用户名: 密码: 验证码:
强化混凝—动态膜工艺处理城市受污染河水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在综合国内外大量相关文献的基础上,基于强化混凝工艺和动态膜工艺的研究现状和应用前景,结合目前我国城市河流普遍受到一定程度污染的现状,提出了强化混凝.动态膜污水处理工艺处理受污染河水的设想。首先根据目标河流的污染现状进行混凝剂的筛选和混凝条件的优化,在此基础上进行动态膜反应器适用的附着基材的筛选,并对在恒压和恒流两种运行工况时该工艺对污染物的去除效果、混凝-动态膜的形成及过滤机理进行探讨,在此基础上对影响该工艺的因素-错流速度、通量和出水压力进行研究,分析其对运行过程的影响。论文的研究为解决城市河流治理问题提供了一套新的思路,并为该工艺的推广应用提供了初步的技术支持。主要研究内容及结果如下:
     1.混凝剂的筛选和混凝条件的优化。结合研究课题及本论文的研究内容,分别对淄博市猪龙河和济南市窑头大沟的受污染河水进行了研究。由于淄博市猪龙河受污染河水直接进入淄博市南郊污水处理厂进行强化混凝处理后排放,因此根据污水处理厂出水水质、矾花的大小、絮体生成的速度、对浊度、COD(ChemicalOxygen Demand)、SCOD(溶解性COD)、TP(Total Phosphorous)的去除效果、pH的影响进行混凝剂的筛选,并考察了无机混凝剂和有机絮凝剂复配对污染物去除的影响、表面负荷对出水水质的影响。
     研究结果表明对于猪龙河受污染河水优选出的混凝剂为APAM(阴离子聚丙烯酰胺)和PDMDAAC(聚二甲基二烯丙基氯化铵),其最佳投药量分别为0.3mg/L和0.5 mg/L。APAM对COD的去除率为54%~64%,PDMDAAC对COD的去除率为43%~60%。APAM和PDMDAAC对TN去除率较低(15%~20%),但对TP具有较高的去除率(70%~80%)。对于浊度的去除,APAM在药剂投加量0.3 mg/L以上时,浊度的去除率均在86%以上。APAM和PDMDAAC对COD的去除受pH影响较小,在pH 7~10范围内均具有较好的去除效果。表面负荷从0.8 m~3/(m~2·h)提高到1.2 m~3/(m~2·h)时,两种混凝剂对COD和浊度去除率变化不大。
     对于已经受到比较严重污染的济南市窑头大沟河水,根据对浊度、COD、SCOD、TP的去除效果和pH的影响进行混凝剂的筛选,通过光散射颗粒分析仪(Photometric Dispersion Analyzer,PDA)在线研究絮体生成过程并考察水中残铝的含量。研究结果表明PAC为优选混凝剂,其最佳投加量为60 mg/L。PDA在线研究絮体生成过程表明最佳混凝条件为快速搅拌(200 rpm)1 min、慢速搅拌(40 rpm)1.5 min、静置沉淀3 min,pH的变化对污染物的去除效果影响不显著,出水中铝残留量表明pH为7时出水中铝残留量最低,药剂利用率最高。
     2.强化混凝-动态膜附着基材的筛选。结合国内外对于动态膜的研究及市场上常见的过滤基材,选择筛绢(140目)、筛绢(260目)、无纺布(75 g/m~2)、无纺布(450 g/m~2)和不锈钢网(140目)5种基材进行研究,考察它们的清水膜通量及对过滤性能的影响,并进行了经济性的比较。研究结果表明筛绢(140目)由于自身阻力小、运行过程中水头增加较慢,且运行中形成的动态膜较稳定,无脱落现象发生,是合适的基材。无纺布和筛绢作为两种类型的材质,选择两种无纺布中易于动态膜形成且水头增加较慢的无纺布(450 g/m~2)作为进一步考察的基材。因此筛绢(140目)和无纺布(450 g/m~2)为选定的动态膜形成的附着基材。附着基材经济性分析表明较低的基材价格可以极大的降低动态膜反应器的造价。
     3.恒压运行时强化混凝-动态膜的形成及过滤机理。在恒压运行方式下,分别以筛绢(140目)和无纺布(450 g/m~2)为基材时,考察了4 cm WHD(water headdrop)和8 cm WHD运行时通量随时间的变化,运行过程中出水体积和时间的关系。借助于临界通量的概念来预测动态膜的形成时间,并运用典型膜污染机制-滤饼堵塞模式、完全堵塞模式、标准堵塞模式、中间堵塞模式及典型模式的联合模式进行动态膜形成及过滤机理的预测。
     研究结果表明无纺布作为混凝-动态膜的形成基材时,在4 cm WHD和8 cmWHD运行时混凝-动态膜的形成时间分别为70 min和20 min,动态膜的形成过程为完全堵塞模式。而动态膜形成后中间堵塞-标准堵塞模式、滤饼-中间堵塞模式和滤饼-完全堵塞模式均可以较好的模拟动态膜的过滤过程,而其中滤饼过滤模式其主要作用,其次为完全堵塞模式。筛绢作为混凝-动态膜的形成基材时,在4cm WHD和8 cm WHD运行时混凝-动态膜的形成时间分别为100 min和70 min,动态膜的形成过程为堵塞模式,而动态膜形成后过滤模式为滤饼-中间堵塞过滤模式,其中起主要作用的是滤饼过滤模式。
     4.恒流运行时强化混凝-动态膜的形成及过滤机理。恒流运行时动态膜的形成时间可以通过出水浊度来判定,无纺布和筛绢为基材时动态膜的形成时间分别为50 min和10 min。而恒流运行时混凝.动态膜的过滤机理可通过运行过程中压力随时间的变化,并借助于恒流过滤时典型膜污染机制-滤饼堵塞模式、完全堵塞模式、标准堵塞模式和中间堵塞模式及联合模式进行分析。
     研究结果表明从整个运行过程来看,中间堵塞模式比其他模式适用性好。无纺布作为基材时根据运行过程中压力的增长速度的变化分为两个阶段,第一阶段为0~9.5 h(4.72 pa/h),第二阶段为9.5~10 h(113.9 pa/h)。完全堵塞-标准堵塞模式(Complete-Standard model)能较好的解释第一阶段动态膜形成及过滤的过程,完全堵塞模式参数K_b和标准堵塞模式参数K_s的比值为4.55,说明完全堵塞占据主导地位,此阶段主要是颗粒在无纺布及“初始膜”内部的堵塞过程。对于第二阶段中间堵塞--标准堵塞模式(Intermediate-Standard model)能较好的解释形成的动态膜过滤过程,起主要作用的是中间堵塞模式。筛绢作为基材时,在过滤的最初阶段(主要是形成阶段)其主要作用的是中间堵塞模式,动态膜形成后起主要作用的是滤饼过滤模式。
     5.恒压运行时反应器的运行特性。针对济南市窑头大沟的受污染河水,在不同出水压力时考察反应器对浊度、有机物、TP及TN的去除效果和进出水颗粒物粒度的变化。
