用户名: 密码: 验证码:
卫星MPLS网络关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多协议标记交换(Multi-Protocol Label Switching,MPLS)技术为结合IP业务需求和卫星承载网络技术特点实现优化设计提供了一套体系架构,成为下一代宽带卫星组网的重要候选技术。然而,卫星通信具有链路质量差、带宽和处理资源紧张等不同与地面网络的特点。这些特点对MPLS技术实施有何负面影响,如何在这种背景下设计一个优化的MPLS系统,成为必须解决的问题。
     本论文首先提出了一个卫星MPLS网络的总体方案,对组网形式、协议框架结构、业务传输方案、信令方案和服务质量体制进行了切合实际的选择和设计,作为本文研究的基础。
     可靠的链路资源保障是卫星MPLS网络协调运转的基础。传输误码和Ka频段链路的“雨衰”中断是危害卫星通信链路质量的两个主要因素。
     针对卫星通信的高传输误码问题,本论文研究了MPLS标记和其校验机制的设计问题。理论分析了标记差错对MPLS网络承载TCP业务能力影响,并给出了一种基于奇偶校验的标记检验方案。仿真和分析结果表明,本论文给出的数学模型和理论分析能够准确地计算LSP上由于标记差错所造成的TCP会话吞吐量的损失,所给出校验方案简单、有效。
     针对Ka频段链路的“雨衰”中断问题,本论文设计了一套标记交换路径(LSP:Label Swith Path)的保护和恢复策略,包括基于线性预测的LSP中断检测方法以及依据地理信息进行备份站选择的策略。为了对方案进行验证,本文还设计了一种“雨衰”序列的合成方法。仿真和分析结果表明,作为物理层手段重要而有益的补充,本文提出的方案能够有效地解决“雨衰”中断带来的LSP中断问题。
     有效的链路资源分配机制是实现卫星MPLS网络业务保障的核心。本论文研究了差分服务模型中不同优先级业务之间资源抢占造成的业务中断问题,提出了一种基于主动整形的资源分配方案。数值计算和分析结果表明,通过将系统内的业务分为延时敏感和延时容忍业务,并对后者进行主动整形,有效地降低了业务的带宽需求,减小了业务中断导致的QoS服务性能的损失。
Multi-Protocol Label Switching which has provided a perfect framework for the joint optimaization between IP and satellite becomes an important candinate for the construction of next generation satellite network. Even so, statelite communication has some special features that quit different from terrestrial network, such as bad link quality, lack of bandwith provision and limited processing capacity. What negtieve effects would be introduced by those features and how could we build an optimized system in such enciroment is an important problem that must be resolved.
     In this dissertation, we firstly proposed a framework of satellite MPLS network. Some practical design and selection are promoted, such as networking scheme, protocol structure, data transmission method, signaling plan and QoS mechanism, which make up of the basic research environment of this dissertation.
     Since a reliable conservation of resources is essential for the operation of MPLS system, then we foused on the performance degradation caused by high bit error rate and rain attenation on Ka band radio link.
     In order to counteract with bit errors, we investigated the design of MPLS lablel and its validation mechanism. Theoretic analysis was executed to evaluate the influence on the TCP bearing performance of the LSP in the satellite MPLS network that caused by the label error. The simulation results show that our mathematical model could accurately calculate the throughput loss of TCP session on the LSP. And furthermore, the proposed label validation mechanism which is based on parity check had also been proven to be simple and effective.
     Rain attenuation on Ka-band radio link is another problem to the operation of satellite MPLS network. To deal with this issue, we firstly constructed a scheme to generate rain attenuation series that used for the simulation, and then proposed a novel method of LSP’s protection and restoration that not only executes the linear prediticion to detect LSP failure but also uses the geographic information to select the backup site. The simulation results show that our scheme which is an important supplement to physical layer’s solutions could effectively resolve the link interruption caused by rain.
     At last, we turned to the resources allocation problem which is critical to the QoS support of satellite MPLS network. In order to avoid call interruption, we divided the traffic into two categories, such as delay-sensitive traffic and delay–tolerable traffic. If there is a resources preemption occured between traffics, system would actively do traffic shaping on delay–tolerable traffic and release bandwidth for the delay-sensitive one. The numerical experiments show that our method could redue the traffic’s bandwidth requirement, and therefore allivate the QoS degration caused by the traffic interruption.
