用户名: 密码: 验证码:
间断性复灌干预对缺血脑的保护及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑血管疾病已成为中国第二位死亡原因,其中约80%为缺血性疾病。溶栓治疗后脑组织将面临再次损伤,即缺血/复灌损伤(ischemia/reperfusion injury, I/R损伤)。间断性复灌干预(interrupted reperfusion intervention, IRIV)治疗是在复灌初期对复灌血流实施一系列短暂的机械性梗阻和再灌注的方法,已被证明具有神经保护作用,但对其保护机制的研究仍存在诸多空白。
     本论文用C57BL/6小鼠,通过手术前后局部脑血流多普勒检测,横杆跑动测试,建立双侧颈总动脉结扎(bilateral common carotid arterial occlusion, BCCAO)20min所导致的小鼠全脑缺血模型。
     在该模型上,我们对IRIV干预程序及其治疗时间窗进行了优化,利用横杆跑动、爬杆和水迷宫实验各参数作为评价指标,对3个循环的10s/10s、15s/15s、30s/30s三种不同的夹闭/复灌IRIV程序的神经功能保护作用进行评测,选取最优IRIV干预程序组进行治疗时间窗的的确定。结果显示,15s/15sIRIV程序具有较好的神经功能保护作用,在缺血后的60min内效果较好。
     NADPH氧化酶(NADPH oxidase, NOX)是被复灌事件激活的体内重要氧化酶,我们利用NOX抑制剂Apocynin结合IRIV或两种干预单独使用的方式,观察小鼠I/R损伤后在横杆跑动、爬杆和水迷宫实验中的表现,小鼠脑部皮层、海马和纹状体神经元的存活率,脑组织中NOX活性及其重要亚基gp91phox和p47phox的表达,p47phox的转位,以及Racl的活化水平,以探究IRIV是否通过抑制NOX发挥神经保护作用。结果显示, IRIV通过减少p47phox转位,降低NOX的装配,并主要通过降低Racl的活化水平抑制已装配NOX的激活。
     复灌后NMDA受体的激活可影响NOX的活性,我们应用脑室给NMDA或MK-801结合IRIV的方式,观察I/R损伤后脑组织中神经元内游离Ca2+浓度,Racl的表达和活化,NOX活性水平,以及NR 2A和NR 2B亚基的表达,以探究IRIV是否通过NMDA受体的激活抑制NOX。结果显示,IRIV可抑制缺血/复灌后NR 2A和NR 2B亚基表达和胞体内游离Ca2+浓度的增高,从而影响Racl活化,抑制NOX活性升高。
     为进一步探究NMDA和NOX之间的联系,我们建立离体培养海马神经元氧糖剥夺/复灌(oxygen and glucose deprivation/reperfusion, OGD/RP)模型,应用NMDA受体激动剂NMDA和抑制剂MK-801、经典型PKC (classic PKC, cPKC)激动剂PMA和抑制剂G66983等工具药,观察OGD/RP后神经元内游离Ca2+浓度,Racl, gp91phox和p47phox的表达水平,以及NOX活性水平。结果显示,复灌损伤后NOX活性受NMDAR-Ca2+-cPKC-Racl通路调控。
     综上,IRIV可抑制脑缺血/复灌后组织中NOX的激活而发挥神经保护作用,IRIV对NADPH氧化酶的抑制作用涉及对NMDAR-Ca2+-cPKC-Rac 1通路的调控。
Cerebrovascular diseases have become the second cause of death in China, and about 80% are ischemic vascular diseases. Re-establishing perfusion as soon as possible is the clinical goal to minimize ischemic injury, but it also leads to additional damage which is called ischemia/reperfusion (I/R) injury. Interrupted reperfusion intervention (IRIV), which consists of several cycles of brief ischemia and reperfusion followed by permanent reperfusion, is neuroprotective in animal models, but the underlying mechanisms are still unclear.
     Based on Doppler measurement of regional cerebral blood flow and the beam walking test, we established a stable global cerebral ischemia model by bilateral common carotid arterial occlusion in C57BL/6 mice.
     Then, we evaluated the neuroprotective effects of different IRIV protocols (3 cycles of 10 s/10 s,15 s/15 s,30 s/30s occlusion/reperfusion) and determined the therapeutic time window of the best protocol by behavioral evaluations (beam walking, pole test and Morris water maze). We found that 3 cycles of 15 s occlusion/15 s reperfusion was most protective, and its therapeutic time window was within 60 min. An IRIV of 15 s/15 s decreased the oxidative stress after I/R injury and increased the survival rates of neurons.
     NADPH oxidase plays a critical role in the superoxide anion generation which is triggered by the onset of reperfusion. To determine whether NADPH oxidase participates in the neural protection against global I/R injury following IRIV, mice were given IRIV and (or) the NOX inhibitor apocynin, and were evaluated for neurological functional deficits by beam walking, pole test and Morris water maze. Brain tissues were used to measure the expression of gp91phox and p47phox, the translocation of p47phox,the activity of NOX and the activation of Racl. We found that the neuroprotective effect of IRIV was mediated by decreasing the expression and translocation of p47phox, as well as the activation of Racl, and subsequently reduced the assembly and activation of NOX.
     The NMDA receptor participates in the activation of NOX. We treated mice with NMDA, MK-801 or vehicle combined with IRIV to determine whether the NMDA receptor participates in the suppression of NOX activity by IRIV. The Ca2+ concentration, the expression and activation of Racl, the activity of NOX and the expression of NR 2A and NR 2B were measured. The results showed that IRIV suppressed NOX activity and this was partly mediated by decreasing the expression of NR 2A and NR 2B, and the activation of the NMDA receptor.
     Furthermore, to assess the pathway between the NMDA receptor and NOX, we established an oxygen and glucose deprivation/reperfusion (OGD/RP) model with cultured hippocampal neurons. The neurons were treated with NMDA (activator of the NMDA receptor), MK-801 (inhibitor of the NMDA receptor), PMA (activator of cPKC), Go6983 (inhibitor of cPKC) or vehicle at the beginning of reperfusion, and the Ca2+ concentration, the expression of Racl, gp91phox and p47phox, and the activity of NOX were measured. We found that a novel NMDA receptor-Ca2+in-cPKC-Racl pathway was activated by OGD/RP injury.
     In conclusion, IRIV decreases the activation of NOX after global cerebral ischemia/reperfusion injury, which at least though the suppression of the NMDAR-Ca2+-cPKC-Racl pathway.
引文
[1]Tuttolomondo, A.; Di Sciacca, R.; Di Raimondo, D.; Arnao, V.; Renda, C.; Pinto, A.; Licata, G. Neuron Protection as a Therapeutic Target in Acute Ischemic Stroke. Current Topics in Medicinal Chemistry 9:1317-1334; 2009.
