用Fisher评价准则对目标与背景分离程度进行定量判断,以不同的灰度值将图像划分为目标和背景。当Fisher准则函数取最大值时,目标和背景达到最佳分离度,所取的灰度值为最佳阈值。实验证明这种分割结果,不仅能够得到图像边缘细节,还可以克服边缘存在断点的缺陷,适合BGA焊点图像的分割。
     (3)对BGA焊点的特征进行分析与提取,包括短路、偏移、少锡、空洞、翘曲和开路等现象。提出水平断层算法、垂直断层算法,根据图像特征进行连续性、偏移量、面积率和空洞率等的判定,然后利用决策规则判定是否存在某种缺陷,最终将良品与缺陷品分开。本文还提出了基于Fisher准则的BGA焊点检测算法,也通过实验进行了验证。
     (4)提出了基于FDK框架下的超短扫描的改进算法,以解决由于机械物理的限制,导致在某些投影角度下无法采集投影数据,由此产生的截断数据有限角度重构问题。通过对BGA芯片偏置放置使得其成为重构的ROI区域,进而扩展Parker权函数以处理三维投影下的冗余数据。引入该算法后,可缩短扫描及图像重构时间,在保证重构图像质量的同时提高检测效率,使CT更加适合在工业中应用。
     (5)探讨了基于迭代法的少角度投影下,适用于BGA电路板检测的同步型重构算法和TV算法,提出以投影值大小来决定反投影速度的惩罚型算法-WP型算法,同时也提出了一种适合于平面型物体的S-TV型算法,它抛弃在平面型物体中较弱的厚度方向,可准确地在少角度投影下重构出平板型物体。
     最后,在总结全文内容的基础上,本文还对基于X射线检测的研究重点和研究方向进行了展望。
The consumer electronics products (such as laptop, Smartphone, PDA, MP4, GPS and soon), industrial control electronics and defense high-end electronic information devices whichchanged with each passing day, all need PCB assembly products of all sizes electronicintegration. The PCB assembly products are the core of the various intelligent device andterminal equipments. As the Moore law of semiconductor technology took effect, integratedlevel of the integrated circuit has become increasingly higher. Surface Mounted Technology, anew technology of electronic assemblies has completely changed the traditional holeinstrumentation technology and made the electronics products become more miniaturizationand lightweight. However, Micro confocal X-ray precision testing equipment for SMT is thecritical equipment to detect the defects of PCB assembly structure. In order to improve thelevel of automation for the X-ray inspection systems, This paper deeply studied the intelligentdetection algorithm and reconstruction algorithm. The main contents are as follows:
     (1)Based on the detection of X rays, due to the Compton effect and X ray energyinstability occurs scattering phenomena etc. the image quality can degradate. On foundationof the summary and analysis of current image enhancement method, we propose the Retineximage enhancement method based on robust estimation. The method calls some date which isnot consistent with the hypothetical image data set "very little", according to the robustestimation that can be obtained to estimate the result that is not affected by the special effects,and process a special point by subarea domain with a robust estimation of the boundary pixelsas. Enhancement algorithms proposed in this paper utilize that Malik and Perona proposedanisotropic diffusion termination function with two kinds of boundary convex combination asa new form of boundary termination function, so as to increase the image contrast, overcomethe seriously blurred boundary and the artifact problem.
     (2) To separate the BGA solder joint image accurately and quickly from the X-rayimages, the project is about the BGA image segmentation algorithm based on patternrecognition theory, to have a quantitative judgment to the degree of separation between thetarget and background by the evaluation criteria of Fisher,and to classify image into twosorts--target and background in different gray value. When Fisher criterion function takes themaximum value, it comes out the best resolution of the target and background, and the grayvalue achieves the best threshold. Experiments show that this division is not only able to getthe image edge detail, but to overcome a defect of the edge breakpoints, a good method for the segmentation of BGA solder joints X-ray image.
     (3) According to the analysis and extract of the characteristics of solder joints, includingshort circuit,offset,less tin,cavity,warping,open circuit and so on, horizontal fault algorithmand vertical fault algorithm were proposed.Based on graphics characteristics, we candetermine continuity, offset, the area ratio, voidage and so on. Finally, we can judgewhether there are some defects with the decision rules. Furthermore, we distinguish the goodand the defect according to the Fisher Criterion Function,and put forward the BGA SolderJoints Detection Algorithm which is on the basis of Fisher Criterion,and verified it by meansof experiment.