引文
[1] Carter C. Survey of Synchronization Techniques for a TDMA Satellite-Switched System [J]. IEEE Transactions on Communications, 1980, 8(2):1291-1301.
    [2]党军宏,晏坚,曹志刚.一种基于OFDM和跨层设计的星载交换方案[J].宇航学报, 2009, 30(3):1086-1094.
    [3]龚向阳,金跃辉,王文东,等.宽带通信网原理[M].北京邮电大学出版社,2006.
    [4] Chai-Keong T, Li V O K. Satellite ATM Network Architectures: An Overview [J]. IEEE Network, 1998, 12(5):61-71.
    [5] Mertzanis I, Sfikas G,Tafazolli R,et al. Protocol architectures for satellite ATM broadband networks [J]. IEEE Communications Magazine, 1999, 73(3):46-54.
    [6] Baiocchi A,Listanti M, Blefari-Melazzi N, et al. ATM-like system architecture for satellite communications including on-board switching [J]. International Journal of Satellite Communications, 1996, 14(5): 389-412.
    [7] Gilderson J, Cherkaoui J. Onboard Switching for ATM via Satellite [J]. IEEE Communications Magazine, 1997, 35(7): 66-70.
    [8] Wassal A G, Hasan M A. Prioritized ATM switches on board satellites: architectural analysis and design [J]. IEEE Proceedings-Communications. 2000, 147(5):277-284.
    [9] Werner M. A dynamic routing concept for ATM-based satellite personal communication networks [J]. IEEE Journal on Selected Areas in Communications, 1997, 15(8) 1636-1648.
    [10] Bischl H, Werner M, Dreher A, at el. ATM-based multimedia communication via NGSO-satellites [J]. International Journal of Satellite Communications, 2005, 23(1):1-32.
    [11] Yegenoglu F,Alexander, R,Gokhale D.An IP transport and routing architecture for next-generation satellite networks [J]. IEEE Network, 2000, 14(5):32-38.
    [12] Farserotu J,Prasad R. A survey of future broadband multimedia satellite systems, issues and trends [J]. IEEE Communications Magazine, 2000, 38(6): 128-133.
    [13] Japan Aerospace Exploration Agency. Wideband InterNetworking engineering test and Demonstration Satellite [EB/OL]. (2010-04) [2010-04-16]. http://www.jaxa.jp/projects/sat/winds/index_e.html
    [14] Andrews Space & Technology Inc. SkyBridge Summary [EB/OL]. (2010-04) [2001]. http://www.spaceandtech.com/spacedata/constellations/skybridge_sum.shtml
    [15] Wikipedia. Anik (satellite) [EB/OL]. (2010-04) [2010-03-14]. http://en.wikipedia.org/wiki/Anik_(satellite)
    [16] Wikipedia. Hotbird [EB/OL]. (2010-04) [2010-03-20]. http://en.wikipedia.org/wiki/Anik_(satellite).
    [17] Braden R, Clark D, Shenker S. Integrated Services in the Internet Architecture: an Overview [S]. IETF RFC1633, 1994.
    [18] Blake S, Black D,Calson M,et al. An Architecture for Differentiated Services [S]. IETF RFC 2475, 1998.
    [19] Wroclawski J. The Use of RSVP with IETF Integrated Services [S]. IETF RFC 2210, 1997.
    [20] Ibnkahla M, Rahman Q.M., Sulyman AI, et al. High-speed satellite mobile communications: technologies and challenges [J]. Proceedings of the IEEE, 2004, 92(2):312-339.
    [21] Hogie K, Criscuolo E, Parise R. Using standard Internet Protocols and applications in space [J]. ComputerNetworks, 2005, 47(5):603-650.
    [22] Skinnemoen H, Leirvik R, Hetland J, at el.Interactive IP-network via satellite DVB-RCS [J]. IEEE Journal on Selected Areas in Communications, 2004, 22(3):508-517.
    [23] Chiti F, Fantacci R. QoS provisioning in GEO satellite with onboard processing using predictor algorithms [J]. IEEE Wireless Communications, 2005, 12(5):21-27.