    [2]Naggara, O. N.; White, P. M.; Guilbert, E.; Roy, D.; Weill, A.; Raymond, J. Endovascular Treatment of Intracranial Unruptured Aneurysms:Systematic Review and Meta-Analysis of the Literature on Safety and Efficacy. Radiology 256:887-897.
    [3]Ross, J.; Salman, R. A. S. Interventions for treating brain arteriovenous malformations in adults. Cochrane Database of Systematic Reviews.
    [4]Bosiers, M.; Callaert, J.; Deloose, K.; Verbist, J.; Keirse, K.; Peeters, P. The role of carotid artery stenting for recent cerebral ischemia. Journal of Cardiovascular Surgery 51:293-303; 2010.
    [5]Limalanathan, S.; Andersen, G. O.; Hoffmann, P.; Klow, N. E.; Abdelnoor, M.; Eritsland, J. Rationale and Design of the POSTEMI (Postconditioning in ST-Elevation Myocardial Infarction) Study. Cardiology 116:103-109; 2010.
    [6]Sorensson, P.; Saleh, N.; Bouvier, E.; Bohm, F.; Settergren, M.; Caidahl, K.; Tomvall, P.; Arheden, H.; Ryden, L.; Pernow, J. Effect of postconditioning on infarct size in patients with ST elevation myocardial infarction. Heart 96:1710-1715; 2010.
    [7]Gao, X. W.; Ren, C. C.; Zhao, H. Protective effects of ischemic postconditioning compared with gradual reperfusion or preconditioning. Journal of Neuroscience Research 86:2505-2511; 2008.
    [8]Zhao, H.; Sapolsky, R. M.; Steinberg, G. K. Interrupting reperfusion as a stroke therapy:ischemic postconditioning reduces infarct size after focal ischemia in rats. Journal of Cerebral Blood Flow and Metabolism 26:1114-1121; 2006.
    [9]Wang, J. Y.; Shen, J.; Gao, Q.; Ye, Z. G.; Yang, S. Y.; Liang, H. W.; Bruce, I. C.; Luo, B. Y.; Xia, Q. Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats. Stroke 39:983-990; 2008.
    [10]Griendling, K. K.; Sorescu, D.; Ushio-Fukai, M. NAD(P)H oxidase-Role in cardiovascular biology and disease. Circulation Research 86:494-501; 2000.
    [11]Groemping, Y.; Rittinger, K. Activation and assembly of the NADPH oxidase:a structural perspective. Biochemical Journal 386:401-416; 2005.
    [12]Abramov, A. Y.; Scorziello, A.; Duchen, M. R. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. Journal of Neuroscience 27:1129-1138; 2007.
    [13]Wang, Q.; Tompkins, K. D.; Simonyi, A.; Korthuis, R. J.; Sun, A. Y.; Sun, G. Y. Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Research 1090:182-189; 2006.
    [14]Hao, Z. B.; Pei, D. S.; Guan, Q. H.; Zhang, G. Y. Calcium/calmodulin-dependent protein kinase Ⅱ (CaMKII), through NMDA receptors and L-voltage-gated channels, modulates the serine phosphorylation of GluR6 during cerebral ischemia and early reperfusion period in rat hippocampus. Molecular Brain Research 140:55-62; 2005.
    [15]Brennan, A. M.; Suh, S. W.; Won, S. J.; Narasimhan, P.; Kauppinen, T. M.; Lee, H.; Edling, Y.; Chan, P. H.; Swanson, R. A. NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nature Neuroscience 12:857-U857; 2009.
    [16]Murotomi, K.; Takagi, N.; Mizutani, R.; Honda, T.; Ono, M.; Takeo, S.; Tanonaka, K. mGluR1 antagonist decreased NADPH oxidase activity and superoxide production after transient focal cerebral ischemia. Journal of Neurochemistry 114:1711-1719; 2010.
    [17]Hunter, A. J.; Green, A. R.; Cross, A. J. Animal-models of acute ischemic stroke-Can they predict clinically successful neuroprotective drugs. Trends in Pharmacological Sciences 16:123-128; 1995.
    [18]Chen, X. H.; Lin, Z. Z.; Liu, A. M.; Ye, J. T.; Luo, Y.; Luo, Y. Y.; Mao, X. X.; Liu, P. Q.; Pi, R. B. The orally combined neuroprotective effects of sodium ferulate and borneol against transient global ischaemia in C57 BL/6J mice. Journal of Pharmacy and Pharmacology 62:915-923; 2010.
    [19]Hokari, M.; Kuroda, S.; Kinugawa, S.; Ide, T.; Tsutsui, H.; Iwasaki, Overexpression of mitochondrial transcription factor A (TEAM) ameliorates delayed neuronal death due to transient forebrain ischemia in mice. Neuropathology 30:401-407; 2010.
    [20]Wei, G.; Kibler, K. K.; Koehler, R. C; Maruyama, T.; Narumiya, S.; Dore, S. Prostacyclin receptor deletion aggravates hippocampal neuronal loss after bilateral common carotid artery occlusion in mouse. Neuroscience 156:1111-1117; 2008.
    [21]Yoshioka, H.; Niizuma, K.; Katsu, M.; Okami, N.; Sakata, H.; Kim, G. S.; Narasimhan, P.; Chan, P. H. NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism 31:868-880; 2011.
    [22]Zhang, H. P.; Yuan, L. B.; Zhao, R. N.; Tong, L.; Ma, R.; Dong, H. L.; Xiong, L. Z. Isoflurane Preconditioning Induces Neuroprotection by Attenuating Ubiquitin-Conjugated Protein Aggregation in a Mouse Model of Transient Global Cerebral Ischemia. Anesthesia and Analgesia 111:506-514; 2010.
    [23]Cho, K. O.; Kim, S. K.; Cho, Y. J.; Sung, K. W.; Kim, S. Y. Regional differences in the neuroprotective effect of minocycline in a mouse model of global forebrain ischemia. Life Sciences 80:2030-2035; 2007.
    [24]Park, H. K.; Takahashi, A.; Melgar, M.; Diaz, F. G. A comparison of cerebral blood flow and EEG spectra in global forebrain ischemia. In:Bumgardner, J. D.; Puckett, A. D., eds. Proceedings of the 1997 16th Southern Biomedical Engineering Conference. New York:IEEE; 1997:15-16.
    [25]Carter, R. J.; Lione, L. A.; Humby, T.; Mangiarini, L.; Mahal, A.; Bates, G. P.; Dunnett, S. B.; Morton, A. J. Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation. Journal of Neuroscience 19:3248-3257; 1999.
    [26]Passage, E.; Norreel, J. C; Noack-Fraissignes, P.; Sanguedolce, V.; Pizant, J.; Thirion, X.: Robaglia-Schlupp, A.; Pellissier, J. F.; Fontes, M. Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease. Nature Medicine 10:396-401; 2004.
