用户名: 密码: 验证码:
东海Cu、Pb、Zn、Cd重金属环境生态效应评价及环境容量估算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对东海重金属污染状况总体上把握不清等问题,汇总并分析了20世纪80年代初以来东海重金属排海通量及海水中浓度时空变化规律;建立了以浮游植物为实验生物的重金属非检测毒性浓度的现场测定方法,进而以浮游植物生长抑制率为指标参数完善了重金属环境生态效应评价方法,并对东海水生生态系统重金属环境生态效应进行了评价;应用箱式模型方法,结合海域平均浓度空间网格离散化计算方法,首次估算了东海重金属极小海洋环境容量。主要结果如下:
     1、20世纪80年代初以来东海Cu、Pb、Zn、Cd重金属污染物主要来源于以河流为主的陆源排放,排海总量整体上都呈现先增加、后保持、再降低的不对称倒“U”形变化趋势。
     (1)对于东海Cu、Pb、Zn、Cd等重金属主要来源,河流排放占东海重金属污染物排海总量的比例处于绝对优势,平均高达88.0%左右,而排污口次之,平均可达7.5%左右,大气沉降最小,平均只有4.5%左右。东海重金属污染物主要来源于以河流为主的陆源排放。对于Cu、Zn和Cd的排放通量,长江流域最高、钱塘江流域次之,闽江流域较小;对于Pb的排放通量,长江流域最高,闽江流域次之,钱塘江流域较小。
     (2)20世纪80年代初期东海Cu、Pb、Zn、Cd排海总量较低,分别仅有1.68×103、1.69×103、4.26×103、0.073×103 t/a左右,80年代中后期开始逐渐增加,90年代都达到最大值,分别为13.58×103、5.34×103、295.73×103、0.41×103 t/a左右,进入21世纪以后开始降低,目前分别减少到的3.47×103、1.84×103、5.66×103、0.081×103 t/a左右,仍高于20世纪80年代初期的水平。2、20世纪80年代初以来东海海水中Cu、Pb、Zn、Cd重金属浓度平面分布整体上没有呈现出明显的由沿岸向外海递减的分布特征;域均浓度季节变化不明显;年均浓度基本上都呈现不对称倒“U”形变化趋势。
     (1)20世纪80年代初以来东海海水中Cu、Pb、Zn、Cd浓度差别不大,整体上没有呈现出明显的由沿岸向外海递减的分布特征。高值区主要出现在长江口、杭州湾沿岸、舟山渔场水域。
     (2)东海海水中Cu、Pb、Zn、Cd域均浓度各季节差别不大,季节变化不明显。
     (3)20世纪80年代初到80年代中期,东海海水Cu、Pb、Zn、Cd年均浓度都低于国家一类海水水质标准, 20世纪80年代末至90年代末,年均浓度较高,若干年份Cu和Pb年均浓度超过国家二类海水水质标准,Zn、Cd年均浓度超过国家一类海水水质标准,21世纪初年均浓度又逐渐降低,目前均低于国家一类海水水质标准。
     3、20世纪80年代初期至80年代中期,东海海水中重金属年均浓度对水生生态系统不存在抑制作用,20世纪80年代中后期至90年代末期存在明显抑制作用,21世纪初期基本不存在抑制作用。
     (1)东海海水中Cu、Pb、Zn、Cd重金属对东海典型浮游植物的非检测毒性浓度分别为4.1、45.2、131.7、138.9μg/L;对东海水生生态系统的非检测毒性浓度分别为4、0.8、20、0.2μg/L。
     (2)20世纪80年代初期至80年代中期,重金属Cu年均浓度一般低于东海典型浮游植物非检测毒性浓度,对典型浮游植物一般不存在抑制作用,而20世纪80年代中后期至20世纪90年代末抑制作用时有发生,最高年均浓度下估计抑制率可达80%以上,局部水域最高浓度条件下可达90%以上;21世纪初期不存在抑制作用,但局部水域最高浓度抑制率也可达30%。重金属Pb、Zn、Cd的非检测毒性浓度远远高于20世纪80年代初期以来相应的历史最高年均浓度甚至局部水域最高浓度,对东海典型浮游植物种群生长一般不存在抑制作用。
     (3)对于东海水生生态系统,20世纪80年代初期至80年代中期,重金属Cu、Pb、Zn、Cd年均浓度及局部水域最高浓度低于其非检测毒性浓度,一般不存在抑制作用;而20世纪80年代中后期至90年代末Cu、Pb、Zn、Cd年均浓度高于其相应的东海水生生态系统非检测毒性浓度的情况时有发生,存在明显的抑制作用,最高年均浓度下估计抑制率分别可达85%、10%、30%、20%以上,局部水域最高浓度条件下分别可达95%、30%、60%、50%以上;21世纪初期,Cu、Pb、Zn、Cd年均浓度一般低于其非检测毒性浓度,一般不存在抑制作用,Pb、Zn、Cd局部水域最高浓度下也不存在抑制作用,但Cu局部水域最高浓度抑制率可达30%以上。
     4、东海Cu、Pb、Zn、Cd重金属污染物极小海洋环境容量分别约为1.70×104、0.47×104、11.31×104、0.071×104 t/a。在当前排海总量条件下,东海Cu、Pb、Zn、Cd重金属极小剩余环境容量分别约为-0.004×104、0.02×104、4.5×104、0.003×104t/a,表明东海最高浓度水团中Pb、Zn、Cd年均浓度仍然满足东海水生生态系统非检测毒性浓度的要求,但大约需要削减相当于当前排海总量8%左右的Cu,才能分别满足该要求。
In this paper, aiming at the blurry grasp about contaminated status of heavy metals as a whole in the East China Sea, the heavy metals fluxes into sea and their concentrations since1980 are collected, their temporal and spatial changing trend are analyzed, the in situ mensuration for heavy metal NDEC with phytoplankton as experimenting object is established, and applied to perfect assessment method for environmentally ecological effect with phytoplankton growth inhibition rate as target parameter. Then environmentally ecological effect of heavy metal in the East China Sea is assessed. Based on box model and combination with calculating method of spatial gridding average concentration, minimum environmental capacity in the East China Sea is estimated. Main achievements are described as follows:
     1. Since the begining of 1980s, contamination Cu, Pb, Zn and Cd into East China Sea largely come from land source especially discharge by river, the changing trend of total fluxes basically took on the pattern of asymmetric inverse‘U’, which increased firstly, then kept up and decreased finally.
     (1) For the main source of Cu, Pb, Zn and Cd into East China Sea, the flux discharged by rivers is overwhelmingly dominant, being up to 88.0% on average; the sewage takes second place, being 7.5% approximately; sedimentation from atmosphere is smallest, being 5.5% on average. The heavy metals into East China Sea mostly come from the land-based discharge, especially from rivers. The flux of Cu, Zn and Cd from Changjiang drainage area are the highest, that from Qiantangjiang the second and that from Minjiang the lowest. The flux of Pb from Changjiang drainage area are the highest, that from Minjiang the second and that from Qiantangjiang the lowest.