    [24] Molinaro A, De Rango F, Marano S, at el. A scalable framework for in IP-oriented terrestrial-GEO satellite networks [J]. IEEECommunications Magazine, 2005, 43(4):130-137.
    [25] Taleb T, Kato N, Nemoto Y. Recent trends in IP/NGEO satellite communication systems: transport, routing, and mobility management concerns [J]. IEEE Wireless Communications, 2005, 12(5):63-69.
    [26] Ors T, Rosenberg C. Providing IP QoS over GEO satellite systems using MPLS [J]. International Journal of Satellite Communication and Networking, 2001, 19(7):443-461.
    [27] Donner A, Berioli M, Werner M. MPLS-based satellite constellation networks [J]. IEEE Journal on Selected Areas in Communications, 2004, 22(3):438-448.
    [28] Karapantazis S, Papapetrou E, Pavlidou FN. Multiservice on-demand routing in LEO satellite networks [J]. IEEE Transactions on Wireless Communications, 2009, 8(1):107-112
    [29] Alagoz F, Korcak O, Jamalipour A. Exploring the routing strategies in next-generation satellite networks [J]. IEEE Wireless Communications, 2007 14(3):79-88.
    [30] Devi B B. Traffic engineering the geostationary satellite constellation networks: An approach [C]. //IEEE Military Communications Conference, 2009:1-7.
    [31] Durresi A, Durresi M, Xhafa F. MPLS Traffic Engineering in Satellite Networks.Complex [C]. //IEEE First International Conference on Intelligent and Software Intensive Systems, 2007:19-26.
    [32] Armitage G J. Multicast and multiprotocol support for ATM based Internets [J]. ACM SIGCOMM Computer Communication Review, 1994, 25(2): 34– 46.
    [33] Grossglauser M, Ramakrishnan, K K. SEAM: Scalable and efficient ATM multicast [C]. //IEEE Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies: IEEE press, 1997, 2:867-875.
    [34] Fenner M. Internet Group Management Protocol, Version 2 [S]. IETF RFC 2236, 1997.
    [35] Ina M, Julian L. MPLS-enabled applications: emerging developments and new technologies [M].JohnWiley& Son Ltd, 2008.
    [36] Kawarasaki M, Jabbari B. B-ISDN architecture and protocol [J]. IEEE Journal on Selected Areas in Communications, 1991, 9(9): 1405– 1415.
    [37] Ebert J, Koudelka O.Efficient Encapsulation and Multiplexing in Meshed MF-TDMA Satellite Systems [C].//IEEE 2nd International Symposium on Wireless Communication Systems, 2005:842-846.
    [38] Chitre P, Yegenoglu F.Next-generation satellite networks: architectures and implementations [J]. IEEE Communications Magazine, 1999, 37(3):30-36.
    [39] Widjaja I, Elwalid A I. Performance issues in VC-merge capable switches for multiprotocol label switching [J]. IEEE Journal on Selected Areas in Communications, 1999, 17(6):1178-1189.
    [40] Farrel A, Ayyangar A, Vasseur J P. Inter-Domain MPLS and GMPLS Traffic Engineering Resource Reservation Protocol-Traffic Engineering (RSVP-TE) Extensions [S]. IETF RFC5151, 2008.
    [41] Wu L, Davie B, Davari S, et al. Multi-Protocol Label Switching (MPLS) Support of Differentiated Services [S]. IETF RFC 3270, 2002.
    [42] Rosen E, Tappan D, Fedorkow G. MPLS Label Stack Encoding [S]. IETF RFC 3032, 2001.
    [43] Bates T, Chandra R, Katz D,et al. Multiprotocol Extensions for BGP-4 [S]. IETF RFC2283, 1998.
    [44] Andersson L, Doolan P, Feldman N, et al.IETF. LDP Specification [S]. IETF RFC 3036, 2001.
    [45] Breslau L, Jamin S, Shenker S. Comments on the performance of measurement-based admission control algorithms [C].//IEEE INFOCOM, 2000:1233-1242.
    [46] Gerla M, Casetti C, Lee S, et al. Resource Allocation and Admission Control Styles in QoS DiffServ Networks. //Lecture Notes in Computer Science. Quality of Service in Multiservice IP Networks, 2001:113-128.