    [27]Yang, G. M.; Kitagawa, K.; Matsushita, K.; Mabuchi, T.; Yagita, Y.; Yanagihara, T.; Matsumoto, M. C57BL/6 strain is most susceptible to cerebral ischemia following bilateral common carotid occlusion among seven mouse strains:Selective neuronal death in the murine transient forebrain ischemia. Brain Research 752:209-218; 1997.
    [28]Hoyte, L.; Kaur, J.; Buchan, A. M. Lost in translation:taking neuroprotection from animal models to clinical trials. Experimental Neurology 188:200-204; 2004.
    [29]Pignataro, G; Scorziello, A.; Di Renzo, G.; Annunziato, L. Post-ischemic brain damage:effect of ischemic preconditioning and postconditioning and identification of potential candidates for stroke therapy. Febs Journal 276:46-57; 2009.
    [30]Ross, J.; Salman, R. A. S. Interventions for treating brain arteriovenous malformations in adults. Cochrane Database of Systematic Reviews; 2010.
    [31]Naggara, O. N.; White, P. M.; Guilbert, F.; Roy, D.; Weill, A.; Raymond, J. Endovascular Treatment of Intracranial Unruptured Aneurysms:Systematic Review and Meta-Analysis of the Literature on Safety and Efficacy. Radiology 256:887-897; 2010.
    [32]Bouet, V.; Freret, T.; Toutain, J.; Divoux, D.; Boulouard, M.; Schumann-Bard, P. Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Experimental Neurology 203:555-567; 2007.
    [33]Choi, S. H.; Woodlee, M. T.; Hong, J. J.; Schallert, T. A simple modification of the water maze test to enhance daily detection of spatial memory in rats and mice. Journal of Neuroscience Methods 156:182-193; 2006.
    [34]Vorhees, C. V.; Williams, M. T. Morris water maze:procedures for assessing spatial and related forms of learning and memory. Nature Protocols 1:848-858; 2006.
    [35]Weiergraber, M.; Henry, M.; Radhakrishnan, K.; Hescheler, J.; Schneider, T. Hippocampal seizure resistance and reduced neuronal excitotoxicity in mice lacking the Ca(v)2.3 E/R-type voltage-gated calcium channel. Journal of Neurophysiology 97:3660-3669; 2007.
    [36]Paxinos, G.; Franklin, K. B. J. The mouse brain in stereotaxic coordinates. California; 2001.
    [37]Przyklenk, K.; Maynard, M.; Darling, C. E.; Whittaker, P. Aging mouse hearts are refractory to infarct size reduction with post-conditioning. Journal of the American College of Cardiology 51:1393-1398; 2008.
    [38]Boengler, K.; Buechert, A.; Heinen, Y.; Roeskes, C.; Hilfiker-Kleiner, D.; Heusch, G.; Schulz, R. Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circulation Research 102:131-135; 2008.
    [39]Przyklenk, K.; Maynard, M.; Greiner, D. L.; Whittaker, P. Cardioprotection with Postconditioning: Loss of Efficacy in Murine Models of Type-2 and Type-1 Diabetes. Antioxidants & Redox Signaling 14:781-U384;2010.
    [40]Boengler, K.; Buechert, A.; Heinen, Y.; Hilfiker-Keiner, D.; Heusch, G.; Schulz, R. Ischemic postconditioning's cardioprotection is lost in aged and STAT3-deficient mice. Journal of Molecular and Cellular Cardiology 42:S182-S182; 2007.
    [41]Yang, X. M.; Proctor, J. B.; Cui, L.; Krieg, T.; Downey, J. M.; Cohen, M. V. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. Journal of the American College of Cardiology 44:1103-1110; 2004.
    [42]Kin, H.; Zatta, A. J.; Lofye, M. T.; Amerson, B. S.; Halkos, M. E.; Kerendi, F.; Zhao, Z. Q.; Guyton, R. A.; Headrick, J. P.; Vinten-Johansen, J. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovascular Research 67:124-133; 2005.
    [43]Darling, C. E.; Jiang, R.; Maynard, M.; Whittaker, P.; Vinten-Johansen, J.; Przyklenk, K. Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts:role of ERK1/2. American Journal of Physiology-Heart and Circulatory Physiology 289:H1618-H1626; 2005.
    [44]Rehni, A. K.; Singh, N. Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice. Pharmacological Reports 59:192-198; 2007.
    [45]Wang, C. X.; Li, J. J.; Zhao, X. Q.; Wang, Y. L.; Wu, D.; Wang, Y. J. Stroke care development in Mainland China:past, present and future. International Journal of Stroke 3:288-289; 2008.
    [46]Vannucci, R. C.; Vannucci, S. J. Perinatal hypoxic-ischemic brain damage:Evolution of an animal model. Developmental Neuroscience 27:81-86; 2005.
    [47]Ren, C. C.; Gao, X. W.; Niu, G.; Yan, Z. M.; Chen, X. Y.; Zhao, H. Delayed Postconditioning Protects against Focal Ischemic Brain Injury in Rats. Plos One 3.; 2008.
    [48]Zhao, H. Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. Journal of Cerebral Blood Flow and Metabolism 29:873-885; 2009.
    [49]Allen, C. L.; Bayraktutan, U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. International Journal of Stroke 4:461-470; 2009.
    [50]Alexandrov, A. V. Current and future recanalization strategies for acute ischemic stroke. Journal of Internal Medicine 267:209-219; 2010.
    [51]Block, M. L. NADPH oxidase as a therapeutic target in Alzheimer's disease. Bmc Neuroscience 9; 2008.
    [52]Ha, J. S.; Lee, J. E.; Lee, J. R.; Lee, C. S.; Maeng, J. S.; Bae, Y. S.; Kwon, K. S.; Park, S. S. Nox4-dependent H2O2 production contributes to chronic glutamate toxicity in primary cortical neurons. Experimental Cell Research 316:1651-1661; 2010.
    [53]Zhang, F.; Shi, J. S.; Zhou, H.; Wilson, B.; Hong, J. S.; Gao, H. M. Resveratrol Protects Dopamine Neurons Against Lipopolysaccharide-Induced Neurotoxicity through Its Anti-Inflammatory Actions. Molecular Pharmacology 78:466-477; 2010.
    [54]Bedard, K.; Krause, K. H. The NOX family of ROS-generating NADPH oxidases:Physiology and pathophysiology. Physiological Reviews 87:245-313; 2007.