     (2) The total flux of Cu, Pb, Zn and Cd into East China Sea were about 1.68×103, 1.69×103, 4.26×103, 0.073×103 t/a respectively at the end of 1970s, however, the values began to increase from the middle end of 1980s; in the 1990s, they increased to the max of 13.58×103, 5.34×103, 295.73×103, 0.41×103 t/a respectively, and presently decreased to 3.47×103, 1.84×103, 5.66×103, 0.081×103 t/a respectively, which still higher than those at the beginning of 1980s.
     2. Since 1980, the horizontal concentration distribution of Cu, Pb, Zn and Cd in the East China Sea don’t basically take on the obvious pattern of decrease from inshore to offshore area, the seasonal changing of spatial average concentrations of them in this sea area isn’t large basically, the chronical changing trend of annual average concentrations of them in this sea area basically take on the pattern of asymmetric inverse‘U’.
     (1) Since 1980, the concentration changes of Cu, Pb, Zn and Cd are not big in the East China Sea, and their horizontal concentration distributions do not basically take on the clear pattern of decrease from inshore to offshore area. The relatively high concentrations often locate in the Changjiang River estuary, inshore part of Hangzhou Bay and Zhoushan fishery.
     (2) The difference of spatial average concentration of Cu, Pb, Zn and Cd in the East China Sea is not big seasonally, the seasonal changing is not clear.
     (3) From the beginning to the middle of 1980s, the annual average concentrations of Cu, Pb, Zn and Cd in the East China Sea are lower than the grade-one sea water quality standard of China. From the end of 1980s to the end of 1990s, the annual average concentrations of them are the highest, with the Cu and Pb levels higher than the grade-two sea water quality standard of China and Zn and Cd concentrations higher than the grade-one sea water quality standard of China. In the beginning of 21st century, , the annual average concentrations of Cu, Pb, Zn and Cd decrease gradually, and are lower than the grade-one sea water quality standard of China at present.
     3. From the begining to the middle of 1980s, the annual concentration of heavy metal in the East China Sea do not inhibit the water ecosystem, but inhibition exist obviously from the middle end of 1980s to the end of1990s. At the beginning of 21st century, inhibition don’t exist basically.
     (1) Heavy metal NDECs to typical phytoplankton in the East China Sea are 4.1, 45.2, 131.7, 138.9μg/L respectively, and those to water ecosystem are 4, 0.8, 20, 0.2μg/L respectively.
     (2) From the begining to the middle of 1980s, annual average concentrations of Cu is usually lower than its NDEC to typical phytoplankton, the inhibition don’t exist. However, in 1990s, inhibition happenes every now and then, the biomass inhabitation rates is estimated to be up to 80% with maximum annual average concentrations and up to 90% with maximum concentrations in partial sea area. At the beginning of 21st century, inhibition don’t exist basically with annual average concentrations but up to 30% with maximum concentrations in partial sea area. NDECs of Cu, Pb, Zn and Cd to typical phytoplankton are higher than maximum annual average concentrations and maximum concentrations in partial sea area since 1980, inhibition don’t exist basically.
     (3) From the begining to the middle of 1980s, annual average concentrations of Cu, Pb, Zn and Cd are usually lower than their NDECs to seawater ecosystem, the biomass inhibition don’t exist, it is the same with the maximum concentrations in partial sea area. From the middle end of 1980s to the end of 1990s, it happenes every now and then that annual average concentrations of Cu, Pb, Zn and Cd are higher than their NDECs to seawater ecosystem, the biomass inhabitation exist obviously, and the biomass inhabitation rates are estimated to be 85%, 10%, 30%, 20% respectively with maximum annual average concentrations and up to 95%, 30%, 60%, 50% respectively with maximum concentrations in partial sea area. At the beginning of 21st century, annual average concentrations of Cu, Pb, Zn and Cd are usually lower than their NDECs to seawater ecosystem, inhibition don’t exist basically. With maximum concentrations in partial sea area, the biomass inhabitation rate of Pb, Zn and Cd are 0, but that of Cu is up to 30%.
     4. Minimum oceanic environmental capacities of Cu, Pb, Zn and Cd in the East China Sea are computed to be approximately 1.70×104, 0.47×104, 11.31×104, 0.071×104 t/a, and minimum surplus environmental capacities of them are about -0.004×104, 0.02×104, 4.5×104, 0.003×104 t/a with present gross discharge fluxes, indicating that maximum concentrations of Pb, Zn and Cd in the East China Sea can still comply with their no detected toxic concentrations to seawater ecological system, but 8% of present gross discharge fluxes of Cu must be reduced for satisfying this criterion.
引文
1. Andrew, T., Geoffrey, E.M., Sophie, M.L.R. Significance of oxides and particulate organic matter in controlling trace metal partitioning in a contaminated estuary. Marine Chemistry, 2004, 88, 179– 192.
    2. Angeles C, Concepcion H, Enrique T, et al. Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aquatic Toxicology, 1995, 31(2): 165-174.
    3. Arnd W., Jorg R., Thomas M., Hanst .T.R. Statistical Results and Implications of the Enchytraeid Reproduction Ringtest. Environ. Sci. Technol., 2002, 36, 2116-2121
    4. Baer M.K.N. Suitability of High-Hardness COMBO Medium for Ecotoxicity Testing Using Algae, Daphnids, and Fish. Bull. Environ. Contam. Toxicol., 1999, 63:289-296
    5. Barnthouse, L.W., Suter, G.W. Estimating responses of fish populations to toxic contaminants. Environmental toxicology and chemistry, 1987, 6:811-824.
    6. Bonifacio R.S. Inhibitory Effects of Mercury and Cadmium on Seed Germination of Enhalus acoroides (L.f.) Royle. Bull. Environ. Contam. Toxicol., 1998, 60:45-51
    7. Carlos B., Donald J.B. and Amadeu M.V.M.S. Determining Genetic Variability in the Distribution of Sensitivities to Toxic Stress among and within Field Populations of Daphnia magna. Environ Sci Technol., 2002, 36 (14):3045-3049.
    8. Cole S., Codling I.D., Parr W. and Zabel T. Guidelines for managing water quality impacts within UK European marine sites. Prepared for the UK Marine SAC Project. 1999, http://www.ukmarinesac.org.uk/publications.htm
    9. Cravo A, Bebianno M J. Bioaccumulation of metals in the soft tissue of Patella aspera: Application of metal/shell weight indices. Estuarine, Coastal and Shelf Science, 2005, 65: 571-586.