     研究结果表明无纺布为基材时在2 cm WHD、4 cm WHD、6 cm WHD、8 cmWHD和10 cm WHD五种压力下运行时反应器运行30 min后出水浊度均能达到1.5NTU以下。对COD和TP去除效果表明出水压力对COD、TP去除率影响较小,COD去除率约为71%~75%,TP去除率约为81%。进出水颗粒粒度分析表明形成后的动态膜对颗粒物有较好的截留作用。除基材和动态膜的机械截留作用、吸附截留作用、架桥作用外,颗粒与动态膜或基材之间的相互作用在颗粒物的截留过程中也起着重要作用。
     筛绢为膜基材时反应器运行结果表明4 cm WHD运行时15 min后,出水浊度一直稳定在4 NTU以下。8 cm WHD运行40 min后出水浊度降至5.76 NTU以下。在4 cm WHD和8 cm WHD运行20 min后,COD出水浓度均在50 mg/L以下,去除率在80%以上,出水水头对COD去除率影响较小。出水压力对TP去除影响较小,反应器对TP去除效果较好,运行30 min后出水TP浓度在1 mg/L以下,去除率在90%以上。在4 cm WHD和8 cm WHD下,通过Mastersizer2000激光粒径仪测定0 min、5 min、15 min、20 min和30 min时刻出水颗粒物粒度分布,结果表明随着运行时间的延长,出水中的中值粒径D_(50)随着运行时间延长而降低,动态膜对于颗粒物的截留能力逐步形成。
     6.恒流运行时反应器的运行特性。分别以无纺布和筛绢作为混凝-动态膜的形成基材,研究运行过程中对浊度、有机物、TP及TN的去除及运行过程中出水水头和通量的变化。
     无纺布为膜基材时反应器运行结果表明,运行50 min时,出水浊度降至5NTU,标志着动态膜已经形成。COD去除率随时间呈上升趋势,50 min后COD去除率趋于平稳,达到在65%以上;对于TP在运行起始阶段即具有较高的去除率,TP平均去除率为74.4%~84.9%。反应器运行1 h后对TP的去除率一般在79%以上,出水中的TP均小于1 mg/L。动态膜反冲实验结果表明体外清洗的方式比较适用于动态膜的清洗,建议冲洗采用水冲的方式进行。
     筛绢为膜基材时反应器运行结果表明在进水浊度较高时混凝.动态膜反应器运行5 min后出水浊度降至10 NTU以下,10 min后出水浊度降至5 NTU以下。在进水COD浓度为112 mg/L时,在运行最初阶段,COD去除率在40%,随着运行时间的延长,COD去除率增至50%以上;而对于TP的去除率,在运行起始阶段TP的去除率达到88%以上,运行30 min后TP的去除率均在90%以上,出水中TP小于0.5 mg/L。
     5.混凝-动态膜反应器运行影响因素的研究。对影响混凝-动态膜反应器运行的主要因素(错流速度、通量和出水水头)进行了研究,考察在不同错流速度和膜通量下,反应器出水水头及对浊度、COD和TP的去除效果。
     研究结果表明曝气量为0.15 m~3/h时运行为较优的曝气量,此时错流速度为2.85 cm/s,且在此错流速度下,出水浊度较稳定,动态膜形成后出水浊度一直稳定在1 NTU左右,COD、TP的去除率也较其他错流速度运行时高且稳定。通量对絮体颗粒在基材表面的沉积有一定的影响,较大的通量,有利于絮体在基材表面的沉积,所形成的滤饼层较紧密,滤饼层阻力较较高,出水水头较高。研究结果表明75 L/m~2·h为最佳运行通量。出水水头对出水COD、TP的影响均较小。不同出水水头形成的混凝-动态膜通量基本相同。
The combined wastewater process of enhanced coagulation and dynamic membrane to treat contaminated river water was put forward, and the idea was based on a great deal of relevant researches both home and abroad and the serious polluted status in quo of river in China. In this paper coagulant and optimized coagulation conditions were selected based on jar tests. Then, appropriate support media attached dynamic membrane was chosen. After that, pollutants removal and dynamic membrane formation ad filtration process were studied under two operation conditions: constant pressure and constant flow. The research provides a new idea to solve the problem of city river pollution, and it also offers technical support for application of the technology. Main research contents and the results are as follows:
     1. The contaminated river water was treated in Zhulong river in Zibo and Yaotou river in Jinan. Because the contaminated river water of Zhulong river was directly pumped into the southern wastewater treatment plant of Zibo City for enhanced coagulation treatment, the effluent quality, the size and the growth speed of floc, the removal efficiency of turbidity, COD, SCOD, TP and the effect of pH were investigated to select the optimum coagulant. The combination use of inorganic coagulant and organic flocculants and the impact of load were also studied.