     (4) This article propose one improved FDK-type algorithm of the ultra-short scan toresolve the limited-views problems which happen frenquently because of some mechanicaland physical limitations. It try to process the BGA reconstruction as a ROI reconstruction problem with an offset approach, and then modify the Parker’s weight function to let it adopt to3D situation. Through introduction of the algorithm, the time of scan and image reconstructionis reduced, the image quality of3D reconstruction can be guarantied while improving the detection efficiency, which will make CT more suitable in industrial applications.
     (5) This article has explored the synchronization type reconstruction algorithm andTV algorithm for BGA circuit board examination, which based on less angle projections. It proposed to use the information of projection value to control the back-projection speed whichcalled punishment-based algorithm: WP algorithm. At the same time, presented one S-TV algorithm which is quite suitable for flat-type objects as it give up a weak thickness direction of the object but can accurately reconstruct object with less angle projections.
     Finally, the main results of the dissertation are concluded, this article has also discussedthe future of the research focus and research directions based on X-ray test.
引文
[1] Lu S L, Zhang X M, Kuang Y C. Optimized design of an AOI illuminator[C]. Wavelet Analysisand Pattern Recognition,2007. ICWAPR'07. International Conference on. IEEE,2007,2:924-928.
    [2]王亚雄.表面贴装技术(SMT)及应用[J].消防技术与产品信息,2003,9:032.
    [3]吴志明. SMT系统中焊点位置的检测[D].哈尔滨:哈尔滨工业大学,2006.
    [4]中国社会科学院工业经济研究所.2008中国工业发展报告—中国工业改革开放30年[M].北京:经济管理出版社,2008.
    [5] Lee N C. Optimizing the reflow profile via defect mechanism analysis[J]. Soldering&SurfaceMount Technology,1999,11(1):13-20.
    [6]黄春跃.基于焊点虚拟成形技术的SMT焊点质量检测和智能鉴别技术研究[D].西安:西安电子科技大学,2007.
    [7] Richards B.P., Levoguer C.L. Lead-free soldering: an analysis of the current status of lead-freesoldering [R]. UK: National Physical Laboratory,1999.
    [8]谢宏威.印刷电路板焊点智能检测算法的研究[D].广州:华南理工大学,2011.
    [9]刘元明,张丰收.锥束计算机断层成像系统[M].北京:知识产权出版社,2008.8.
    [10]周德俭,吴兆华.组装工艺技术[M].北京:国防工业出版社,2002.
    [11]鲜飞.焊膏印刷领域中的热门先进技术[J].印制电路信息,2008(4):63-65.
    [12]童志义.高密度封装技术现状及发展趋势[J].电子工业专用设备,2000,29(2):1-9.
    [13] Lau J, Marcotte T, Severine J, et al. Solder joint reliability of surface mount connectors[J].Journal of Electronic Packaging,1993,115(2):180-188.
    [14] Arena J, Lipson P. Machine-vision and inspection test report[J]. SMT China,2003,5:56-58.
    [15] Rooks S M, Benhabib B, Smith K C. Development of an inspection process for ball-grid-arraytechnology using scanned-beam X-ray laminography[J]. Components, Packaging, andManufacturing Technology, Part A, IEEE Transactions on,1995,18(4):851-861.
    [16] Peng S, Do Nam H. Void defect detection in ball grid array X-ray images using a new blobfilter[J]. Journal of Zhejiang University SCIENCE C,2012,13(11):840-849.
    [17]史建卫,何鹏,钱乙余,等.无铅化SMT质量检测技术[J].电子工艺技术,2005,3:140-146.
    [18]谢纳新.浅谈AOI在SMT生产线上的配置[J].材料与封装,2005,12:86-88.
    [19]季秀曩,章云,曾歆懿. SMT焊膏印刷质量AOI技术的研究[J].自动化技术与应用,2007,26(4):114-117.
    [20]吴福培.炉后印刷电路板无铅焊点的自动光学检测理论与方法研究[D].广州:华南理工大学,2009.
    [21]张朝宗,郭志平,张朋等.计算机断层成像技术--原理、设计、伪像和进展[M].科学出版社,2006.2
    [22]张朝宗,郭志平,王贤刚等.工业CT技术和原理[M].科学出版社,2009.6
    [23] BUENO A C, PAULILO SHIKI M, DE LIMA V R, et al. Analysis of measurement systemsand DOE for reflow soldering process in SMT[C]. Proceedings-Electrochemical Society.Electrochemical Society,2004:233-238.