    10. Dai, M. H. & Martin, J.-M. First data on trace metal level and behaviour in two major Arctic river-estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia. Earth and Planetary Science Letters, 1995,131, 127-141
    11. Deng C Q. Statistical approaches to detect and estimate hormesis. Cincinnati, USA: University of Cincinnati, 2001.
    12. Douglas M. B., Donald G.W.非线性回归分析及其应用(韦博成,万方焕,朱宏图,译者).北京:中国统计出版社,1997.
    13. Edding M., Tala F. Copper Transfer and Influence on a Marine Food Chain. Bull. Environ. Contam. Toxicol, 1996, 57:617-624
    14. Eric P.M.G., Mark C., Claire J., Paul W. Estimation of demographic toxicity through the double bootstrap. Water Research, 2003, 37: 618–626.
    15. Erik R. C. and Nyholm N. Ecotoxicological assays with algae: Weubull dose-response curves. Environ. Sci. Technol. 1984, 18:713-718
    16. Erik S. R. and Ronny B. Accumulation and Toxicity of Cadmium in the Aquatic Oligochaete Tubifex tubifex: A Kinetic Modeling Approach. Environ. Sci. Technol., 2004, 38,537-543.
    17. European Communities. Technical Guidance Document on Risk Assessment. 2003,http://ecb.jrc.it/tgdoc/
    18. Fisher N S. On the reactivity of metals for marine phytoplankton. Limnol Oceanogor, 1986, 31:443-449.
    19. Fonselius S, Koroleff F. Copper and zinc content of the water in the Ligurian Sea. Bulletin del’institut oceanographique. Monaco, 1963, 61:1281.
    20. Fonselius S. Some trace metal analyses in the Mediterranean, the Red Sea and the Arabian Sea. Bulletin del’institut oceanographique. Monaco, 1970, 69:1407.
    21. Fukai R, Huynh-Ngoc L. Copper, zinc and cadmium in coastal water of the N. W. Mediterranean. Marine Pollution Bulletin, 1976, 7:9-13.
    22. GESAMP (JointGroup of Experts on the Scientific Aspects of Marine Pollution). Environmental capacity: An approach to marine pollution prevention. UNEP REG. SEAS REP. STUD., 1986, no. 80, pp 62.
    23. Girling A.E., Pascoe D., Janssen C.R., Peither A., Wenzel A, Schafer H., Neumeier B., A Mitchell G.C., Taylor E. J., Maund S. J., Lay J. P., Juttner A I., Crossland N.O., Stephenson R.R., Persoone G. Development of methods for evaluating toxicity to freshwater ecosystems. Ecotoxicology and Environmental Safety, 2000, 45(2): 148-176.
    24. Grasshoff K K K, Ehrhardt M. Methods of Seawater Analysis, Third. Weinheim: WILEY-VCH Verlag GmbH, 1999. pp203-223.
    25. Guieu, C. & Martin, J. M. The Level and Fate of Metals in the Danube River Plume. Estuarine, Coastal and Shelf Science, 2002, 54, 501–512.
    26. Guieu, C., Martin, J. M., Tanke, S. P. C., Mousty, F., Trincherini, P., Bazot, M. and Dai, M. H. On Trace Metal Geochemistry in the Danube River and Western Black Sea. Estuarine, Coastal and Shelf Science, 1998, 47, 471–485.
    27. Hein M., Riemann B. Nutrient limitation of phytoplankton biomass or growth rate: an experimental approach using marine enclosures. Journal of Experimental Marine Biology and Ecology, 1995, 188 (2): 167-180.
    28. ISO (International Standard Organization). ISO Draft Standard 8692-Water Quality. Fresh water algal growth inhibition test with unicellular green algae. http://www.iso.com 2004-09-22 /2006-7-11
    29. Isnard P, Flammarion P, Roman G, et al. Statistical analysis of regulatory ecotoxicity tests. Chemosphere, 2001, 45 (5): 659-669.
    30. Jorgensen S E, Nielsen N S. Application of exergy as thermodynamic indicator in ecology. Energy, 2007, 32: 673–685.
    31. Karel A. C. De Schamphelaere and Colin R. Janssen. Bioavailability and Chronic Toxicity of Zinc to Juvenile Rainbow Trout (Oncorhynchus mykiss): Comparison with Other Fish Species and Development of a Biotic Ligand Model. Environ Sci Technol, 2004, 38:6201-6209.
    32. Karina Y H G, Tang Y Z, Azizb M A. Derivation and application of a new model for heavy metal biosorption by algae. Water Research, 2002, 36: 1313-1323.
    33. Klaus, K. The distribution of cadmium, copper, nickel manganese and aluminium insurface waters of the open Atlantic and European shelf area. Deep Sea Research, 1985, 32 (5), 531-555.
    34. Klimmek S, Stan H J. Comparative Analysis of the Biosorption of Cadmium, Lead, Nickel, and Zinc by Algae. Environ. Sci. Technol, 2001, 35: 4283-4288.
    35. Kooijman S.A.L.M. An alternative for NOEC exists, but the standard model has to be abandoned first. Oikos, 1996, 75: 310~316.
    36. Kooijman S.A.L.M., Bedaux J.J.M. Analysis of toxicity tests on Daphnia survival and reproduction. Water Research, 1996,30 (7):1711-1723
    37. Kooijman S.A.L.M., Hanstveit AO., Nyholm N. No-effect concentration of algal growth inhabitation tests. Water reseach, 1996,30 (7): 1625-1632
    38. Kuyucak, N., Volesky, B. The mechanism of cobalt biosorption. Biotech. Bioeng, 1989, 33: 823-831.
    39. Lee, S.V., Cundy, A.B. Heavy metal contamination and mixing processes in sediments from the Humber Estuary, Eastern England. Estuarine, Coastal and Shelf Science, 2001, 53, 619–636.
    40. Li Y.H., Teraoka, H., Yang Z.S., Chen J.S.. The elemental composition of suspended particles from the Yellow and Yangtze Rivers. Geochimica et Cosmochimica Acta, 1984, 48, 1561-1564.
    41. Marco, G., Francesco, S., Maria, L.A., Paola, R., Emanuele, M., Roberto, F. Temporal distribution of trace metals in Antarctic coastal waters. Marine Chemistry, 2001, 76,189–209.
    42. Massoud, A. H. S. & Ehsan, M. H. Heavy metals in the Rosetta estuary of the Nile and the adjoining Mediterranean waters: evidence of removal of dissolved heavy metals from waters as a result of possible binding to suspended matter. Hydrobiologia, 2002, 469, 131–147.
    43. Monica P R, Julio A A, Concepcion H L et al. Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresource Technology, 2002, 84: 265–270.
    44. Moore D.R.J., Caux P.Y. Estamating low toxic effects. Environmental Toxicology and Chemistry, 1997, 16(4):794-801.
    45. Moreno-Garrido I., Lubian L M, Soares A M V M. Influence of Cellular Density on Determination of EC50 in Microalgal Growth Inhibition Tests. Ecotoxicology and Environmental Safety, 2000, 47, 112-116.