     The results showed that the optimized coagulants were APAM and PDMDAAC, and the optimum dosage were 0.3mg / L and 0.5mg / L, respectively. COD removal efficiency of APAM was 54 %~64 %, and for PDMDAAC, it was 43 %~60 %. APAM and PDMDAAC had lower removal efficiency of TN, about 15 %~20 %, but the TP removal efficiency is higher, for about 70 %~80 %. The removal efficiency of turbidity was above 86 % when the dosage of APAM is above 0.3 mg/L. The pH had little effect on the removal of COD for both APAM and PDMDAAC. At pH 7~10 range good coagulation performance was obtained. When load raised from 0.8m~3/ (m~2·h) to 1.2m~3/ (m~2·h), the influence of the COD and turbidity removal efficiency was insignificant.
     For the more seriously contaminated river water of YaoTou river in Jinan, the selection of coagulant was based on removal efficiency of turbidity, COD, SCOD, TP, and pH effect. Photometric Dispersion Analyzer was used to study the floc formation process, the content of residual aluminum in effluent was also investigated. The results showed that the optimization of coagulant was PAC, and the optimum dosage was 60 mg / L. The results of PDA online research for floc formation process showed that the optimum coagulation conditions were rapid mixing (200 rpm) 1 min, slow stirring (40 rpm) 1.5 min, static precipitation 3 min. pH changes had little effect on pollutant removal efficiency. The content of residue aluminum in effluent showed that utilization of PAC was best when at pH 7.
     2. Based on the recently research of dynamic membrane and the common support media filter in market, five different kinds of support media - dacro mesh (140 mesh), dacro mesh (260 mesh), non-woven fabric filter(75 g/m~2), non-woven fabric filter (450 g/m~2) and stainless steel net (140 mesh) were studied, and membrane flux, the effect on filter performance and economic comparison were conducted.
     The results showed that the dacro mesh (140 mesh) was suitable support media, because of the slower increase in water head drop, the more stable dynamic membrane, and non-shedding during operation. Non-woven fabric and dacro mesh were two types of material. Non-woven fabric (450 g/m~2 ) which was easy in the formation of dynamic membrane and slow in water head drop was also chosen for further inspection. Therefore, dacro mesh (140 mesh) and non-woven fabric (450 g/m~2) were the selected support media for the formation of dynamic membrane. Dynamic membrane reactor can greatly reduce the construction costs because the support media was cheap.
     3. At constant pressure condition when dacro mesh (140 mesh) and non-woven fabric filter (450 g/m2) as the support media, the removal efficiency of turbidity, organic matter, TP and TN were investigated in treating the contaminated river water of YaoTou river. The reactor was run at 2 cm water head drop (WHD), 4 cm WHD, 6 cm WHD, 8 cm WHD and 10 cm WHD,the aeration intensity was 0.1 m~3/h. The formation of dynamic membrane and filtration mechanism were studied under the condition of constant pressure in accordance with the relation of effluent volume and running time.
     The results showed that the removal efficiency was higher no matter the non-woven fabric or dacro mesh as support media. When non-woven fabric acted as support media the formation time for coagulation - dynamic membrane was 70 min at 4 cm WHD and 20 min at 8 cm WHD. The formation process of dynamic membrane was complete-standard model.
     While after the dynamic membrane formation, intermediate-standard model and cake- standard model worked, and intermediate-standard model play a major role. After the dynamic membrane formation, Intermediate-standard model, Cake-intermediate model and Cake-complete model were fit better than typical models, and the cake model plays a major role in the combined models, next is the intermediate model. When dacro mesh acted as support media the formation times for coagulation - dynamic membrane were 100 min at 4 cm WHD and 70 min at 8 cm WHD. The formation process of dynamic membrane was complete-standard model. While after the dynamic membrane formation, intermediate-standard model and cake- standard model worked, and cake-standard model plays a major role.