    [47] Guerin R, Ahmadi H, Naghshineh M. Equivalent capacity and its application to bandwidth allocation in high-speed networks [J]. IEEE Journal on Selected Areas in Communications, 1991, 9(7): 968-981.
    [48] Petraki D K, Anastasopoulos M P, Hsiao-Hwa Chen, et al. Distributed Resource Allocation for Delay-Sensitive Services in Satellite Networks Using Game Theory [J]. IEEE Transactions on Computational Intelligence and AI in Games, 2009, 1(2):134-144.
    [49] Zhang ZL, Duan Z, Hou YT.On Saclable Design of Bandwidth Broker [J]. IEICE Transactions on communication, 2001, 84(8):2011-2025.
    [50] Lakkakorpi J, Strandberg O, Salonen J. Adaptive connection admission control for differentiated services access networks [J]. IEEE Journal on Selected Areas in Communications, 2005, 23(10):1963:1072.
    [51] IETF. Transmission Control Protocol [S]. RFC793, 1981.
    [52] Sikdar B, Kalyanaraman S, Vastola K S. Analytic models for the latency and steady-state throughput of TCP Tahoe, Reno, and SACK [J]. IEEE/ACM Transactions on Networking, 2003: 959- 971.
    [53] Floyd S, Henderson T. The New-Reno Modification to TCP’s Fast Recovery Algorithm [S]. IETF RFC 2582, 1999.
    [54] Padhye J, Firoiu V, Towsley D F,et al. Modeling TCP Reno performance: a simple model and its empirical validation, IEEE/ACM Transactions on Networking, 2000, 8(2):133-145.
    [55] IETF. HighSpeed TCP for Large Congestion Windows. RFC 3649, 2003.
    [56] Giambene G, Miorandi D. Performance evaluation of scalable TCP and highspeed TCP over geostationary satellite links[C]. //IEEE 61st Vehicular Technology Conference, 2005, 4:2658-2662.
    [57] Mathis M, Mahdavi J,Floyd S, et al.. TCP Selective Acknowledgment Options [S]. IETF RFC 2018, 1996
    [58] Akyildiz I F, Morabito G, Palazzo S. TCP-Peach: a new congestion control scheme for satellite IP Networks. IEEE /ACM Transactions on Networking, 2001; 9 (3):307-321.
    [59] PengFu C, Liew S C. TCP Veno: TCP enhancement for transmission over wireless access networks. IEEE Journal on Selected Areas in Communications, ,2003, 21(2): 216-228.
    [60] Gerla M, Sanadidi M Y, Ren W, et al. TCP Westwood: congestion window control using bandwidth estimation[C]. //IEEE Global Telecommunications Conference, 2001, 3:1698-1702.
    [61] Shang Y, Hadjitheodosiou M. TCP splitting protocol for broadband aeronautical satellite network[C].// The 23rd Digital Avionics Systems Conference, 2004, 2: 11.C.3 - 11.1-9.
    [62] Ishac J, Allman M.On the performance of TCP spoofing in satellite networks [C].//IEEE ilitary Communications Conference, 2001, 1:700-704.
    [63] Kai Xu; Ye Tian; Ansari, N.; TCP-Jersey for wireless IP communications [J].IEEE Journal on Selected Areas in Communications, 2004, 22(4): 747-756.
    [64] Lutz E, Cygan D, Dippold M, et al. The land mobile satellite communication channel-recording, statistics and channel model [J]. IEEE Transactions on Vehicular Technology, 1991, 40(2):375–386.
    [65] AIasseur C, Husson L, Perez-Fontan F. Simulation of rain events time series with Markov model [C]. //15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2004, 4:2801-2805.
    [66] The network simulator - ns-2[EB/OL]. http://www.isi.edu/nsnam/ns/.
    [67] Altman E, Avrachenkov K, Barakat C. A stochastic model of TCP/IP with stationary random losses [J]. IEEE/ACM Transactions on Networking, 2005, 13(2):356-369.
    [68] Baccelli F, Bremaud P. Elements of queueing theory: Palm Martingale calculus and stochastic recurrences [M]. Berlin, Springer-Verlag, 1994.