    46. Nelly H. Current issues in statistics and models for ecotoxicological risk assessment. Acta Biotheoretica, 2004, 52(3):201-217.
    47. OECD (Organization for Economic Cooperation and Development). OECD Guidelines for the testing of chemicals. Number201. Algal growth inhibition test. http://www.oecd.org 2002-07/2006-07-11
    48. Pascal R, Marc L, Christos P, et al. Comparison of four chronic toxicity tests using algae, bacteria and invertebrates assessed with sixteen chemicals. Ecotoxicology and Environmental Safety, 2000, 47(2):186-194
    49. Pempkowiak J., Chi.oleau J.F., Staniszewski A. The Vertical and horizontal distribution of selected trace metals in the Baltic Sea off Poland. Estuarine, Coastal and Shelf Science, 2000, 51, 115–125.
    50. Peter C., Valery E.F. Does Ecotoxicology inform ecological risk Assessment? Environmental Science & Techonology, 2003, 4:146-151.
    51. Podgurskaya O V, Kavun V Y, Lukyanova O N. Heavy Metal Accumulation and Distribution in Organs of the Mussel Crenomytilus grayanus from Upwelling Areas of the Sea of Okhotsk and the Sea of Japan. Russian Journal of Marine Biology, 2004, 30 (3): 188–195.
    52. Qu C.H., Yan R.E. Chemical composition and factors controlling suspended matter in three major Chinese rivers. The Science of Total Environment, 1990, 97: 335-346.
    53. Robert R, Davoud K T, Hans A. Measurement and distribution of various heavy metals in the Danube River and Danube Canal aquatic communities in the vicinity of Vienna, Austria. The Science of the Total Environment, 1975, 3(4): 341-348.
    54. Roberto F, Franca B, Arduino D, Giuseppe S, Ignazio D. The determination of heavy metals in the Ligurian Sea. II. The geographical and vertical distribution of Cd, Cu and Ni. Deep Sea Research, 1980, 27:1079-1082.
    55. Russo R.C. Development of marine water quality criteria for the USA. Marine Pollution Bulletin, 2002, 45:84–91.
    56. Salas F, Marcos C, Pérez-Ruzafa A, Marques J C. Application of the exergy index as ecological indicator of organically enrichment areas in the Mar Menor lagoon (south-eastern Spain). Energy, 2005, 30: 2505–2522.
    57. Sheng P X, Ting Y P, Chen J P, et al. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science, 2004, 275: 131-141.
    58. Shiller A. M., Boyle E. A. Trace elements in the Mississippi river delta outflow region: behaviour at high discharge. Geochimica et Cosmochimica Acta, 1991, 55, 3241–3251.
    59. Soumya N and Chris M W. Biotic Ligand Model, a Flexible Tool for Developing Site-Specific Water Quality Guidelines for Metals. Environ. Sci. Technol., 2004, 38 (23): 6177– 6192.
    60. Stumm W., Morgan J J. Aquatic chemistry: chemical equilibria and rates in natural waters. New York, Wiley, 1996.
    61. Tam N F Y, Wong Y S. Accumulation and distribution of heavy metals in a simulated mangrove system treated with sewage. Hydrobiologia, 1997, 352: 67–75.
    62. Teresa S D V M, Fernanda C L M. Antagonistic interactions of Pb and Cd on Cu uptake, growth inhibition and chelator release in the marine algae Emiliania huxleyi. Marine Chemistry, 2001, 75: 123–139.
    63. Timothy E F. Response of marine microbial communities to anthropogenic stress. Journal of Aquatic Ecosystem Stress and Recovery, 2000, 7: 75–89.
    64. Tjalling J., Trudie C., Cornells A.M.V.G., Kooijman S.A.L.M. Simultaneous Modeling of Multiple End Points in Life-Cycle Toxicity Tests. Environ. Sci. Technol. 2004, 38, 2894-2900.
    65. USEPA(United States Environmental Protection Agency). 2001 Update of Ambient Water Quality Criteria for Cadmium. 2001, http://www.epa.gov
    66. USEPA. Ambient water quality criteria for cadmium. 1980a, http://www.epa.gov
    67. USEPA. Ambient water quality criteria for cadmium. 1984a, http://www.epa.gov
    68. USEPA. Ambient water quality criteria for copper. 1984b, http://www.epa.gov
    69. USEPA. Ambient water quality criteria for lead. 1980b, http://www.epa.gov
    70. USEPA. Environmental effects testing guidelines (Part 797). 1985, http://www.epa.gov/trs/1985-09-27/2006-11-09
    71. USEPA. Guidelines for Ecological Risk Assessment (EPA 630-R-95-002F). 1998, http://www.oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=36512
    72. USEPA. Quality criteria for water (red book). 1976, http://www.epa.gov
    73. USEPA. Quality criteria for water (gold book). 1986, http://www.epa.gov
    74. Wang C Y, Wang X L. Spatial Distribution of Dissolved Pb, Hg, Cd, Cu and As in the BohaiSea. Journal of Environmental Sciences, 2007, 19 (9): 1061-1066.
    75. Wang J Y, Zhang M P, Xu J G, Wang Y. Reciprocal effect of Cu, Cd, Zn on a kind of marine alga. Wat. Res., 1995, 29 (1): 209-214.
    76. Wang Z F. Biogeochemical behaviors of dissolved trace matals in the Changjiang estuary and its ajacent sea area. In: (Eds.: Yu Guohui, Martin J.M. and Zhou Giayi.) Biogeochemical Study of the Changjiang Estuary. Beijing, China Ocean Press, 1990, 280-292.
    77. Williams D.A. A test for differences between treatments means when several dose levels are compared with a zero dose control. Biometrics, March 1971, 27,103-117.
    78. Yu G.H., Martin J.M. and Zhou G..Y. Biogeochemical Study of the Changjiang Estuary, China Ocean Press, Beijing, 1990.
    79. Zhang J, Liu C L. Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 2002, 54 (6): 1051-1070.
    80. ZHANG J. Geochemistry of arsenic in the Huanghe and its delta region– an overview of available data. Aquat Geochem, 1996, 1:241–275
    81. Zhang J. Geochemistry of trace metals from Chinese river/estuaries: an overview. Estuarine, Coastal Shelf Sci., 1995, 41: 631-658
    82. Zhang J. Heavy metal compositions of suspended sediments in the Changjiang (Yangtze River) estuary: Significance of riverine transport to the ocean, Continent. Shelf Res., 1999, 19: 1521-1543.
    83. Zhang J. Biogeochemistry of Chinese estuarine and coastal waters: Nutrients, trace metals and biomarkers. Regional Environ. Change, 2002, Web Site: Springer-Verlag..
    84. Zhang J., Huang W.W. Concentrations of trace metals in the Qiantangjiang and its estuary, southern China. AMBIO, 1988, 17:36–39.