    [55]Kahles, T.; Kohnen, A.; Heumueller, S.; Rappert, A.; Bechmann, I.; Liebner, S.; Wittko, I. M.; Neumann-Haefelin, T.; Steinmetz, H.; Schroeder, K.; Brandes, R. P. NADPH oxidase Noxl contributes to ischemic injury in experimental stroke in mice. Neurobiology of Disease 40:185-192; 2010.
    [56]Kim, M. J.; Shin, K. S.; Chung, Y. B.; Jung, K. W.; Cha, C. I.; Shin, D. H. Immunohistochemical study of p47(Phox) and gp91(Phox) distributions in rat brain. Brain Research 1040:178-186; 2005.
    [57]Serrano, F.; Kolluri, N. S.; Wientjes, F. B.; Card, J. P.; Klann, E. NADPH oxidase immunoreactivity in the mouse brain. Brain Research 988:193-198; 2003.
    [58]Yoshioka, H.; Niizuma, K.; Katsu, M.; Okami, N.; Sakata, H.; Kim, G. S.; Narasimhan, P.; Chan, P. H. NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism 31:868-880; 2010.
    [59]Raz, L; Zhang, Q. G.; Zhou, C. F.; Han, D.; Gulati, P.; Yang, L. C.; Yang, F.; Wang, R. M.; Brann, D. W. Role of Rac 1 GTPase in NADPH Oxidase Activation and Cognitive Impairment Following Cerebral Ischemia in the Rat. Plos One 5; 2010.
    [60]Anderson, K. E.; Chessa, T. A. M.; Davidson, K.; Henderson, R. B.; Walker, S.; Tolmachova, T.; Grys, K.; Rausch, O.; Seabra, M. C.; Tybulewicz, V. L. J.; Stephens, L. R.; Hawkins, P. T. PtdIns3P and Rac direct the assembly of the NADPH oxidase on a novel, pre-phagosomal compartment during FcR-mediated phagocytosis in primary mouse neutrophils. Blood 116:4978-4989; 2010.
    [61]Orendacova, J.; Ondrejcak, T.; Kucharova, K.; Cizkova, D.; Jergova, S.; Mitruskova, B.; Racekova, E.; Vanicky, I.; Marsala, J. Fluoro-Jade B evidence of induced ischemic tolerance in the rat spinal cord ischemia:Physiological, neurological and histopathological consequences. General Physiology and Biophysics 24:75-87; 2005.
    [62]Kahles, T.; Luedike, P.; Endres, M.; Galla, H. J.; Steinmetz, H.; Busse, R.; Neumann-Haefelin, T.; Brandes, R. P. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 38:3000-3006; 2007.
    [63]Schluter, T.; Zimmermann, U.; Protzel, C.; Miehe, B.; Klebingat, K. J.; Rettig, R.; Grisk, O. Intrarenal artery superoxide is mainly NADPH oxidase-derived and modulates endothelium-dependent dilation in elderly patients. Cardiovascular Research 85:814-824; 2010.
    [64]Begonja, A. J.; Gambaryan, S.; Geiger, J.; Aktas, B.; Pozgajova, M.; Nieswandt, B.; Walter, U. Platelet NAD(P)H-oxidase-generated ROS production regulates alpha IIb beta 3-integrin activation independent of the NO/cGMP pathway. Blood 106:2757-2760; 2005.
    [65]Abramov, A. Y.; Jacobson, J.; Wientjes, R.; Hothersall, J.; Canevari, L.; Duchen, M. R. Expression and modulation of an NADPH oxidase in mammalian astrocytes. Journal of Neitroscience 25:9176-9184; 2005.
    [66]Mockford, K. A.; Girn, H. R. S.; Homer-Vanniasinkam, S. Postconditioning:Current Controversies and Clinical Implications. European Journal of Vascular and Endovascular Surgery 37:437-442; 2009.
    [67]Shen, J.; Sun, L.; Liao, Y.; Lin, S.; Bai, X.; Xia, Q. The time-dependency of post-conditioning for neuroprotection against global cerebral ischemia and reperfusion injury in C57BL/6 mice The Journal of the Federation of American Societies for Experimental Biology 22:733.717; 2008.
    [68]Gao, L.; Mann, G. E. Vascular NAD(P)H oxidase activation in diabetes:a double-edged sword in redox signalling. Cardiovascular Research 82:9-20; 2009.
    [69]Fridovich, I. Biology of oxygen radicals. Science 201:875-880; 1978.
    [70]Virag, L.; Szabo, E.; Gergely, P.; Szabo, C. Peroxynitrite-induced cytotoxicity:mechanism and opportunities for intervention. Toxicology Letters 140:113-124; 2003.
    [71]Simons, J. M.; Thart, B. A.; Ching, T.; Vandijk, H.; Labadie, R. P. Metabolic-activation of natural phenols into selective oxidative burst agonists by activated human neutrophils. Free Radical Biology and Medicine 8:251-258; 1990.
    [72]Maier, C. M.; Hsieh, L.; Yu, F. S.; Bracci, P.; Chan, P. H. Matrix metalloproteinase-9 and myeloperoxidase expression-Quantitative analysis by antigen immunohistochemistry in a model of transient focal cerebral ischemia. Stroke 35:1169-1174; 2004.
    [73]Riganti, C; Gazzano, E.; Polimeni, M.; Costamagna, C; Bosia, A.; Ghigo, D. Diphenyleneiodonium inhibits the cell redox metabolism and induces oxidative stress. Journal of Biological Chemistry 279:47726-47731; 2004.
    [74]Delia Bianca, V.; Dusi, S.; Bianchini, E.; Dal Pra, I.; Rossi, F. beta-amyloid activates the O-2(radical anion) forming NADPH oxidase in microglia, monocytes, and neutrophils-A possible inflammatory mechanism of neuronal damage in Alzheimer's disease. Journal of Biological Chemistry 274:15493-15499; 1999.
    [75]Jackman, K. A.; Miller, A. A.; De Silva, T. M.; Crack, P. J.; Drummond, G. R.; Sobey, C. G. Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice. British Journal of Pharmacology 156:680-688; 2009.
    [76]Yuzawa, S.; Miyano, K.; Honbou, K.; Inagaki, F.; Sumimoto, H. The Domain Organization of p67(phox), a Protein Required for Activation of the Superoxide-Producing NADPH Oxidase in Phagocytes. Journal of Innate Immunity 1:543-555; 2009.
    [77]Brown, D. I.; Griendling, K. K. Nox proteins in signal transduction. Free Radical Biology and Medicine 47:1239-1253; 2009.
    [78]Shelat, P. B.; Chalimoniuk, M.; Wang, J. H.; Strosznajder, J. B.; Lee, J. C.; Sun, A. Y.; Simonyi, A.; Sun, G. Y. Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A(2) in cortical neurons. Journal of Neurochemistry 106:45-55; 2008.