     4. At constant flow condition, non-woven fabric and dacro mesh were also used to investigated the characteristics of reactor operation. Removal efficiency of turbidity, organic matter, TP, TN, and flux changes of the water head drop during the operation process were studied. And according with the changes of pressure versus running time the formation and mechanisms of coagulation - dynamic membrane filtration were derived.
     The results showed that the chosen support media all has higher removal efficiency of turbidity, COD removal efficiency was more than 50 %, and TP removal efficiency was above 85%. For the entire operation process, the intermediate-standard model was better than other models to interpret the filtration process.When non-woven fabric acted as support media, based on pressure changes with time in the whole operation, two phases were divided: the first phase was 0~9.5 h (4.72 pa/h), the second phase was 9.5~20 h (113.9 pa/h). Complete - Standard model can better explain dynamic membrane formation and filtration process of the first phase. And for the second phase, intermediate-Standard model can better explain the formation of dynamic membrane filtration process. When dacro mesh acted as support media, intermediat model can better explain the formation of dynamic membrane filtration process, and after that, cake model plays a major role.
     5. Two main factors (flux and cross-flow velocity) which affected coagulation -dynamic membrane reactor were studied. At different cross-flow velocity and membrane flux, the removal efficiency of turbidity, COD and TP were investigated.
     The results showed that the optimum aeration capacity was 0.15 m~3/h, and at this aeration capacity the cross-flow speed was 2.85 cm/s. And at this cross-flow velocity, the effluent turbidity is below 1 NTU after the dynamic membrane was formed, and the removal efficiency of COD, TP were higher. Flux had an impact on particle deposition on the support media surface. Larger flux was conducive to floc deposition at the support media surface and favored the formation of cake layer. The results showed that the favorable flux was 75 L/(m~2·h). Water head drop of the effluent had considerably small effect on removal of COD and TP. On the whole the flux of coagulation - dynamic membrane at different water head drop was the same.
引文
[1]严煦世,范瑾初.给水工程[M].北京:中国建筑工业出版社,1995.
    [2]王东升,刘海龙,晏明全等.强化混凝与优化混凝:必要性、研究进展和发展方向[J].环境科学学报,2006,26(4):544-551.
    [3]王燕.新型聚合铁基无机一有机复合混凝剂性能的研究[D].济南:山东大学,2007.
    [4]Karen E..Current Practices with Aluminum and Iron Based Coagulants[J].Public Works,2001(9):82-85.
    [5]初永宝,高宝玉,岳钦艳等.铝系混凝剂的混凝动力学研究:循环剪切力和硫酸根的影响[J].中国科学B辑,2007,37(5):440-445.
    [6]Edzwald J K,Tobiason J E.Enhanced versus Optimized Multiple Objective Coagulation.Chemical Water and Wastewater Treatment[M].New York:Sp ringer,1998,113-124
    [7]Edzwald J K,Tobiason J E.Enhanced Coagulation:US Requirement and A Broader View[J].Water Science & Technology,1999,40(9):63-70.
    [8]Crozes G,White P,Marshall M.Enhanced Coagulation:Its Effect on NOM Removal and Chemical Costs[J].JAWWA,1995,87(1):8-89.
    [9]Cheng R C,Krasner S W,Green J F,et al.Enhanced Coagulation:A Preliminary Evaluation[J].JAWWA,1995,87(2):91-103.
    [10]Dennett K E.Coagulation:its effection on organic matter[J].JAWWA,1996,88(4):129-138.
    [11]施周,张绍辉.强化混凝去除水中天然有机物(NOM)的研究[J].南华大学学报(理工版),2004,18(2):6-9.
    [12]谢昌武,王毅力,刘囡等.强化混凝技术去除腐殖酸的研究进展[J].中国给水排水,2004,20(7):37-39.
    [13]许春华,高宝玉,卢磊等.城市纳污河道废水化学强化一级处理的研究[J].山东大学学报(理学版),2006,41(2):116-120.
    [14]刘云洲,张明旭,孙从军.强化混凝技术研究及应用进展[J](网络版).2004,3.
    [15]徐祖信.河流污染治理技术与实践[M].北京:中国水利水电出版社,2003,405-413.
    [16]Randtke S.J.et al.Organic Contaminant s Removal by Coagulation and Related Processes Combinations[J].JAWWA,1988,80(5):40.
    [17]张声.利用强化混凝去除水源水中天然有机物的研究进展[J].环境污染治理技术与设备,2003,4(8):19-22.
    [18]Stuart W.Krasner,Gary Amy.Jar test evaluations of enhanced coagulation[J].J AWWA,1995,87(10):93-107.
    [19]Gray,K.A.The preparation,characterization,and use of inorganic iron(Ⅲ)polymers for coagulation in water treatment[M].The Johns Hopkins Univ,Baltimore,1988.
    [20]Dempsey,B.A.Reaction between fulvic acid and aluminum:Effect on the coagulation process.In:I.H.Suffet and P.MacCarthy(editors).Aquatic Humic Substance:Influence on Fate and Treatment of Pollutant.ACS,Washington,D.C.1989.
    [21]EI-Gohary F.A.,Abo-Elela S.A.et al.Physico-chemical-biological treatment of municipal wastewater[J].Wat.Sci.Tech.,1991,24(7):285-292.
    [22]Gambrill M.P.,Mara D.D.,Silva S.A.Physicochemical treatment of tropical wastewater::Production of microbiologically safe effluents for unrestricted crop irrigation[J].Wat.Sci.Tech,1992,26(7-8):1449-1458.