    85. Zhang J. and Huang W.W. Dissolved trace metals in the Huanghe: the most turbid large river in the world, Water Res., 1993, 27: 1-8
    86. Zhang, J., Huang, W.W., Wang, Q. Concentration and partitioning of particulate trace metals in the Changjiang (Yangtze River). Water, Air and Soil Pollution, 1990, 52, 57-70.
    87. 126专项综合报告编写组.我国专属经济区和大陆架勘测专项综合报告.北京:海洋出版社, 2002.
    88.百度百科,2007,http://baike.baidu.com/view/4185.htm.
    89.毕春娟,陈振楼,许世远,王军,刘杰,李丽娜.长江口滨岸潮滩重金属源汇通量估算.地球化学,2006,35(2):187-193.
    90.蔡少炼.污染物对海洋生态环境的影响.中国水产,2005,2:22-24.
    91.车越,何青.长江口南支重金属分布研究.上海环境科学,2002,21(4):220-223.
    92.陈邦林,韩庆平,夏福星,陈吉余.长江河口的混浊带化学述要.华东师范大学学报,1995,(长江口深水航道治理与港口建设,专辑).
    93.陈必链,黄键,吴雪萍,巧琴,吴松刚.重金属对绿色巴夫藻生长代谢的影响.药物生物技术. 1998,5(4):224-228.
    94.陈春华.海口湾海水表观重金属络合容量研究.海洋学报, 1997a, 19(5): 68-75
    95.陈春华.海口湾海域重金属自净能力研究.海洋学报,1997b,19(6):77-83.
    96.陈静生,洪松,王立新,王飞越.中国东部河流颗粒物的地球化学性质.地理学报,2000, 55(4):417-427.
    97.陈静生,王飞越,程成旗,陈江麟,宋吉杰.中国东部主要河流颗粒物的元素组成.北京大学学报(自然科学版),1996,32(2):206-214.
    98.陈静生,周家义.中国水环境重金属研究.北京:中国环境科学出版社,1992.
    99.陈力群.莱州湾海洋环境评价与污染总量控制方法研究:[硕士学位论文].青岛:中国海洋大学,2004.
    100.陈立奇,高鹏飞,张远辉.厦门海域大气气溶胶特征.海洋学报,1989,15(2):24-32.
    101.陈立奇,王志红,杨绪林,余群.台湾海峡西部海域大气中金属的特征I.金属的浓度和粒度分布.海洋学报,1998,20(6):31-38.
    102.陈立奇,王志红,杨绪林,余群.台湾海峡西部海域大气中金属的特征Ⅱ.大气颗粒金属的来源和入海通量.海洋学报,1999,21(1):23-31..
    103.陈立奇,余群,杨绪林.环球海洋大气气溶胶化学研究III:金属形态和入海通量.大气科学.1994,18(2):215~223.
    104.陈敏,陈邦邻,夏福兴,沈焕庭.长江口最大浑浊带悬移质、底质微量金属形态分布.华东师范大学学报(自然科学版),1996,1:38-44.
    105.陈时俊等.我国渤海和十个海湾水质预测及物理自净能力研究(专刊).山东海洋学院学报, 1988, 18(2).
    106.陈水土,杨慧辉,高素华.九龙江口和厦门西港海域若干重金属元素的生物地球化学特性.台湾海峡,1993,12(4):376-384
    107.陈先芬.胶州湾环境综合调查与研究,海洋通报,1992,11 (3): 23-24.
    108.陈泽夏.长江口溶解铜、镍和镉的行为.海洋学报,1986,8(1):48-52.
    109.陈振楼,许世远,柳林,余佳,俞立中.上海滨岸潮滩沉积物重金属元素的空间分布与累积.地理学报,2000,55 (6): 641-650.
    110.程惠民,金洪钧,杨璇.推导保护水生环境质量标准的方法研究.上海环境科,1998,17(7):10-13.
    111.程天文,赵楚年.我国沿岸入海河川径流量与输沙量的估算.地理学报,1984,39(4):418-427.
    112.程天文,赵楚年.我国主要河流入海径流量、输沙量及对沿岸的影响.海洋学报,1985,7(4):460-471.
    113.戴维明.长江口悬浮固体中重金属元素的形态研究.上海环境科学, 1994,13 (11) : 7-9.
    114.戴维明,顾友直.上海西、南区排污口沉积物中重金属元素累积行为分析.上海环境科学, 1990, 9 (7): 38-40.
    115.东海环境监测中心.东海环境监测中心科技成果一览表. http://www.dhjczx.org/study/kycg.htm2006-11-9.
    116.樊安德,杨晓兰,应时理.长江河口及邻近海区的重金属元素东海海洋,1995,13(3-4):31-71
    117.方圣琼,胡雪峰,秦荣,袁俊峰,贺宝根,许世远.长江口污染物累积运移规律的初步研究.环境科学研究,2004,17(4):14-17.
    118.冯士笮,李凤岐,李少菁.海洋科学导论.高等教育出版社,北京,1999.
    119.福建省情资料库—地理志, 2007 ,http://www.fjsq.gov.cn/ShowText.asp?Tobook=12&index=59&Query=1&.
    120.傅瑞标,何青,孙振斌.长江口南槽重金属的分布特征.中国环境科学,2000,20(4):357-360.
    121.高吉喜,沈英娃,曹洪法.中国生态毒理学研究现状.环境科学研究,1997,10(3),54-58.
    122.葛明,王修林,阎菊,石晓勇等.胶州湾营养盐环境容量计算.海洋科学,2003,27 (3): 36-42
    123.谷国传,胡方西,胡辉,张正惕,周菊珍,孙振斌.南汇咀~嵊泗海域水体重金属元素分布及其污染评价.华东师范大学学报(自然科学版), 1999, 1:78-85.
    124.谷国传,胡方西,胡辉,李兴华,韩明宝.长江口外高盐水入侵分析.东海海洋,1994,12(3):1-11.
    125.顾宏堪.渤黄东海海洋化学.北京:科学出版社1991.
    126.郭劳动,洪华生,陈敬虔,洪丽玉.厦门西港和九龙江口悬浮颗粒中主要元素含量及其控制因素的研究.海洋科学,1991,2:37-41.
    127.郭劳动,洪华生,洪丽玉,陈敬虔.九龙江口悬浮颗粒的主要元素化学.夏门大学学报自然科学版,1989,28(4):436-438.
    128.郭良波.渤海环境动力学数值模拟及环境容量研究:[硕士学位论文].青岛:中国海洋大学,2005.
    129.国家海洋局. GB12762-1991.海洋调查规范.北京:海洋出版社,1991.
    130.国家海洋局. GB17378-1998.国家海洋监测规范.北京:海洋出版社,1998.