    [24] Hirano T, Fukuda K, Ito K, et al. Reliability of lead free solder joint by using chip sizepackage[C]. Electronics and the Environment,2001. Proceedings of the2001IEEEInternational Symposium on. IEEE,2001:285-289.
    [25] Delétage J Y, Verdier F J M, Plano B, et al. Reliability estimation of BGA and CSP assembliesusing degradation law model and technological parameters deviations[J]. MicroelectronicsReliability,2003,43(7):1137-1144.
    [26]王慧英.图像识别技术在机械零件质量检测中的应用[J].现代机械,2008(1):33-35.
    [27]薛婷.三维视觉检测仪器化关键技术研究[D].天津:天津大学,2007.
    [28]鲜飞.在线测试技术的现状和发展[J].电子测试,2008(9):35-41.
    [29]章毓晋.图像处理与分析[M].清华大学出版社,1999:198~212.
    [30]张含光,刘惕生.数字射线照相技术在无损探伤检测中的应用前景[J].影像技术,2012,24(3):3-8.
    [31]曾更生.医学图像重建[M].高等教育出版社,2010.
    [32]陈家新.医学图像处理及三维重建技术研究[M].科学出版社,2010.
    [33] Smith B D. Image reconstruction from cone-beam projections: necessary and sufficientconditions and reconstruction methods[J]. Medical Imaging, IEEE Transactions on,1985,4(1):14-25.
    [34] Smith B D. Cone-beam tomography: recent advances and a tutorial review[J]. OpticalEngineering,1990,29(5):524-534.
    [35] Smith B D, Chen J. Implementation, investigation, and improvement of a novel cone-beamreconstruction method [SPECT][J]. Medical Imaging, IEEE Transactions on,1992,11(2):260-266.
    [36] Avinash C.. Kak, Slaney M. Principles of computerized tomographic imaging[M]. Society forIndustrial and Applied Mathematics,2001.
    [37] Grangeat P. Description of a3D reconstruction algorithm for diverging X-ray beams[C].International Technical Symposium/Europe International Society for Optics and Photonics,1986:92-108.
    [38] Grangeat P.3D reconstruction for diverging X-ray beams[M]. Computer Assisted RadiologyComputergestützte Radiologie. Springer Berlin Heidelberg,1985:59-64.
    [39] Kudo H, Saito T. Derivation and implementation of a cone-beam reconstruction algorithm fornonplanar orbits[J]. Medical Imaging, IEEE Transactions on,1994,13(1):196-211..
    [40] Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm[J]. JOSA A,1984,1(6):612-619.
    [41] Tuy H K. An inversion formula for cone-beam reconstruction[J]. SIAM Journal on AppliedMathematics,1983,43(3):546-552.
    [42] Wang G, Lin T H, Cheng P C. Error analysis on a generalized Feldkamp's cone‐beamcomputed tomography algorithm[J]. Scanning,1995,17(6):361-370.
    [43] Yan X H, Leahy R M. Derivation and analysis of a filtered backprojection algorithm for conebeam projection data[J]. Medical Imaging, IEEE Transactions on,1991,10(3):462-472.
    [44] Grangeate P. Mathematical framework of cone beam3D reconstruction via the first derivate ofthe Radon transform, Mathematic Methods in Tomography[M]. G.T.Herman,A.K.Louis,F.Natterer(eds.),Lecture notes in Mathematics,Springer Verlag,1991.
    [45] Roh Y J, Ko K W, Cho H, et al. Inspection of ball grid array (BGA) solder joints using X-raycross-sectional images[C]. Photonics East'99. International Society for Optics and Photonics,1999:168-178.
    [46] Wang G, Lin T H, Cheng P C, et al. A general cone-beam reconstruction algorithm[J]. MedicalImaging, IEEE Transactions on,1993,12(3):486-496.
    [47] Wang B, Liu H, Wang G. Generalized Feldkamp image reconstruction from equiangularcone-beam projection data[C]. Computer-Based Medical Systems,2000. CBMS2000.Proceedings.13th IEEE Symposium on. IEEE,2000:123-128.
    [48]张剑,陈志强.三维锥形束CT成像FDK重建算法发展综述[J].中国体视学与图像分析,2005,10(2):116-120.