    [23]Aiyuk S.,Amoako J.,Rashin L.et al.Removal of carbon and nutrients from domestic wastewater using a low investment,integrated treatment concept[J].Wat.Res.,38(2004):3031-3042.
    [24]M.I.Aguilar,J.Saez,et al.Improvement of coagulation-flocculation process using anionic polyacrylamide as coagulant aid[J].Chemosphere,2005,58:47-56.
    [25]Natalia Olive,Design of a Chemically Enhanced Primary Treatment Plant for the city of Alfenas,Mlinas,Gerais,Brazil:[B.S.][J].Massachusetts Institute of Technology,2002.
    [26]D.R.F.Harleman,S.Murcott.The role of physical-chemical wastewater treatment in the mega-cities of the developing world[J].Wat.Sci.Tech.,1999,40(4-5):75-80.
    [27]李福勤,华玉芝,孟文芳等.煤矿生活污水强化一级处理的可行性研究[J].煤矿环境保护,2000,14(1):63-66.
    [28]Mete,Azra.Flocculation as a treatment method for printing ink wastewater[J].Water Environment Research,2000,72(6):680-687.
    [29]Harleman D.Hongkong Harbor Clean-up.Water Environment &Technolgy[J].1997,9(3):47-50
    [30]王东海,文湘华.低浓度生活污水化学强化一级处理的实验研究[J].给水排水,1999,25(9):10-13.
    [31]任洁,王闯,邵志刚.上海合流污水物化法强化一级处理的中试研究[J].给水排水,1999,25(9):8-10.
    [32]王曙光,栾兆坤,宫小燕等.CEPT技术处理污染河水的研究[J].中国给水排水,2001,17(4):16-18.
    [33]孙从军,王敏,程曦.硅藻土混凝剂在污染河水处理中的应用研究[J].上海环境科学,2003,22(4):275-278.
    [34]Cheng Wen Po,Yu Ruey Fang,Chen Chien Hsun,et al.Enhanced Coagulation on Reservoir Water by Dual Inorganic Coagulants[J].Environmental Engineering Science,2003,20(3):229-235.
    [35]Robert L,Sinsabaugh,et al.Removal of dissolved organic carbon by coagulation with iron sulfate[J].JAWWA,1986,78(5):74-82.
    [36]张灵燕,吴波,张芮铭.强化混凝与优化混凝在常规水处理中的运用[J].环境科学导刊,2008,27(1):56-59.
    [37]Robert C.Cheng,Stuart W.Krasner,James F.Green,et al.Enhanced coagulation:A preliminary evaluation[J].JAWWA,1995,87(2):91-103.
    [38]Stuart W.Krasner,Gary Amy.Jar test evaluations of enhanced coagulation[J].JAWWA,1995,87(10):93-107.
    [39]Kimberly Bell-Ajy,Morteza Abbaszadegan,Eva Ibrahim,et al.Conventional and optimized coagulation for NOM removal[J].JAWWA,2000,92(10):44-58.
    [40]Tryby M.E.,Miltner R.J.,Summers R.S.TOC removal as a predictor of DBP control with enhanced coagulation.Proc.1993,American Water Works Association Water Quality Technology Conference,Miami,Fla.
    [41]Dempsey B.A.,Ganho R.M.,O' Melia C.R.The coagulation ofhumic substance by means of aluminum salts[J].JAWWA,1984,76(4):141-153.
    [42]Gil Crozes,Patrick White,Matthew Marshall.Enhanced coagulation:Its effect on NOM removal and chemical costs[J].JAWWA,1995,87(1):78-89.
    [43]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    [44]邱维,张智.城市污水化学除磷的探讨[J].重庆环境科学,2002,24(2):81-84.
    [45]Recht H L,Ghassemi M.Kinetics and mechanism of precipitation and nature of the precipitate obtained in phosphate removal from wastewater using Aluminum (Ⅲ) and Iron(Ⅲ) salts,U.S.Federal Water Quality Administration.Wat.Pol.Con.Res.,Series,17010EK1.
    [46]王静.低温低浊水处理技术研究应用现状[J].低温建筑技术,2003,4:49-50.
    [47]李潇潇,张跃军,赵晓.强化混凝处理低温低浊北渡水研究[J].工业水处理,27(7):42-44,73.
    [48]刘海龙,王东升,王敏.强化混凝对水力条件的要求[J].2006,22(5):1-4.
    [49]Mhaisalkar V A,Paramasivam R,Bhole A G.Optimizing physical parameters of rap id mix for coagulation - flocculation of turbid waters[J].Water Research,1991,25(1):43-52.
    [50]刘宏江.水力条件对絮凝效果影响的研究[J].广东有色金属学报,2003,13(1):41-45.
    [51]吴耀国,姜向春,吉青杰.强化混凝技术的研究进展[J].2005,25(10):9-13.
    [52]黄晓东,孙伟,庄汉平等.强化混凝处理微污染源水[J].中国给水排水,2002,18(12):45-47.
    [53]路光杰,黄柱崇,段杰辉.新型高效强化混凝法的原理与应用[J].清华大学学报(自然科学版),2000,40(S1):114-116.