    131.国家环保总局. GB 8978-1996.中华人民共和国污水综合排放标准. 1996 , http://www.sepa.gov.cn/
    132.国家环保总局,国家海洋局. GB 3097-1997.中华人民共和国国家海水水质标准. 1997,http://www.sepa.gov.cn/
    133.国家环保总局,国家质量监督检验检疫总局. GB 3838-2002.中华人民共和国地表水环境质量标准. 2002, http://www.sepa.gov.cn/
    134.国家海洋局.海洋大事记(1963 ~ 2004). http://www.soa.gov.cn/memo/index.html
    135.国家海洋局.中国海洋环境年报(1990~1998). 1991~1999. http://www.soa.gov.cn/
    136.国家海洋局.中国保护海洋环境免受陆源污染国家报告.《保护海洋环境免受陆源污染全球行动计划》第二次政府间审查会-中国保护海洋环境免受陆源污染国际论坛, 2006, NEP/GPA/2006
    137.国家海洋局.中国海洋环境质量公报(1999~2004). 2000-2005,http://www.soa.gov.cn/
    138.国家海洋局2000年海洋污染预测编写组.中国2000年海洋污染预测及防治对策的研究.北京,国家海洋局,1986.
    139.国家环保总局.中国环境状况公报(1989~2004) .1990~2005,http://www.sepa.gov.cn/
    140.国家环保总局.中国近岸海域环境功能区划.北京:中国环境科学出版社出版,2002.
    141.国家环境保护总局化学品登记中心.化学品测试方法.北京:中国环境科学出版社,2004.
    142.国家科委海综办(中华人民共和国科学技术委员会海洋组海洋综合调查办公室).全国海洋综合调查报告. 1964.
    143.海洋图集编委会.渤海,黄海,东海海洋图集.北京:海洋出版社,1990.
    144.胡方西,胡辉,谷国传,苏诚,顾学俊.长江河口盐度锋.海洋与湖沼(增刊),1995,26(5):23-31.
    145.胡辉,胡方西.长江口的水系和锋面.中国水产科学,1995,2(1):81-90.
    146.胡金朝.重金属污染对不同生境水生植物的毒害机理研究:[博士学位论文].南京:南京师范大学,2006.
    147.胡明辉,杨逸萍,许清辉.闽江河口地球化学. in中国主要河口的生物地球化学研究—化学物质的迁移与环境.北京:海洋出版社,1996. p68-78.
    148.黄清辉,沈焕庭,茅志昌.长江河口溶解态重金属的分布和行为.上海环境科学,2001, 20(8):372-374.
    149.黄薇文,张经.长江入东海的化学物质输送特点.海洋学报,1994,16: 54-62
    150.霍文冕,暨卫东,许昆灿.南海表层水中的溶解态Cu, Pb, Zn, Cd.海洋学报, 2002, 24 (4): 44-50.
    151.贾秀英.镉对泥鳅幼鱼的急性和亚急性毒性研究.环境污染与防治,2001,23(5):227-228.
    152.姜彬慧,林碧琴.重金属对藻类的毒性作用研究进展.辽宁大学学报,2000,27(3): 281~287.
    153.金岚.环境生态学.北京:高等教育出版社,2001
    154.科技部基础研究管理中心.国家重点基础研究发展计划网--- 973计划. 2006, http://www.973.gov.cn/
    155.况琪军,夏宜琤,惠阳.重金属对藻类的致毒效应.水生生物学报,1996,20(3):277-283.
    156.蓝先洪.中国近岸海域的沉积环境地球化学.海洋地质动态,2004,20 (2):1-4.
    157.李锦霞,黄志成.混合重金属(Cd, Cu, Pb, Zn, Hg)在厦门海洋围隔生态系中的迁移和归宿.海洋学报, 1989,11 (2): 207-217.
    158.李锦霞,张功勋,杜荣归,陈泽夏,郑久华.痕量重金属在厦门港和九龙江口表层水中的分布特征.中国环境科学,1988,8:30-34.
    159.李军,陈邦林.长江河口部分重金属的分布研究.上海环境科学,2003,22(12):948-950.
    160.李克强,王修林,阎菊,石晓勇等.胶州湾石油烃污染物环境容量计算.海洋环境科学, 2003,22 (4): 13-17
    161.李克强.胶州湾主要化学污染物海洋环境容量研究:[博士学位论文].中国海洋大学,青岛,2007.
    162.李坤,李琳,侯和胜,苏绣蓉,范钦信. Cu 2+、Cd 2+、Zn 2+对两种单胞藻的毒害作用.应用与环境生物学报. 2002, 8 (4): 395-398.
    163.李淑霞.《生物学中常用数学方法》.青岛:青岛海洋大学出版社,1991. pp279~282.
    164.李燕宾.长江口及邻近海域季节性赤潮生消过程控制机理研究——浮游植物竞争生长三维生态动力学模型的建立与应用:[博士学位论文].青岛:中国海洋大学,2008.
    165.李志辉,罗平,洪楠,吴伟健. SPSS for Windows统计分析教程.北京:电子工业出版社,2005.
    166.林峰,黄江淮,唐依池,许清辉.闽江口水体中镉、铅和铜的行为.海洋学报,1989a,11(4):450-457.
    167.林峰,许清辉,杨春瑾,陈维芬.闽江口悬浮物和表层沉积物中镉铅铜锌的分布.台湾海峡,1989b,8(3):195-200.
    168.林峰,许清辉,唐依池,黄江淮.闽江口段溶解态镉、铅和铜的收支平衡.台湾海峡,1990,9(3):251-255.
    169.林以安.长江口可溶态210Pb的来源、分布和逗留时间.海洋与湖沼,1996,27(2):145-150.
    170.刘昌岭,任宏波,陈洪涛,夏宁.黄海及东海海域大气降水中的重金属.海洋科学,2003,27(9):64-68.
    171.刘昌岭,张经,于志刚.黄海海域大气气溶胶特征及重金属的大气输入量研究.海洋环境科学,1998,17(4):1-6.
    172.刘昌岭,张经.颗粒态重金属通过河流与大气向海洋输送.海洋环境科学,1996,15(4):68-76.
    173.刘成,王兆印,何耘,韦鹤平.上海污水排放口水域水质和底质分析.中国水利水电科学研究院学报,2003a,1(4):275-280.
    174.刘成,王兆印,何耘,吴永胜.环渤海湾诸河口水质现状的分析.环境污染与防治,2003b,25(4):222-225.
    175.刘杰,陈振楼,钱嫦萍,许世远.长江三角洲的废(污)水排放及防治对策.中国给水排水,2003,19(6):36-38.
    176.刘素美,张经,陈洪涛. 2000.黄海和东海生源要素的化学海洋学.海洋环境科学,19(1):68-73.
    177.刘毅,周明煜.中国东部海域大气气溶胶入海通量的研究.海洋学报,1999a,21(5):38-45.
    178.刘毅,周明煜.中国近海大气气溶胶的时间和地理分布特征.海洋学报,1999b,21(1):32-40.