    [49] Henrik Turbell. Cone-beam reconstruction using filtered backprojection[D]. Sweden:Departmet of Electrical Engineering Linkoping University,2001.
    [50] Wang G., Liu Y., Lin T. H., Cheng P C. Half-scan cone-beam x-ray microtomography formula[J]. J. Scanning Microscopy,1994,16:216-220.
    [51] Liu Y., Liu H., Wang G.. Half-scan cone-beam CT fluoroscopy with multiple x-ray sources [J].Med. Phys.,2001,28:1466-1471.
    [52] Wang G.,Lin T.H.,Cheng P.C.,and Shinozaki D.M. A polygonal cone-beam reconstructionalgorithm for X-ray micro-tomography[J]. Scanning Microscopy,1991,13(1):126-128.
    [53] Katsevich A., Theoretically exact filtered back projection-type inversion algorithm for SpiralCT[J].SIAM J.Appl.Math.,2002,62:2012-2026.
    [54] Katsevich A. A general scheme for constructing inversion algorithms for cone beam CT[J].International Journal of Mathematics and Mathematical Sciences,2003,2003(21):1305-1321.
    [55] Axelsson C. Direct Fourier methods in3D-reconstruction from cone-beam data[M].Department of Electrical Engineering, Link ping University,1994.
    [56] Axelsson C, Danielsson P. Three-dimensional reconstruction from cone-beam data in O(N3logN) time[J]. Physics in medicine and biology,1994,39(3):477.
    [57]范慧赟,卢健康.基于FHT和MSBP的CT图像滤波反投影重建方法设计[J].医疗卫生装备,2007,28(4):19-21.
    [58] Pan X. Image reconstruction on PI-lines by use of filtered back projection in helicalcone-beamCT [J]. Phys.Med.Biol.2004,49:2717-2731.
    [59] Kudo H, Rodet T, Noo F, et al. Exact and approximate algorithms for helical cone-beam CT[J].Physics in medicine and biology,2004,49(13):2913..
    [60] Kudo H, Noo F, Defrise M, et al. New approximate filtered backprojection algorithm forhelical cone-beam CT with redundant data[C]. Nuclear Science Symposium ConferenceRecord,2003IEEE. IEEE,2003,5:3211-3215.
    [61] Parker D L.Optimal short scan convolution reconstruction for fan-beam CT[M]. MedicalPhysics.1982.
    [62] Zeng GL, Clack R. Implementation of Tuy’s inversion formula[J]. Physics in medicine andbiology,1994,39(3):493-507.
    [63] Zeng GL, Gullberg GT. A cone-beam tomography algorithm for orthogonal circle-and-lineorbit[J]. Physics in medicine and biology,1992,37(3):563-577.
    [64] Gullberg G.T.,Zeng G.L.,Christian P.E.,Tsui B.M.W.,and Morgan H.T.,Single photon emissiontomography of the heart using cone beam geometry and noncircular detector rotation[C].Proc.11th Int. Conf.on Information Processing in Medical Imaging,1999:123-138.
    [65] Gullberg G.T.,Zeng G.L.,A cone beam filtered back projection reconstruction algorithm forcardiac single photon emission computed tomography[J]. Medical Imaging,IEEE Transactionson,1992,11(l):91-101.
    [66] Kudo H, Noo F, Defrise M, et al. New super-short-scan algorithms for fan-beam andcone-beam reconstruction[C]. Nuclear Science Symposium Conference Record,2002IEEE.IEEE,2002,2:902-906.
    [67] Defrise M, Clack R. A cone-beam reconstruction algorithm using shift-variant filtering andcone-beam backprojection[J]. Medical Imaging, IEEE Transactions on,1994,13(1):186-195.
    [68]王贤刚,郭志平.用几何参数表实现快速三维重建CT图像[J].清华大学学报:自然科学版,2002,42(5):655-658.
    [69]张朝宗,郭志平,董宇峰等.用几何参数表方法实现快速重建CT图像[J].清华大学学报,1998,38(7):4749.
    [70] Natterer F, Natterer F. The mathematics of computerized tomography[M]. Stuttgart: BGTeubner,1986.
    [71] Herman G T, Lent A. Iterative reconstruction algorithms[J]. Computers in biology andmedicine,1976,6(4):273-294.
    [72] Herman G T. On modifications to the algebraic reconstruction techniques[J]. Computers inbiology and medicine,1979,9(3):271-276.