    [79]Di Maio, R.; Mastroberardino, P. G.; Hu, X.; Montero, L.; Greenamyre, J. T. Pilocapine alters NMDA receptor expression and function in hippocampal neurons:NADPH oxidase and ERK1/2 mechanisms. Neurobiology of Disease; 2011.
    [80]Zhang, C. Y.; Shen, W. H.; Zhang, G. Y. N-methyl-D-aspartate receptor and L-type voltage-gated Ca2+channel antagonists suppress the release of cytochrome c and the expression of procaspase-3 in rat hippocampus after global brain ischemia. Neuroscience Letters 328:265-268; 2002.
    [81]Zarrindast, M. R.; Jafari-Sabet, M.; Rezayat, M.; Djahanguiri, B.; Rezayof, A. Involvement of NMDA receptors in morphine state-dependent learning in mice. International Journal of Neuroscience 116:731-743; 2006.
    [82]Lee, J. K.; Choi, S. S.; Lee, H. K.; Han, K. J.; Han, E. J.; Suh, H. W. Effects of MK-801 and CNQX on various neurotoxic responses induced by kainic acid in mice. Molecules and Cells 14:339-347; 2002. [83] Kay, A. R.; Krupa, D. J. Acute isolation of neurons from the mature mammalian central nervous system. Current Protocols in Neuroscience Chapter 6:Unit 6.5; 2001.
    [841 Luo, J. H.; Wang, Y. H.; Yasuda, R. P.; Dunah, A. W.; Wolfe, B. B. The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Molecular Pharmacology 51:79-86; 1997.
    [85]Paoletti, P.; Neyton, J. NMDA receptor subunits:function and pharmacology. Current Opinion in Pharmacology 7:39-47; 2007.
    [86]Mason, J. N.; Eshleman, A. J.; Belknap, J. K.; Crabbe, J. C.; Loftis, J. M.; Macey, T. A.; Janowsky, A. NMDA receptor subunit mRNA and protein expression in ethanol-withdrawal seizure-prone and-resistant mice. Alcoholism-Clinical and Experimental Research 25:651-660; 2001.
    [87]Goebel, D. J.; Poosch, M. S. NMDA receptor subunit gene expression in the rat brain:a quantitative analysis of endogenous mRNA levels of NR1(Com), NR2A, NR2B, NR2C, NR2D and NR3A. Molecular Brain Research 69:164-170; 1999.
    [88]Darstein, M. B.; Landwehrmeyer, G. B.; Feuerstein, T. J. Changes in NMDA receptor subunit gene expression in the rat brain following withdrawal from forced long-term ethanol intake. Naunyn-Schmiedebergs Archives of Pharmacology 361:206-213; 2000.
    [89]Loftis, J. M.; Janowsky, A. The N-methyl-D-aspartate receptor subunit NR2B:localization, functional properties, regulation, and clinical implications. Pharmacology& Therapeutics 97:55-85; 2003.
    [90]Gappoeva, M. U.; Izykenova, G. A.; Granstrem, O. K.; Dambinova, S. A. Expression of NMDA neuroreceptors in experimental ischemia. Biochemistry-Moscow 68:696-702; 2003.
    [91]Gascon, S.; Sobrado, M.; Roda, J. M.; Rodriguez-Pena, A.; Diaz-Guerra, M. Excitotoxicity and focal cerebral ischemia induce truncation of the NR2A and NR2B subunits of the NMDA receptor and cleavage of the scaffolding protein PSD-95. Molecular Psychiatry 13:99-114; 2008.
    [92]Liu, Z. A.; Zhao, W. W; Xu, T. J.; Pei, D. S.; Peng, Y. W. Alterations of NMDA receptor subunits NR1, NR2A and NR2B mRNA expression and their relationship to apoptosis following transient forebrain ischemia. Brain Research 1361:133-139; 2010.
    [93]Kutsuwada, T.; Kashiwabuchi, N.; Mori, H.; Sakimura, K.; Kushiya, E.; Araki, K.; Meguro, H.; Masaki, H.; Kumanishi, T.; Arakawa, M.; Mishina, M. Molecular diversity of the nmda receptor channel. Nature 358:36-41; 1992.
    [94]Moon, I. S.; Apperson, M. L.; Kennedy, M. B. The major tyrosine-phosphorylated protein in the postsynaptic density fraction is n-methyl-d-aspartate receptor subunit 2b. Proceedings of the National Academy of Sciences of the United States of America 91:3954-3958; 1994.
    [95]Nakamichi, N.; Fukumori, R.; Takarada, T.; Kambe, Y.; Yamamoto, T.; Matsushima, N.; Moriguchi, N.; Yoneda, Y. Preferential Inhibition by Antidiarrheic 2-Methoxy-4-Methylphenol of Ca2+Influx Across Acquired N-Methyl-D-Aspartate Receptor Channels Composed of NR1/NR2B Subunit Assembly. Journal of Neuroscience Research 88:2483-2493; 2010.
    [96]Williams, A. J.; Ling, G.; Berti, R.; Moffett, J. R.; Yao, C.; Lu, X. M.; Dave, J. R.; Tortella, F. C. Treatment with the snail peptide CGX-1007 reduces DNA damage and alters gene expression of c-fos and bcl-2 following focal ischemic brain injury in rats. Experimental Brain Research 153:16-26; 2003.
    [97]Yang, Y; Li, Q.; Yang, T.; Hussain, M.; Shuaib, A. Reduced brain infarct volume and improved neurological outcome by inhibition of the NR2B subunit of NMDA receptors by using CP101,606-27 alone and in combination with rt-PA in a thromboembolic stroke model in rats. Journal of Neurosurgery 98:397-403; 2003.
    [98]Wang, W. W.; Hu, S. Q.; Li, C.; Zhou, C.; Qi, S. H.; Zhang, G. Y Transduced PDZ1 domain of PSD-95 decreases Src phosphorylation and increases nNOS (Ser847) phosphorylation contributing to neuroprotection after cerebral ischemia. Brain Research 1328:162-170; 2010.
    [99]Terasaki, Y.; Sasaki, T.; Yagita, Y.; Okazaki, S.; Sugiyama, Y.; Oyama, N.; Omura-Matsuoka, E.; Sakoda, S.; Kitagawa, K. Activation of NR2A receptors induces ischemic tolerance through CREB signaling. Journal of Cerebral Blood Flow and Metabolism 30:1441-1449; 2010.
    [100]Chen, M.; Lu, T. J.; Chen, X. J.; Zhou, Y.; Chen, Q.; Feng, X. Y.; Xu, L.; Duan, W. H.; Xiong, Z. Q. Differential Roles of NMDA Receptor Subtypes in Ischemic Neuronal Cell Death and Ischemic Tolerance. Stroke 39:3042-3048; 2008.