    [69]邓永录,梁之舜.随机点过程及其应用[M].北京,科学出版社,1992.
    [70] Adas A. Traffic models in broadband networks [J]. IEEE Communications Magazine, 1997, 35(7):82-89.
    [71] Machihara F. A Generalized Interrupted Poisson Process. IEICE Transaction, 1989, 72B-I(3).
    [72] Heffes H, Lucantoni D. A Markov Modulated Characterization of Packetized Voice and Data Traffic and Related Statistical Multiplexer Performance [J]. IEEE Journal on Selected Areas in Communications, 1986, 4(6): 856- 868.
    [73] Van Hoorn MH, Seelen LP. The SPP/G/1 queue: A single server queue with a switched Poisson process as input process [J]. OR Spectrum, Springer Berlin, 1983, 5(4):207-218.
    [74] Baiocchi A, Melazzi NB, Listanti M.and at el. Loss performance analysis of an ATM multiplexer loaded with high-speed on-off sources [J]. IEEE Journal on Selected Areas in Communications, 1991, 9(3): 388-393.
    [75] LyngSat Inc. Satellite Launches Ka band [EB/OL]. (2010-04) [2010]. http://www.lyngsat.com/launches/ka.html.
    [76] Panagopoulos A D, Arapoglou P DM, Cottis PG. Satellite communications at Ku, Ka, and V bands: Propagation impairments and mitigation techniques [J]. IEEE Communications Surveys & Tutorials, 2004, 6(3)2-14.
    [77] Chih-Yuan C, Chen KS. Effects of rain fading on the efficiency of the Ka-band LMDS system in the Taiwan area [J]. IEEE Transactions onVehicular Technology, 2005, 54(1):9-19.
    [78] Ito C, Hosoya Y, Kashiwa T. A Study on Rain Height of ITU-R Rain Attenuation Prediction Method on Earth-space Links [J]. IEICE Transactions on Communications (Japanese Edition). 1999, J82-B(4):687-690.
    [79] Crane, R. Prediction of Attenuation by Rain [J]. IEEE Transactions on Communications, 1980,28(9): 1717-1733.
    [80] Shunichiro E. A power-sharing multiple-beam mobile satellite in Ka band [J]. IEEE Journal on Selected Areas in Communications, 1999, 17(2):145-152.
    [81] Alouini, Borgsmiller, Steffes. Channel characterization and modeling for Ka-band very small aperture terminals [J]. Proceedings of the IEEE, 1997, 85(6):981-997.
    [82] Castro M A V, Granados G S. Cross-layer packet scheduler design of a multibeam broadband satellite system with adaptive coding and modulation [J]. IEEE Transactions on Wireless Communications, 2007, 6(1): 248-258.
    [83] Morello A, Mignone V. DVB-S2: the second generation standard for satellite broad-band services [J]. Proceedings of the IEEE, 2006, 94(1):210-227.
    [84] Gremont BC, Filip M. Spatio-temporal rain attenuation model for application to fade mitigation techniques [J]. IEEE Transactions on Antennas and Propagation, 2004, 52(5):1246-1256.
    [85] IETF. Bidirectional Forwarding Detection [S]. IETF Internet Draft draft-ietf-bfdbase-08.txt, 2008.
    [86] Luo Y, Ansari N. Survivable GMPLS networks with QoS guarantees [J]. IEEE Proceedings on Communications, 2005, 152(4):427-431.
    [87] Burgueno A, Vilar E, Puigcerver M. Spectral analysis of 49 years of rainfall rate and relation to fade dynamics [J]. IEEE Transactions on Communications, 1990, 38(2):1359-1366.
    [88] Karasawa Y, Matsudo T.Characteristics of fading on low-elevation angle Earth-space paths with concurrent rain attenuation and scintillation [J]. IEEE Transactions on Antennas and Propagation, 1991.39(5):657-661.
    [89] Duel-Hallen A. Fading Channel Prediction for Mobile Radio Adaptive Transmission Systems [J]. Proceedings of the IEEE, 2007, 95(12):2299-2313.
    [90]张贤达.现代信号处理[M].清华大学出版社, 2002.