    [73] Jiang M, Wang G. Convergence studies on iterative algorithms for image reconstruction[J].Medical Imaging, IEEE Transactions on,2003,22(5):569-579.
    [74] Censor Y. Parallel application of block-iterative methods in medical imaging and radiationtherapy[J]. Mathematical Programming,1988,42(1-3):307-325.
    [75] Mueller K, Yagel R, Wheller J J. Fast implementations of algebraic methods forthree-dimensional reconstruction from cone-beam data[J]. Medical Imaging, IEEETransactions on,1999,18(6):538-548.
    [76] Batenburg K J. An evolutionary algorithm for discrete tomography[J]. Discrete AppliedMathematics,2005,151(1):36-54.
    [77] Hudson, H. Model fitting for sequences of images[D]. Computational Statistics and DataAnalysis,2000,32(3):323-335.
    [78] Sheep LA, Vardi Y. Maximum likelihood reconstruction fore mission and tomography[J]. IEEETrans on medical imaging,1982,(l):113-122.
    [79] Hudson H M, Larkin R S. Accelerated image reconstruction using ordered subsets ofprojection data[J]. Medical Imaging, IEEE Transactions on,1994,13(4):601-609.
    [80] Xu M, Thulasiraman P. ROTATION BASED ALGORITHM FOR PARALLELIZINGOS-SART FOR CT ON HOMOGENOUS MULTICORE ARCHITECTURE[C]. Proceedingsof the12th IASTED International Conference.2010,710(057):49.
    [81]余景景.基于正则化的生物发光断层成像重建算法研究[D].西安:西安电子科技大学,2011.
    [82]郭威. CT不完全投影数据重建算法研究[D].长春:吉林大学,2011.
    [83] He P, Yu H, Thayer P, et al. Preliminary experimental results from a MARS micro-CTsystem[J]. Journal of X-ray Science and Technology,2012,20(2):199-211.
    [84] Chidlow K, Mollar T. Rapid emission tomography reconstruction[C]. Proceedings of the2003Eurographics/IEEETVCG Workshop on Volume Graphics.2003:15-26.
    [85] Xu F, Mueller K. Accelerating popular tomographic reconstruction algorithms on commodityPC graphics hardware[J]. Nuclear Science, IEEE Transactions on,2005,52(3):654-663.
    [86]谷建伟. CT图像中金属伪影的快速校正[J].中国体视学与图像分析,2005,10(2):108-111
    [87] Lewitt R M, McKay M R. Description of a software package for computing cone-beam x-rayprojections of time-varying structures, and for dynamic three-dimensional imagereconstruction[M]. State University of New York at Buffalo, Department of Computer Science,1980.
    [88] Kyriakou, Y., Kalender, W.A..GPU-accelerated metal artifact reduction (MAR) in FD-CT [C].Progress in Biomedical Optics and Imaging-Proceedings of SPIE,2010,7622(2).
    [89] Candes E, Braun N, Wakin M. Sparse signal and image recovery from compressive samples[C].Biomedical Imaging: From Nano to Macro,2007. ISBI2007.4th IEEE InternationalSymposium on. IEEE,2007:976-979.
    [90] Candes E, Romberg J. Encoding the p ball from limited measurements[C]. Data CompressionConference, DCC2006. Proceedings. IEEE,2006:33-42.
    [91] Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction fromhighly incomplete frequency information[J]. Information Theory, IEEE Transactions on,2006,52(2):489-509.
    [92] Sidky E Y, Pan X. Image reconstruction in circular cone-beam computed tomography byconstrained, total-variation minimization[J]. Physics in medicine and biology,2008,53(17):4777.
    [93] King M, Pan X, Yu L, et al. Region-of-interest reconstruction of motion-contaminated datausing a weighted backprojection filtration algorithm[J]. Medical physics,2006,33(5):1222-1238.
    [94] Xiao J, Ye F, Tian T, et al. CR enabled TD-LTE within TV white space: system levelperformance analysis[C]. Global Telecommunications Conference (GLOBECOM2011), IEEE,2011:1-6.
    [95] Kao C M, Pan X. Effect of the data constraint on few-view, fan-beam CT image reconstructionby TV minimization[C].2006IEEE Nuclear Science Symposium Conference Record.2006,4:2296-2298.
    [96] Choi K, Wang J, Zhu L, et al. Compressed sensing based cone-beam computed tomographyreconstruction with a first-order methoda)[J]. Medical physics,2010,37(9):5113-5125.