    179.刘哲.胶州湾水体交换与营养盐收支过程数值模型研究:[博士学位论文].青岛:中国海洋大学,2004.
    180.马德毅.第二次全国海洋污染基线调查报告.大连:国家海洋局海洋环境监测中心, 2004.
    181.毛小苓,刘阳生.国内外环境风险评价研究进展.应用基础与工程科学学报,2003,11(3):266-273.
    182.毛小苓,倪晋仁.生态风险评价研究述评.北京大学学报(自然科学版),2005,41(4):646-654.
    183.孟紫强.环境毒理学.北京,中国环境科学出版社,2000.
    184.潘玉球,王康缮,黄树生.长江冲淡水输运和扩散途径的分析.东海海洋,1997,15(2):25-34.
    185.庞重光,王凡,白学志,张明翰.夏、冬两季长江口及邻近海域悬浮物的分布特征及其沉积量.海洋科学,2003,27(12):31-35.
    186.蒲家彬,李宗品,傅云娜,李红,尚龙生.西部和南部太平洋表层海水中的重金属及有机沾污物.海洋通报,1995,14 (2):35-411.
    187.屈翠辉,郑建勋,杨绍晋,钱琴芳,杨亦男..黄河、长江、珠江下游控制站悬浮物的化学成分及制约因素的研究.科学通报,1984,29(17):1063-1066.
    188.全国海岸带办公室《环境质量调查报告》编写组.中国海岸带和海涂资源综合调查专业报告集—环境质量调查报告.北京,海洋出版社,1989.
    189.全为民,沈新强.长江口及邻近水域渔业环境质量的现状及变化趋势研究.海洋渔业,2004,26(2):93-98.
    190.阮正,王正方.长江口内外悬浮体中Cu、Co的形态变化.海洋科学,1992,5:25-29.
    191.三峡工程生态和环境监测信息管理中心, 2006. http://www.tgenviron.org/debouche/debouche.html
    192.尚玉昌.普通生态学.北京:北京大学出版社,2002,pp132-133.
    193.邵秘华,王正方.长江口海域悬浮颗粒物中铜、铅、镉的化学形态及分布.海洋与湖沼,1992,23(2):144-149.
    194.邵秘华,王正方.长江口水体中重金属形态交换过程的研究.环境科学,1995,16(6):69-72.
    195.沈焕庭,王晓春,杨清书.长江河口径流与盐度的谱分析.海洋学报,2000a,22(4):17-23.
    196.沈焕庭,张超,茅志昌.长江入河口区水沙通量变化规律.海洋与湖沼,2000b,31(3):288-294.
    197.沈焕庭.长江河口物质通量.北京:海洋出版社,2001.
    198.沈新强,袁麒.长江口附近水域环境质量现状与变动趋势.见:海峡两岸水资源及环境保护上海论坛论文集.西安,陕西人民出版社, 2002. pp268 - 272.
    199.苏金明,张莲花,刘波. Matlab工具箱应用.北京:电子工业出版社,2004.
    200.苏秀榕,李太武,Paul K.C. Cu2+、Zn2+、Cd2+对五种单细胞藻类生长的影响.水产科学,1999,18(1):3-5
    201.孙秉一,于圣瑞,郝恩良.长江口至济州岛海域调查研究综合报告(第4章):海洋化学.山东海洋学院学报,1986,16(1), 132-210.
    202.孙英,蔡体录,柴加龙,金如义.闽浙山溪性河口的径流特性及其对河口的冲淤影响.东海海洋,1983,2:29-35.
    203.唐永銮.中国海岸带和海涂资源综合调查专业报告集-环境质量调查报告.北京:海洋出版社(内部发行),1989.
    204.汪飞,吴德意,王灶生,孔海南,王明彦,杨新羽.以浮游生物为指示生物的苏州河生态安全评价.环境科学与技术2007,30(3):52-54.
    205.王百顺,刘阿成,陈忠阳. 1984—2000年长江口海域水质重金属浓度分布变化.海洋通报,2003,22(2):32-38.
    206.王长友,王修林,孙百晔,苏荣国.铜对中肋骨条藻生态毒性效应的现场实验.中国环境科学,2007,27(5):508-512.
    207.王寿兵,郭锐,屈云芳,经佐琴,蒋朝光,吴千红. Cu对中国林蛙蝌蚪的急性毒性.应用生态学报,1998,9 (3):309~312.
    208.王修林,邓宁宁,李克强,石晓勇等.渤海夏季石油烃污染现状及其环境容量估算.海洋环境科学,2004,23(4): 14-18
    209.王修林,李克强.渤海主要化学污染物海洋环境容量.北京:科学出版社,2006.
    210.王修林,李克强,石晓勇.胶州湾主要化学污染物海洋环境容量.北京:科学出版社,2006.
    211.王修林,张蕾,韩秀荣,等.营养盐对海洋浮游植物生长的影响—数学模型研究.海洋科学进展,2002,20(3):96-101.
    212.王益鸣,张凤英,许贞平,孙毅,唐静亮,刘世贤,任世军.椒江河口生态环境质量评价.浙江海洋学院学报(自然科学版),2005,24(3):221-226.
    213.王永辰,孙秉一.河口区元素的平衡(Ⅲ)——黄河口镉的行为研究.海洋与湖沼,1992,23(6):606-612.
    214.王勇,焦念志.胶州湾浮游植物对营养盐添加的响应关系.海洋科学,2002,26(4):8-13.
    215.王正方.长江口海域铜的地球化学初步讨论.地球化学,1990,1:90-96.
    216.吴善.福建九龙江口的水质状况及评价.福建水产,2004,4:40-43.
    217.夏福兴,陈敏,陈邦邻,沈焕庭.长江口最大浑浊带悬浮颗粒中有机重金属的异常.华东师范大学学报(自然科学版),1996,1:52-56.
    218.夏华永,殷忠斌,葛文标.钦州湾物理自净能力研究.广西科学,1996,3(2): 65-70.
    219.肖青,沈虹,鲍仙华.采用“典型日”法计算日均浓度的方法探讨.能源研究与信息, 2004, 20(4): 232-238.
    220.谢荣,唐学玺,李永棋.有机磷农药和重金属对海洋微藻的联合毒性研究.海洋环境科学,1999,18(2):16-20.
    221.修瑞琴.生态毒理学环境生物技术.中国药理学与毒理学杂志,1997,11(2):95-96
    222.许清辉,黄江淮,杨春瑾,黄敏芬,陈维芬,林义祥,林力斌.厦门港海域水体、底质、生物体中重金属污染物含量的调查研究.海洋环境科学,1986,5(1):69-76.
    223.许章程.四种重金属对海洋钙质角毛藻的毒性.台湾海峡,1999,18(3):303-308.
    224.薛雄志,杨喜爱.近岸海域污染的生态效应评价.海洋科学,2004,28 (10): 75-81.