    [101]Stanika, R. I.; Winters, C. A.; Pivovarova, N. B.; Andrews, S. B. Differential NMDA receptor-dependent calcium loading and mitochondrial dysfunction in CA1 vs. CA3 hippocampal neurons. Neurobiology of Disease 37:403-411; 2010.
    [102]Duchen, M. R. Roles of mitochondria in health and disease. Diabetes 53:S96-S102; 2004.
    [103]Sarnowska, A.; Jurga, M.; Buzanska, L.; Filipkowski, R. K.; Duniec, K.; Domanska-Janik, K. Bilateral Interaction Between Cord Blood-Derived Human Neural Stem Cells and Organotypic Rat Hippocampal Culture. Stem Cells and Development 18:1191-1199; 2009.
    [104]Tamaki, S. J.; Jacobs, Y.; Dohse, M.; Capela, A.; Cooper, J. D.; Reitsma, M.; He, D. P.; Tushinski, R.; Belichenko, P. V.; Salehi, A.; Mobley, W.; Gage, F. H.; Huhn, S.; Tsukamoto, A. S.; Weissman, I. L.; Uchida, N. Neuroprotection of Host Cells by Human Central Nervous System Stem Cells in a Mouse Model of Infantile Neuronal Ceroid Lipofuscinosis. Cell Stem Cell 5:310-319; 2009.
    [105]Dovas, A.; Choi, Y.; Yoneda, A.; Multhaupt, H. A. B.; Kwon, S. H.; Kang, D.; Oh, E. S.; Couchman, J. R. Serine 34 Phosphorylation of Rho Guanine Dissociation Inhibitor (RhoGDI alpha) Links Signaling from Conventional Protein Kinase C to RhoGTPase in Cell Adhesion. Journal of Biological Chemistry 285:23294-23306; 2010.
    [106]Liu, K. D.; Datta, A.; Yu, W.; Brakeman, P. R.; Jou, T. S.; Matthay, M. A.; Mostov, K. E. Rac1 is required for reorientation of polarity and lumen formation through a PI 3-kinase-dependent pathway. American Journal of Physiology-Renal Physiology 293:F1633-F1640; 2007.
    [107]Kobayashi, T.; Inoue, T.; Shimizu, Y.; Terada, N.; Maeno, A.; Kajita, Y.; Yamasaki, T.; Kamba, T.; Toda, Y.; Mikami, Y.; Yamada, T.; Kamoto, T.; Ogawa, O.; Nakamura, E. Activation of Racl Is Closely Related to Androgen-Independent Cell Proliferation of Prostate Cancer Cells Both in Vitro and in Vivo. Molecular Endocrinology 24:722-734; 2010.
    [108]Nomura, N.; Nomura, M.; Mizuki, N.; Hamada, J. I. Rac1 mediates phorbol 12-myristate 13-acetate-induced migration of glioblastoma cells via paxillin. Oncology Reports 20:705-711; 2008.
    [109]Berdyshev, E. V.; Gorshkova, I.; Usatyuk, P.; Kalari, S.; Zhao, .Y.T.; Pyne, N. J.; Pyne, S.; Sabbadini, R. A.; Garcia, J. G. N.; Natarajan, V. Intracellular SIP Generation Is Essential for SIP-Induced Motility of Human Lung Endothelial Cells:Role of Sphingosine Kinase 1 and SIP Lyase. Plos One 6; 2010.
    [110]Agudo-Lopez, A.; Miguel, B. G.; Fernandez, I.; Martinez, A. M. Role of protein kinase C and mitochondrial permeability transition pore in the neuroprotective effect of ceramide in ischemia-induced cell death. Febs Letters 585:99-103; 2011.
    [111]Howard, S.; Bottino, C.; Brooke, S.; Cheng, E.; Giffard, R. G.; Sapolsky, R. Neuroprotective effects of bcl-2 overexpression in hippocampal cultures:interactions with pathways of oxidative damage. Journal of Neurochemistry 83:914-923; 2002.
    [112]Ray, A. M.; Benham, C. D.; Roberts, J. C.; Gill, C. H.; Lanneau, C.; Gitterman, D. P.; Harries, M.; Davis, J. B.; Davies, C. H. Capsazepine protects against neuronal injury caused by oxygen glucose deprivation by inhibiting I-h. Journal ofNeuroscience 23:10146-10153; 2003.
    [113]Taguchi, R.; Shirakawa, H.; Yamaguchi, T.; Kume, T.; Katsuki, H.; Akaike, A. Nitric oxide-mediated effect of nipradilol, an alpha-and beta-adrenergic blocker, on glutamate neurotoxicity in rat cortical cultures. European Journal of Pharmacology 535:86-94; 2006.
    [114]Sanchez-Martin, F. J.; Valera, E.; Casimiro, I.; Merino, J. M. Nerve growth factor increases the sensitivity to zinc toxicity and induces cell cycle arrest in PC12 cells. Brain Research Bulletin 81:458-466; 2010.
    [115]Tavakoli-Far, B.; Rahbar-Roshandel, N.; Rahimi-Moghaddam, P.; Mahmoudian, M. Neuroprotective effects of mebudipine and dibudipine on cerebral oxygen-glucose deprivation/reperfusion injury. European Journal of Pharmacology 610:12-17; 2009.
    [116]Wang, D.; Gelband, C. H.; Sumners, C.; Posner, P. Mechanisms underlying the chronotropic effect of angiotensin II on cultured neurons from rat hypothalamus and brain stem. Journal of Neurophysiology 78:1013-1020; 1997.
    [117]Kakimura, J.; Zheng, T. X.; Uryu, N.; Ogata, N. Regulation of the Spontaneous Augmentation of Na(V)1.9 in Mouse Dorsal Root Ganglion Neurons:Effect of PKA and PKC Pathways. Marine Drugs 8:728-740; 2010.
    [118]Camacho, A.; Massieu, L. Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. Archives of Medical Research 37:11-18; 2006.
    [119]Zhang, F.; Li, C.; Wang, R.; Han, D.; Zhang, Q. G.; Zhou, C.; Yu, H. M.; Zhang, G. Y. Activation of GABA receptors attenuates neuronal apoptosis through inhibiting the tyrosine phosphorylation of NR2A by Src after cerebral ischemia and reperfusion. Neuroscience 150:938-949; 2007.
    [120]Lopez, E.; Hernandez, J.; Arce, C; Canadas, S.; Oset-Gasque, M. J.; Gonzalez, M. P. Involvement of NMDA Receptor in the Modulation of Excitatory and Inhibitory Amino Acid Neurotransmitters Release in Cortical Neurons. Neurochemical Research 35:1478-1486; 2010.
    [121]Ayala, G. X.; Tapia, R. Late N-methyl-D-aspartate receptor blockade rescues hippocampal neurons from excitotoxic stress and death after 4-aminopyridine-induced epilepsy. European Journal of Neuroscience 22:3067-3076; 2005.