    [54]Singer P C,Bilyk K.Enhances coagulation using a magnetic ion exchange resin[J].Water Research,2002,36:4009-4022.
    [55]Ma Jun,Liu Wei.Effectiveness of ferrate(Ⅵ) preoxidation in enhancing the coagulation of surface water[J].Water Research,2002,36:4959-4962.
    [56]邹红林,陈恩鉴.新型氧化-混凝剂处理燃料废水研究[J].工业水处理,2003,23(1):38-39.
    [57]Grant StanleyB.,et al.Kinetic theories for the coagulation and sedimentation of particles[J].Journal of Colloid and Interface Science,2001,238(2):238-250.
    [58]朱云,肖锦,周勤.一体化水力强化混凝设备及其微污染原水处理工况最优化研究[J].环境工程学报,2007,5(1):45-50.
    [59]王毅力,李大鹏,解明曙.絮凝形态学研究及进展[J].污染治理技术与设备,2003,4(10):1-9.
    [60]袁宗宣,郑怀礼,舒型武.絮凝科学与技术的进展[J].重庆大学学报(自然科学版),2001,24(2):143-147,153.
    [61]Mandelbrot B B.分形-自然界的几何学[M].李后强译.成都:四川大学出版社,1993.
    [62]Lorenz E M.混沌的本质[M].刘式达译.北京:气象出版社,1997.
    [63]井敏莉,李敏,姚敏.分形理论在絮凝形态学中的应用与展望[J].中国水运,2008,8(9):145-147.
    [64]王东升,汤鸿霄.分形理论在混凝研究中的应用与展望[J].工业水处理,2001,21(7):16-19,44.
    [65]武小鹰,郑平,徐红.动态膜技术及其在环境工程中的应用[J].膜科学与技术,2003,23(3):49-53.
    [66]Marcinkowsky E,Philips K A,Johnson H O,et al.Hyperfiltration studies(Ⅳ)Salt rejection by dynamically formed hydrous oxide membrane[J].J Am Chem Soc,1966,88:5744-5746.
    [67]Lee J,Ahn W Y,Lee C H.Comparison of the Filtration Characteristics between Attached and Suspended Growth Microorganisms in Submerged Membrane Bioreactor[J].Wat.Res.,2001,35(10):2435-2445.
    [68]范彬,黄霞,栾兆坤.出水水头对自生生物动态膜过滤性能的影响[J].环境科学,2003,24(5):65-69.
    [69]范彬,黄霞,文湘华,于妍.微网生物动态膜过滤性能的研究[J].环境科学,2003,24(1):91-97.
    [70]Kiso Y,Jung Y J,Ichinari T.Wastewater Treatment Performance of a Filtration Bio-reactor Equipped with a Mesh as a Filter Material[J].Wat.Res.,2000,34(17):4143-4150.
    [71]Al-Malack M H,Anderson G K,Almasi A.Treatment of anoxic pond effluent using crossflow microfiltration[J].Water Research,1998,32(6):3738-3746.
    [72]Cai B,Ye H,Yu L.Preparation and separation performed of a dynamically formed MnO2 membrane[J].Desalination,2000,128:247-256.
    [73]Muhammad H,Al-Malack,Anderson G K.Use of MnO_2 as a dynamic membrane with crossflow microfiltration:slow membraneing technique[J].Desalination,1997,109:15-24.
    [74]Altman M,Semiat R,Hasson D.Removal of organic foulants from feed waters by dynamic membranes[J].Desalination,1999,125:65-75.
    [75]Rumyantsev M,Shauly A,Yiantsios S G,et al.Parameters affecting the properties of dynamic membranes formed by Zr hydroxide colloids[J].Desalination,2000,131:189-200.
    [76]Chen C C,Chiang B H.Formation and characteristics of zirconium ultrafiltration dynamic membranes of various pore sizes[J].J Membr Sci,1998,143:65-73.
    [77]金伟,范瑾初.粉末活性炭在预涂膜过滤中的应用[J].中国给水排水,1997,13(增刊):16-19.
    [78]Li N,Liu Z,Xu S.Dynamically formed poly(vinylalcohol) ultrafiltration membranes with good anti - fouling characteristics[J].J Membr Sci,2000,169:17-28.
    [79]Kryvoruchko A,Atamanenko I,Kornilovich B.A role of the clay minerals in the membrane purification process of water from Co(Ⅱ) - ions[J].Sepn and Purifn Tech,2001,25:487-492.
    [80]Kishihara S,Tamaki H,Fuji S,et al.Clarification of sugar solution through a dynamic membrane formed on a porous ceramic tube[J].J Membr Sci,1984,41:103-114.
    [81]Tsapiuk E A.Ultrafiltration separation of aqueous solutions of poly(ethylene glycol) s on the dynamic membrane formed by gelatin[J].J Membr Sci,1996,116:17-29.
    [82]Al-Malack M H,Anderson G K.Coagulation-crossflow microfiltration of domestic wastewater[J].J Membr Sci,1996,121:59-70.
    [83]范彬,黄霞.动态膜-生物反应器对城市污水的处理[J].环境科学,2002,23(6):51-56.
    [84]鹿道强,范彬,曲丹等.自生动态膜-生物反应器结构优化的研究[J].环境科学,2008,27(1):137-141.