    [91] Heder B, Bito J. Rain Attenuation Time Series Generation on Terrestrial Microwave Links with General N-State Markov Model[C].//16th IST Mobile and Wireless Communications Summit, 2007: 1-5.
    [92] Iannaccone G, Chen-nee C, Richard M, et al. Analysis of link failures in an IP backbone[C]. // 2nd ACM SIGCOMM Workshop on Internet measurement, 2002:237-242.
    [93] Awduche O,Malcolm J, Agogbua J, et al. Requirements for traffic engineering over MPLS[S] .IETF, RFC 2702, 1999.
    [94] Faucheur F L, Lai W. Requirements for support of differentiated services-aware MPLS traffic engineering [S]. IETF, RFC 3564, 2003.
    [95] Poretsky S.Connection precedence and preemption in military asynchronous transfer mode (ATM) networks [C].\\IEEE Military Communications Conference, 1998.1: 86-90.
    [96] Din N M. Diffserv-aware GMPLS in IP/WDM admission control with fuzzy logic [C].\\ International Conference on Computing & Informatics, 2006:1-4.
    [97] Wang J, Zeng Q A, Agrawal D P. Performance analysis of preemptive handoff scheme for integrated wireless mobile networks [C].\\ IEEE GLOBECOM, 2001:3277–3281.
    [98]魏仰苏,蒋国明,宋瑾钰.基于MPLS-DiffServ的LSP动态抢占算法研究[J].计算机工程与应用, 2006, 30.
    [99] Peyravian M, Kshemkalyan A D. Decentralized network connectionpreemption algorithms [J]. Elsevier Computer Networks and ISDN Systems, 1998, 30(11):1029-1043.
    [100] Ke Y, Lin Z, Hui-min Z. A preemption-aware path selection algorithm for DiffServ/MPLS networks[C].//IEEE Workshop on IP Operations and Management, 2004:129-133.
    [101] de Oliveira J C, Scoglio C, Akyildiz I F,et al. New preemption policies for DiffServ-aware traffic engineering to minimize rerouting in MPLS networks [J]. IEEE/ACM Transactions on Networking, 2004, 12(4):733- 745.
    [102] HauLau C, Boon-Hee S; Bose S K. Preemption with Rerouting to Minimize Service Disruption in Connection-Oriented Networks [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2008, 38(5):1093-1104.
    [103] Blanchy F, Melon L, Leduc G. Routing in a MPLS network featuring preemption mechanisms[C].//10th International Conference on Telecommunications, 2003, 1: 253 -260.
    [104] Blanchy F, Mélon F, Leduc G. A preemption-aware on-line routing algorithm for MPLS networks [J]. Telecommunication Systems, 2003, 24(2-4):187-204.
    [105] Lau C H, Soong B H, Bose S K. Path selection with preemption and re-routing control for multi-protocol label switching networks [J]. Elsevier Computer Communications, 2006, 29(18): 3718-3732.
    [106] Weber S, de Oliveira J C, Sukrit Dasgupta, et al. Combined Preemption and Adaptation in Next Generation Multiservice Networks [C].\\IEEE International Conference on Communications, 2006: 670-675.
    [107] Rosen E, Tappan D, Fedorkow G. MPLS Label Stack Encoding [S]. IETF RFC3302, 2001.
    [108] Elwalid A I, Mitra D. Effective bandwidth of general Markovian traffic sources and admission control of high speed networks [J]. IEEE/ACM Transactions on Networking, 1993, 1(3): 329-343.
    [109] Heindl A. Decomposition of general tandem queuing networks with MMPP input [J]. Performance Evaluation, 2001, 44(1-4):5-23.
    [110] Heindl A. Decomposition of general queueing networks with MMPP inputs and customer losses [J]. Performance Evaluation, 2001, 51(2-4):117-136.
    [111] Lucantoni DM. New results on the single server queue with a batch Markovian arrival process. Stochastic Models, 1991, 7(1):1-46.
    [112] Abate J, Whitt W. Numerical inversion of Laplace transforms of probability distributions [J]. ORSA Journal on Computing,1995, 7(1):8-16.
    [113] Kang S H, Sung D K. A CAC scheme based on real-time cell loss estimation for ATM multiplexers [J]. IEEE Transactions on Communications, 2000, 48(2): 252-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700