    [97] Zhang Z, Han X, Bian J, et al. Constrained TV-minimization image reconstruction fromsparse-view diagnostic CT data[C]. Nuclear Science Symposium and Medical ImagingConference (NSS/MIC), IEEE,2012:3359-3361.
    [98]霍修坤.锥束CT直接三维成像算法研究[D].合肥:安徽大学,2005.
    [99]缪辉.锥束X射线成像技术中若干关键问题的研究[D].天津:天津大学,2012.
    [100]邹晓兵.锥束工业CT扫描方式与近似重建算法的改进[D].重庆:重庆大学,2007.
    [101]陈忠,张宪民.面向SMT的微焦X射线精密检测技术[J].机电工程技术,2010,39(2):13-16.
    [102] Reinhold A. Fine focus X-ray tube and method of forming a microfocus of the electronemission of an X-ray tube hot cathode: U.S. Patent4,573,186[P].1986-2-25.
    [103] Lee H Y, Park D S, Lee S D. An effective image enhancement filtering for noisy imagesequences[J]. Proc SPIE,2006:1-9.
    [104]阮秋琦,阮宇智等译.数字图像处理(第二版)[M].电子工来出版社,2007.
    [105] Gabor D. Information theory in electron microscopy [J]. Laboratory investigation,1965,14:1-9.
    [106] Jain A K. Partial differential equations and finite-difference methods in image processing, part1: Image representation[J]. Journal of optimization Theory and Applications,1977,23(1):65-91.
    [107] Koenderink J J. The structure of images[J]. Biological cybernetics,1984,50(5):363-370.
    [108] Witkin A P. Scale-space filtering: A new approach to multi-scale description[C].Acoustics,Speech, and Signal Processing, IEEE International Conference on ICASSP'84. IEEE,1984,9:150-153.
    [109] Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based onHamilton-Jacobi formulations[J]. Journal of computational physics,1988,79(1):12-49.
    [110] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. PatternAnalysis and Machine Intelligence, IEEE Transactions on,1990,12(7):629-639.
    [111] Hummel R A. Representations Based on Zero-Crossings in Scale-Space[R]. New York Univ
    [112] NEW YORK UNIV NY COURANT INST OF MATHEMATICAL SCIENCES,1986.
    [113] Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models[J]. International journal ofcomputer vision,1988,1(4):321-331.
    [114] Sethian J A. Curvature and the evolution of fronts[J]. Communications in MathematicalPhysics,1985,101(4):487-499.
    [115] Whitaker R T, Pizer S M. A multi-scale approach to nonuniform diffusion[J]. CVGIP: ImageUnderstanding,1993,57(1):99-110.
    [116] Whitaker R T, Pizer S M. Geometry-based image segmentation using anisotropicdiffusion[M]//Shape in Picture. Springer Berlin Heidelberg,1994:641-650.
    [117] Carmona R, Zhong S. Adaptive smoothing respecting feature directions[J]. IEEE Transactionson Image Processing,1998,7(3):353-358.
    [118] Weickert J. Coherence-enhancing diffusion filtering[J]. International Journal of ComputerVision,1999,31(2-3):111-127.
    [119] LAND EH. The retinex theory of color vision[J]. Scientific American,1977,237(6):108-128.
    [120] Huber P J. Robust Statisties[M]. NewYork: Wiley,1981.
    [121]王晓莉,文华等.基于鲁棒估计的Retinex图像增强方法[J].计算机应用,2006,26(7):1611-1613.
    [122] Serra J. Image analysis and mathematical morphology[M]. Academic Press, Inc.,1983.
    [123] Gonzalez R C,Woods R E.Digital Image Processing(SecondEdition)[M]. Publishing House ofElectronics Industry,2005.
    [124] Frucci M, Ramella G, Sanniti di Baja G. Using resolution pyramids for watershed imagesegmentation[J]. Image and Vision Computing,2007,25(6):1021-1031.
    [125] Neves S R, da Silva E A B, Mendonca G V. Wavelet-watershed automatic infrared imagesegmentation method[J]. Electronics letters,2003,39(12):903-904.
    [126] Grau V, Mewes A U J, Alcaniz M, et al. Improved watershed transform for medical imagesegmentation using prior information[J]. Medical Imaging, IEEE Transactions on,2004,23(4):447-458.
    [127] Hansen M W, Higgins W E. Watershed-based maximum-homogeneity filtering[J]. ImageProcessing, IEEE Transactions on,1999,8(7):982-988.