    [85]薛念涛,黄霞,夏俊林.自生动态膜生物反应器处理城市污水的中试研究[J].中国给水排水,2008,24(15):20-27.
    [86]吴盈禧,陈福泰,黄霞.高通量自生动态膜生物反应器的运行特性[J].中国给水排水,2004,20(2):5-7.
    [87]初里冰,李书平.动态膜生物反应器的过滤性能及运行特性研究[J].工业水处理,2006,26(4):66-69.
    [88]卢进登,李艳蔷,康群等.微网动态膜生物反应器对污染物的去除效果[J].环境科学与技术.2006,29(5):93-94.
    [89]林新斌,傅大放.非织造布动态膜生物反应器处理生活污水的研究[J].中国给水排水,2007,23(13):66-68.
    [90]吴志超,田陆梅,王旭,王志伟.动态膜-生物反应器处理城市污水的运行特性研究[J].环境污染与防治,2008,30(5):47-50.
    [91]高松,周增炎,高廷耀.自组生物动态膜在污泥截留中的应用研究[J].净水技术,2005,24(1):14-17.
    [92]Yoshiaki Kiso.Wastewater treatment performance of a filtration bio-reactor equipped with a mesh as a filter material[J].Wat Res,2000,34(17):4143-4150.
    [93]Fuchs W,Resch C,Kernstock M,et al.Influence of operational conditions on the performance of a mesh filter activated sludge process[J].Wat Res,2005,39(5):803-810.
    [94]G.T.Seo,B.H.Moon,T.S.Lee,T.J.Lim,I.S.Kim.Non-woven fabric filter separation activated sludge reactor for domestic wastewater reclamation[J]. Water Science and Technology,2002,47(1):133-138.
    [95]Alavi M R,Satoh H.Performance of coarse pore filtration activated sludge system[J].Water Science and Technology,2002,46(11-12):71-76.
    [96]M.R.Alavi Moghaddam,H.Satoh,etc.,Efect of important operational parameters on performance of coarse pore filtration activated sludge process[J].Water Sci.Tech.,Vo l(46),N o9,P 229-266.
    [97]许莉.陶瓷膜的应用及动态过滤性能研究[J].流体机械,1996,24(2):11-14.
    [98]Marc Altman,Raphael Semiat,David Hasson.Removal of organic foulants from feed waters by dynamic membranes[J].Desalination,1999,125:65-75.
    [99]吴季勇,华敏洁,高运川.自生生物动态膜反应器处理市政污水的特性[J].上海帅范大学学报(自然科学版),2004,33(4):89-95.
    [100]李晓波,胡保安,顾平.动态膜分离技术研究进展[J].膜科学与技术,2007,27(4):91-95.
    [101]李方,李俊,陈季华等.动态膜在错流微滤系统中的应用[J].水处理技术,2005,31(12):59-62.
    [102]Xiao Zhongli,Harald Hess.Influence of operating parameters on precoat layers built up under crossflow condition[J].Separation and Purification Technology,2003,31:269-280.
    [103]Mackley M R,Sherman N E.Cross-flow cake filtration memchanisms and kinetics[J].Chemical Engineering Science,1992,47:3067-3082.
    [104]LI X.Z,Hess H,Hoflinger W.Influence of operating parameters on precoat layers built up under crossflow condition[J].Sep Pur Technol,2003,31(3):269-280.
    [105]Wakeman R J,Tarleton E S.Colloidal fouling of micro-filtration membranes during the treatment of aqueous feed streams[J].Desalination,1991,83:35-52.
    [106]Megat Johari.Performance of flexible membrane using kaolin dynamic membrane in treating domestic wastewater[J].Desalination,2002,147:263-268.
    [107]Alavi M R,Guan Y,Satoh H,et al.Performance and microbial dynamics in the coarse pore filtration activated sludge process at different SRTs(solidsr etentiont imes)[J]. Water Science and Technology, 2000,4 7(12):73-80.
    [108] Altmann J, Ripperger S. Particle Deposition and Layer Formation at the Crossflow Microfiltration[J]. J. Mem. Sci, 1997,124: 119-128.
    [109] Lu W M, Hwang K J. Cake formation in 2 - D cross-flow filtration[J]. AIChE Journal, 1995,41: 1443-1455.
    [110] P.H. Hermans, H.L. Bred'ee, Zur kenntnis der filtrationsgesetze[J]. Recl. Trav. Chim. Pays B, 1935,54:680.
    [111] V.E. Gonsalves, A critical investigation on the viscose filtration process[J]. Recl. Trav. Chim. Pays B, 1950,69: 873.
    [112] H.P. Grace, Structure and performance of filter media[J]. AIChE J, 1956, 2: 307.
    [113] M. Shirato, T. Aragaki, E. Iritani, Blocking filtration laws for filtration of power law non-newtonian fluids[J]. Chem. Eng. J. Jpn., 1979,12: 162.
    [114] J. Hermia, Constant pressure blocking filtration law: application to power law non-newtonian fluids[J]. Trans. Inst. Chem. Eng., 1982, 60: 183.
    [115] Tanny G B. Dynamic membranes in Ultrafiltration and reverse osmosis[J]. Sep. Purif. Methods, 1978, 7(2): 183-220.
    [116] Visvanathan C and Ben A R. Studies on colloidal membrane fouling mechanisms in crossflow micriofiltration[J]. J. Mem. Sci., 1989, 45(1-2): 3-15.