    [122]Kocaeli, H.; Korfali, E.; Ozturk, H.; Kahveci, N.; Yilmazlar, S. MK-801 improves neurological and histological outcomes after spinal cord ischemia induced by transient aortic cross-clipping in rats. Surgical Neurology 64:22-27; 2005.
    [123]Webb, B. L. J.; Hirst, S. J.; Giembycz, M. A. Protein kinase C isoenzymes:a review of their structure, regulation and role in regulating airways smooth muscle tone and mitogenesis. British Journal of Pharmacology 130:1433-1452; 2000.
    [124]Sun, M. K.; Alkon, D. L. Pharmacology of protein kinase C activators:Cognition-enhancing and antidementic therapeutics. Pharmacology& Therapeutics 127:66-77; 2010.
    [125]Young, L. H.; Balin, B. J.; Weis, M. T. Go 6983:A fast acting protein kinase c inhibitor that attenuates myocardial ischemia/reperfusion injury. Cardiovascular Drug Reviews 23:255-272; 2005.
    [126]Boureux, A.; Vignal, E.; Faure, S.; Fort, P. Evolution of the Rho family of Ras-like GTPases in eukaryotes. Molecular Biology and Evolution 24:203-216; 2007.
    [127]Bustelo, X. R.; Sauzeau, V.; Berenjeno, I. M. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 29:356-370; 2007.
    [128]Kim, Y; Lee, Y. S.; Choe, J.; Lee, H.; Kim, Y. M.; Jeoung, D. CD44-epidermal growth factor receptor interaction mediates hyaluronic acid-promoted cell motility by activating protein kinase C signaling involving Akt, Racl, Phox, reactive oxygen species, focal adhesion kinase, and MMP-2. Journal of Biological Chemistry 283:22513-22528; 2008.
    [129]Parsons, M.; Adams, J. C. Rac regulates the interaction of fascin with protein kinase C in cell migration. Journal oj Cell Science 121:2805-2813; 2008.
    [130]Lapouge, K.; Smith, S. J. M.; Walker, P. A.; Gamblin, S. J.; Smerdon, S. J.; Rittinger, K. Structure of the TPR domain of p67(phox) in complex with Rac center dot GTP. Molecular Cell 6:899-907; 2000.
    [131]Binker, M. G; Binker-Cosen, A. A.; Richards, D.; Gaisano, H. Y; de Cosen, R. H.; Cosen-Binker, L. I. Hypoxia-reoxygenation increase invasiveness of PANC-1 cells through Racl/MMP-2. Biochemical and Biophysical Research Communications 393:371-376; 2010.
    [132]Shan, L. ML; Li, J. M.; Wei, M.; Ma, J. A.; Wan, L.; Zhu, W.; Li, Y; Zhu, H. Q.; Arnold, J. M. O.; Peng, T. Q. Disruption of Racl signaling reduces ischemia-reperfusion injury in the diabetic heart by inhibiting calpain. Free Radical Biology and Medicine 49:1804-1814; 2010.
    [133]Stefanska, J.; Pawliczak, R. Apocynin:Molecular Aptitudes. Mediators of Inflammation; 2008.
    [1]Hoyte, L.; Kaur, J.; Buchan, A. M. Lost in translation:taking neuroprotection from animal models to clinical trials. Experimental Neurology 188:200-204; 2004.
    [2]Murry, C. E.; Jennings, R. B.; Reimer, K. A. Preconditioning with ischemia-a delay of lethal cell injury in ischmic myocardium. Circulation 74:1124-1136; 1986.
    [3]Kinouchi, H.; Epstein, C. J.; Mizui, T.; Carlson, E.; Chen, S. F.; Chan, P. H. Attenuation of focal cerebral ischemic-injury in transgenic mice overexpressing cuzn superoxide-dismutase. Proceedings of the National Academy of Sciences of the United States of America 88:11158-11162; 1991.
    [4]Na, H. S.; Kim, Y. I.; Yoon, Y. W.; Han, H. C.; Nahm, S. H.; Hong, S. K. Ventricular premature beat-driven intermittent restoration of coronary blood flow reduces the incidence of reperfusion-induced ventricular fibrillation in a cat model of regional ischemia. American Heart Journal 132:78-83; 1996.
    [5]Zhao, Z. Q.; Corvera, J. S.; Halkos, M. E.; Kerendi, F.; Wang, N. P.; Guyton, R. A.; Vinter-Johansen, J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning. American Journal of Physiology-Heart and Circulatory Physiology 285:H579-H588;2003.
    [6]Pignataro, G.; Meller, R.; Inoue, K.; Ordonez, A. N.; Ashley, M. D.; Xiong, Z. G.; Gala, R.; Simon, R. P. In vivo and in vitro characterization of a novel neuroprotective strategy for stroke:ischemic postconditioning. Journal of Cerebral Blood Flow and Metabolism 28:232-241; 2008.
    [7]Zhao, Z. Q.; Vinten-Johansen, J. Postconditioning:Reduction of reperfusion-induced injury. Cardiovascular Research 70:200-211; 2006.
    [8]Ren, C.; Gao, X.; Niu, G.; Yan, Z.; Chen, X.; Zhao, H. Delayed postconditioning protects against focal ischemic brain injury in rats. PLoS One 3:e3851; 2008.
    [9]Leconte, C.; Tixier, E.; Freret, T.; Toutain, J.; Saulnier, R.; Boulouard, M.; Roussel, S.; Schumann-Bard, P.; Bernaudin, M. Delayed hypoxic postconditioning protects against cerebral ischemia in the mouse. Stroke 40:3349-3355; 2009.
    [10]Tsang, A.; Hausenloy, D. J.; Yellon, D. M. Myocardial postconditioning:reperfusion injury revisited. American Journal of Physiology-Heart and Circulatory Physiology 289:H2-H7; 2005.
    [11]Zhao, H. The protective effect of ischemic postconditioning against ischemic injury:From the heart to the brain. Journal of Neuroimmune Pharmacology 2:313-318; 2007.
    [12]Sewell, W. H.; Koth, D. R.; Huggins, C. E. Ventricular fibrillation in dogs after sudden return of flow to the coronary artery. Surgery 38:1050-1053; 1955.
    [13]Grech, E. D.; Ramsdale, D. R. Termination of reperfusion arrhythmia by coronary-artery occlusion. British Heart Journal 72:94-95; 1994.
    [14]Obal, D.; Dettwiler, S.; Favoccia, C.; Scharbatke, H.; Preckel, B.; Schlack, W. The influence of mitochondrial K-ATP-channels in the cardioprotection of preconditioning and postconditioning by sevoflurane in the rat in vivo. Anesthesia and Analgesia 101:1252-1260; 2005.