    225.阎海,潘纲,霍润兰.铜、锌和锰抑制月形藻生长的毒性效应.环境科学学报. 2001a,21(3):328-332.
    226.阎海,王杏君,林毅雄,温官.铜、锌和锰抑制蛋白核小球藻生长的毒性效应.环境科学. 2001b,22(1):23-26.
    227.杨鸿山,钟霞芸,韩金娣,赵立清.长江口水质及沉积物中污染物含量与分布,中国水产科学,1999a,6(5):45-47.
    228.杨鸿山,钟霞芸,韩金娣,赵立清.长江口水质污染及其对渔业的影响,中国水产科学,1999b,6(5):78-82.
    229.杨绍晋,杨亦男,陈冰如,周明煜,吕乃平,于鸿健,蓝友昌.近中国海域大气微量元素输入量的研究.环境化学,1994,13 (5):382-387.
    230.杨世伦,朱骏,赵庆英.长江供沙量减少对水下三角洲发育影响的初步研究.海洋学报,2003,25(5):83-91.
    231.杨晓兰,林以安,张健.东海三类废弃物倾废区的环境基线调查研究.海洋环境科学,1989,8(3):25-31.
    232.杨晓兰.长江口悬浮颗粒物的表面特性与重金属沉降.环境污染与防治,1999,21(3):36-43.
    233.杨逸萍,胡明辉.九龙江口的地球化学研究.见:张经,编.中国主要河口的生物地球化学研究—化学物质的迁移与环境.北京:海洋出版社,1996. 54-67
    234.杨逸萍,刘伟,胡明辉.福建九龙江口悬浮物中痕量生物元素的分布.台湾海峡,1988,7(3):220-226.
    235.殷浩文.水环境生态风险评价的原则与应用.污染防治技术,1995a,8(2):113-115.
    236.殷浩文.水环境生态风险评价评价程序.上海环境科学,1995b,14(11):11-14.
    237.尹伊伟,林秋奇,邝雄建,等.酚类及重金属对大鳞副泥鳅胚胎和鱼苗阶段的毒性研究.环境科学研究,1997,10(3):36~40.
    238.于志刚,姚鹏,姚庆祯,米铁柱.中国海洋生物地球化学研究进展(1998- 2002).海洋科学进展,2002,20(4):127-135.
    239.战玉杰,王修林,杨茹君,张莹莹. Cd(Ⅱ)对8种海洋微藻生长的影响.环境科学,2006,27(4):720-726.
    240.战玉杰.渤海重金属污染状况及对典型浮游植物生长影响初步分析:[博士学位论文].青岛:中国海洋大学, 2005.
    241.张宝宁,赵其明,郝瑞霞.大气污染物长期平均浓度计算及等浓度曲线的绘制.河北科技大学学报, 1999, 20(1): 69-73.
    242.张法高,杨光复,沈志良.三峡工程对长江口水文、水化学和沉积环境的影响.见:中国科学院三峡工程生态与环境科研项目领导小组,编.长江三峡工程对生态与环境影响及其对策论文集.北京:科学出版社,1987. 369-402.
    243.张怀成,孙秉一,史致丽,王永辰.重金属、整合剂以及铁、锰离子对叉边金藻生长的影响及其混合效应.青岛海洋大学学报. 1990,20(4):59-67.
    244.张怀强,金建玲,刘波,等.构建限制性条件下微生物群体生长模型时的问题.应用与环境生物学报,2005,11 (5):595-599.
    245.张经,黄薇文.钱塘江水微表层中颗粒态重金属的分布特征.海洋湖沼通报,1988,2: 68-72
    246.张经,应时理.长江口中的颗粒态重金属.见:张经,编.中国主要河口的生物地球化学研究—化学物质的迁移与环境.北京:海洋出版社,1996. 146-159.
    247.张经.中国河口地球化学研究的若干进展.海洋与湖沼,1994,25(4):438-445.
    248.张蕾,王修林,韩秀荣,祝陈坚,石晓勇,蒋凤华,杨汝君.石油烃污染物对海洋浮游植物生长的影响—实验与模型.青岛海洋大学学报(自然科学版),2002,32 (5):804~810.
    249.张秋丰,张建乐,丁家坤.洋河口海域海洋环境质量现状评价.海洋环境科学,1997,16(4):38-42.
    250.张首临,刘明星,李国基,包万友,顾宏堪. 4种重金属离子对海洋三角褐指藻生长影响的研究.海洋与湖沼. 1995,26(6):582-585.
    251.张彤,金洪钧.美国对水生态基准的研究.上海环境科学,1996,15(3):7-9.
    252.张行南,耿庆斋,逄勇.水质模型与地理信息系统的集成研究.水利学报, 2004, 1: 90-94.
    253.张莹莹,王修林,杨汝君,战玉杰,石晓勇.铅离子对海洋浮游植物生长影响的研究.海洋科学,2005,29(6):28-34.
    254.章守宇,杨红,刘洪生.东海物质输送及其影响因素分析.上海水产大学学报,2000,9(2):152-156.
    255.中国海湾志编撰委员会.中国海湾志(第十四分册).北京:海洋出版社,1998.
    256.中国海洋志编纂委员会.中国海洋志.郑州:大象出版社,2003.
    257.中华人民共和国水利部.中国河流泥沙公报( 2001-2005 ) .2002-2006 , http://www.mwr.gov.cn/xygb/hlnsgb/index.aspx.
    258.周建民,党志,蔡美芳,司徒粤,刘丛强.大宝山矿区污染水体中重金属的形态分布及迁移转化.环境科学研究,2005,18(3):5-10.
    259.周名江,颜天.中国海洋生态毒理学的研究进展.环境科学研究,1997,10(3):1-6.
    260.周一梅,刘辉,董宝贤.七种重金属离子及其相互作用下对等鞭藻(Isochrysis galbana Parke)3011生长的影响.海洋湖沼通报,1990,2:66-71.
    261.周永欣,胡炜,成水平.稀有鲫、大鳞泥鳅—新的七天亚慢性毒性试验材料.环境科学研究,1997,10 (3):26-29.
    262.朱建荣,丁平兴,胡敦欣. 2000年8月长江口外海区冲淡水和羽状锋的观测.海洋与湖沼,2003,34(3):249-255.
    263.朱艺峰,林霞,徐同成.轮虫生态毒理试验的指标分析.水产科学,2006,25(3):146-149.
    264.朱卓洪,李飞永,陈金斯.珠江河口铜、铅、锌、铬和镉对单细胞藻类生长的影响.热带海洋,1992,11(2):31-37.
    265.庄德辉.重金属对方形网纹蚤的毒性研究.重庆环境科学,1996,18(1):47-50.
    266.邹恩民.重金属镉和铜对发头裸腹蚤的慢性毒性.中国环境科学,1995,15(2):157-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700