    
    [117] Al-Malack M H and Anderson G K. Formation of dynamic membrane with crossflow microfiltration[J]. J. Mem. Sci., 1996, 112: 287-296
    
    [118] Glen Bolton, Dan LaCasse, Ralf Kuriyel. Combined models of membrane fouling: Development and application to microfiltration and Ultrafiltration of biological fluids[J]. Journal of Membrane Science, 2006, 277: 75-84.
    
    [119] M. Hlavacek, F. Bouchet. Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions[J]. Journal of Membrane Science, 1993, 82: 285-295.
    
    [120] Qi-Feng Liu, Seung-Hyun Kim. Evaluation of membrane fouling models based on bench-scale experiments: A comparison between constant flowrate blocking laws and artificial neural network(ANNs) model[J].Journal of Membrane Science,2008,310:393-401.
    [121]张建,邱宪锋,高宝玉.动态膜生物反应器-混凝工艺处理草浆中段废水[J].中国造纸,2007,26(6):8-11.
    [122]毛艳梅,奚旦立.混凝-动态膜深度处理印染废水[J].印染.2006,8:8-11.
    [123]水和废水监测分析方法/国家环境保护总局《水和废水监测分析方法》编委会编。4版-北京:中国环境科学出版社,2002.12.
    [124]Natalia Olive,Design of a Chemically Enhanced Primary Treatment Plant for the city of Alfenas,Mlinas,Gerais,Brazil:[B.S.].Massachusetts Institute of Technology,2002.
    [127]EI-Gohary F.A.,Abo-Elela S.A.et al.Physico-chemical-biological treatment of municipal wastewater.Wat.Sci.Tech.,1991,24(7):285-292
    [128]Gambrill M.P.,Mara D.D.,Silva S.A.Physicochemical treatment of tropical wastewater::Production of microbiologically safe effluents for unrestricted crop irrigation.Wat.Sci.Tech.,1992,26(7-8):1449-1458[
    129]Aiyuk S.,Amoako J.,Rashin L.et al.Removal of carbon and nutrients from domestic wastewater using a low investment,integrated treatment concept.Wat.Res.,38(2004):3031-3042
    [130]M.I.Aguilar,J.Saez,et al.Improvement of coagulation-flocculation process using anionic polyacrylamide as coagulant aid.Chemosphere,58,2005:47-56
    [131]D.R.F.Harleman,S.Murcott.The role of physical- chemical wastewater treatment in the mega-cities of the developing world.Wat.Sci.Tech.,1999,40(4-5):75-80.
    [132]Boisvert J P,To T C,Berrak A,et al.Phosphate adsorption in flocculation processes of aluminium sulphate and poly-aluminium-silicate-sulphate[J].Water Research,1997,31(8):1939-1946.
    [133]Galarneau E,Gehr R.Phosphorus removal from wastewaters:experimental and theoretical support for alternative mechanisms[J].Water Research,1997,31(2):328-338.
    [134]徐晓军等.化学絮凝剂作用原理[M].北京:科学出版社,2005.
    [135]M.I.Aguilar,J.Saez,M.Llorens,A.Soler,J.F.Ortuno.Nutrient removal and sludge production in the coagulation-flocculation process.Wat.Res.,vol.36,pp.2910-2919,2002.
    [136]Robert Ghan,Vicki Chenb,Martin P.Bucknall.Ultrafiltration of protein mixtures:measurement of apparent critical flux,rejection performance,and identification of protein deposition.Desalination 146(2002) 83-90.
    [137]Ingmar H.Huisman,Eert Vellenga,Gun TraEgaErdh,Christian TraEga(?)rdh.The influence of the membrane zeta potential on the critical flux for crossflow microfiltration of particle suspensions.Journal of Membrane Science 156(1999)153-158.
    [138]Altmann J,Ripperger S.Particle Deposition and Layer Formation at the Crossflow Microfiltration[J].J.Membr.Sci.,1997,124:119-128.
    [139]J.A.Suarez,J.M.Veza,Dead-end microfiltration as advanced treatment for wastewater,Desalination 127(2000) 47-58.
    [140]M.Hlavacek and F.Bouchet.Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions.Journal of Membrane Science,82(1993) 285-295.
    [141]B.O.Cho,A.G.Fane.Fouling transients in nominally sub-critical flux operation of a membrane bioreactor.J.Membr.Sci.209(2002) 391-404.
    [142]S.Ognier,C.Wisniewski,A.Grasmick.Membrane bioreactor fouling in sub-critical filtration conditions:a local critical flux concept.J.Membr.Sci:229(2004) 171-177.
    [143]O.S.Amudaa,I.A.Amoob,Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment,J.Hazard.Mater.,141(2007) 778-783.
    [144]邵刚.膜法水处理技术[M].冶金工业出版社,2001.
    [145]D.J.De Renzo.Nitrogen control and phosphorus removal in sewage treatment,Noyes Data Corporation,New Jersey,1978,pp.442-446[Chapter 3].
    [146]M.D'Elia,A,Isolati.Observed synergistic effects of aluminium and iron salts in nutrients removal. Proceedings of the Fifth Symposium on Chemistry of Water and Wastewater Treatment II, Gothenburg, 1992, pp. 389-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700