    [128] Haris K, Efstratiadis S N, Maglaveras N, et al. Hybrid image segmentation using watershedsand fast region merging[J]. Image Processing, IEEE Transactions on,1998,7(12):1684-1699.
    [129] Makrogiannis S, Economou G, Fotopoulos S. A region dissimilarity relation that combinesfeature-space and spatial information for color image segmentation[J]. Systems, Man, andCybernetics, Part B: Cybernetics, IEEE Transactions on,2005,35(1):44-53.
    [130] Trémeau A, Colantoni P. Regions adjacency graph applied to color image segmentation[J].Image Processing, IEEE Transactions on,2000,9(4):735-744.
    [131] Chein-I Chang, Baohong Ji. Fisher’s Linear Spectral Mixture Analysis[J]. IEEE Transactionson geoscience and remote sensing,2006,44(8):2292-2304.
    [132]钟络,潘昊,封筠,等.模式识别[M].武汉:武汉大学出版社,2006:59-61.
    [133]刘永.基于Fisher准则的自适应图像分割算法[J].系统仿真技术,2009,5(3):161-165.
    [134] Moore, Thomas D. Three-dimensional x-ray laminography as a tool for detection andcharacterization of BGA package defects[J].IEEE Transactions on Components and PackagingTechnologies,2002,25(2):224-229.
    [135] Ko K W, Roh Y J, Cho H S, et al. A neural network approach to the inspection of ball gridarray solder joints on printed circuit boards[C]. Neural Networks,2000. IJCNN2000,Proceedings of the IEEE-INNS-ENNS International Joint Conference on. IEEE,2000,5:233-238.
    [136] Sidky E Y, Kao C M, Pan X. Accurate image reconstruction from few-views and limited-angledata in divergent-beam CT[J]. Journal of X-ray Science and Technology,2006,14(2):119-139.
    [137]冀东江,曾理,邹晓兵.锥束CT的惩罚SART重建算法[J].计算机工程及应用,2008,28:152-154.
    [138] Mueller K. Fast and accurate three-dimensional reconstruction from cone-beam projection datausing algebraic methods[D]. The Ohio State University,1998.
    [139] Andersen A H, Kak A C. Simultaneous algebraic reconstruction technique (SART): a superiorimplementation of the ART algorithm[J]. Ultrasonic imaging,1984,6(1):81-94.
    [140] Censor Y, Elfving T. Block-iterative algorithms with diagonally scaled oblique projections forthe linear feasibility problem[J]. SIAM Journal on Matrix Analysis and Applications,2002,24(1):40-58.
    [141]王彦飞.反演问题的计算方法及其应用[M].北京:高等教育出版社,2007.
    [142] Noo F, Defrise M, Clackdoyle R, et al. Image reconstruction from fan-beam projections on lessthan a short scan[J]. Physics in Medicine and Biology,2002,47(14):2525-2546.
    [143] Candes E, Romberg J. Signal recovery from random projections[C]. Proc. SPIE.2005,5674:76-86.
    [144] Censor Y, Segal A. Iterative projection methods in biomedical inverse problems[J].Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy(IMRT),2008:65-96.
    [145] Xiaochan Pan. Why do commercial CT scanners still employ traditional, filteredback-projection for image reconstruction[J]. Inverse Problems,2009:1-36
    [146] Chen G H, Tang J, Leng S. Prior image constrained compressed sensing (PICCS): a method toaccurately reconstruct dynamic CT images from highly undersampled projection data sets[J].Medical physics,2008,35(2):660-663.
    [147] Choi J, Kim K S, Kim M W, et al. Sparsity driven metal part reconstruction for artifact removalin dental CT[J]. Journal of X-ray Science and Technology,2011,19(4):457-475.
    [148] Roh Y J, Cho H S. Implementation of uniform and simultaneous ART for3-D reconstruction inan x-ray imaging system[C].Vision, Image and Signal Processing, IEE Proceedings-. IET,2004,151(5):360-368.
    [149]陈豫. CT图像金属伪影校正算法研究[D].合肥:中国科学技术大学,2009.
    [150]马建华.锥束扇束CT优质重建算法研究[D].广州:南方医科大学,2008.
    [151]刘宝东.工业CT截断投影数据重建算法研究[D].重庆:重庆大学,2010.
    [152]王林元.锥束CT有限角度三维重建算法研究[D].郑州:解放军信息工程大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700