    [15]Kin, H.; Zatta, A. J.; Lofye, M. T.; Amerson, B. S.; Halkos, M. E.; Kerendi, F.; Zhao, Z. Q.; Guyton, R. A.; Headrick, J. P.; Vinten-Johansen, J. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovascular Research 67:124-133; 2005.
    [16]Krolikowski, J. G.; Weihrauch, D.; Bienengraeber, M.; Kersten, J. R.; Warltier, D. C.; Pagel, P. S. Role of Erk1/2, p70s6K, and eNOS in isoflurane-induced cardioprotection during early reperfusion in vivo. Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie 53:174-182; 2006.
    [17]Iliodromitis, E. K.; Georgiadis, M.; Cohen, M. V.; Downey, J. M.; Bofilis, E.; Kremastinos, D. T. Protection from postconditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Research in Cardiology 101:502-507; 2006.
    [18]Staat, P.; Rioufol, G.; Piot, C.; Cottin, Y.; Cung, T. T.; L'Huillier, I.; Aupetit, J. F.; Bonnefoy, E.; Finet, G.; Andre-Fouet, X.; Ovize, M. Postconditioning the human heart. Circulation 112:2143-2148; 2005.
    [19]Yamashima, T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Progress in Neurobiology 62:273-295; 2000.
    [20]Chen, J.; Nagayama, T.; Jin, K. L.; Stetler, R. A.; Zhu, R. L.; Graham, S. H.; Simon, R. P. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. Journal of Neuroscience 18:4914-4928; 1998.
    [21]Noshita, N.; Sugawara, T.; Hayashi, T.; Lewen, A.; Omar, G.; Chan, P. H. Copper/zinc superoxide dismutase attenuates neuronal cell death by preventing extracellular signal-regulated kinase activation after transient focal cerebral ischemia in mice. Journal of Neuroscience 22:7923-7930; 2002.
    [22]Shimohata, T.; Zhao, H.; Steinberg, G.K. epsilon PKC may contribute to the protective effect of hypothermia in a rat focal cerebral ischemia model. Stroke 38:375-380; 2007.
    [23]Shimohata, T.; Zhao, H.; Sung, J. H.; Sun, G.H.; Mochly-Rosen, D.; Steinberg,G.K. Suppression of delta PKC activation after focal cerebral ischemia contributes to the protective effect of hypothermia. Journal of Cerebral Blood Flow and Metabolism 27:1463-1475; 2007.
    [24]Zhao, H.; Shimohata, T.; Wang, J. Q.; Sun, G. H.; Schaal, D. W.; Sapolsky, R. M.; Steinberg, G. K. Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats. Journal of Neuroscience 25:9794-9806; 2005.
    [25]Gao, X. W.; Ren, C. C.; Zhao, H. Protective effects of ischemic postconditioning compared with gradual reperfusion or preconditioning. Journal of Neuroscience Research 86:2505-2511; 2008.
    [26]Kitagawa, K.; Matsumoto, M.; Tagaya, M.; Hata, R.; Ueda, H.; Niinobe, M.; Handa, N.; Fukunaga, R.; Kimura, K.; Mikoshiba, K.; Kamada, T. Ischemic tolerance phenomenon found in the brain. Brain research 528:21-24; 1990.
    [27]Kuzuya, T.; Hoshida, S.; Yamashita, N.; Fuji, H.; Oe, H.; Hori, M.; Kamada, T.; Tada, M. Delayed-effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circulation Research 72:1293-1299; 1993.
    [28]Dietrich, W. D.; Busto, R.; Alonso, O.; Globus, M. Y.; Ginsberg, M. D. Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. Journal of Cerebral Blood Flow and Metabolism 13:541-549; 1993.
    [29]Dumas, T. C.; Sapolsky, R. M. Gene therapy against neurological insults:sparing neurons versus sparing function. Trends in Neurosciences 24:695-700; 2001.
    [30]Vinten-Johansen, J.; Zhao, Z. Q.; Zatta, A. J.; Kin, H.; Halkos, M. E.; Kerendi, F. Postconditioning-A new link in nature's armor against myocardial ischemia-reperfusion injury. Basic Research in Cardiology 100:295-310; 2005.
    [31]Zhao, H.; Sapolsky, R. M.; Steinberg, G. K. Interrupting reperfusion as a stroke therapy:ischemic postconditioning reduces infarct size after focal ischemia in rats. Journal of Cerebral Blood Flow and Metabolism 26:1114-1121; 2006.
    [32]Taskapilioglu, M. O.; Alkan, T.; Goren, B.; Tureyen, K.; Sahin, S.; Taskapilioglu, O.; Korfali, E. Neuronal protective effects of focal ischemic pre-and/or postconditioning on the model of transient focal cerebral ischemia in rats. Journal of Clinical Neuroscience 16:693-697; 2009.
    [33]Xing, B. Z.; Chen, H.; Zhang, M.; Zhao, D. M.; Jiang, R.; Liu, X. H.; Zhang, S. M. Ischemic post-conditioning protects brain and reduces inflammation in a rat model of focal cerebral ischemia/reperfusion. Journal of" Neurochemistry 105:1737-1745; 2008.
    [34]Rehni, A. K.; Singh, N. Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice. Pharmacological Reports 59:192-198; 2007.
    [35]Wang, J. Y.; Shen, J.; Gao, Q.; Ye, Z. G.; Yang, S. Y.; Liang, H. W.; Bruce, I. C.; Luo, B. Y.; Xia, Q. Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats. Stroke 39:983-990; 2008.
    [36]Burda, J.; Danielisova, V.; Nemethova, M.; Gottlieb, M.; Matiasova, M.; Domorakova, I.; Mechirova, E.; Ferikova, M.; Salinas, M.; Burda, R. Delayed postconditionig initiates additive mechanism necessary for survival of selectively vulnerable neurons after transient ischemia in rat brain. Cellular and Molecular Neurobiology 26:1141-1151; 2006.
    [37]Scardi, M.; Cataudella, S.; Di Dato, P.; Fresi, E.; Tancioni, L. An expert system based on fish assemblages for evaluating the ecological quality of streams and rivers. Ecological Informatics 3:55-63; 2008.
    [38]Lo, E. H.; Broderick, J. P.; Moskowitz, M. A. TPA and proteolysis in the neurovascular unit. Stroke 35:354-356; 2004.
    [39]Smith, W. S.; Sung, G.; Starkman, S.; Saver, J. L.; Kidwell, C. S.; Gobin, Y. P.; Lutsep, H. L.; Nesbit, G. M.; Grobelny, T.; Rymer, M. M.; Silverman, I. E.; Higashida, R. T.; Budzik, R. F.; Marks, M. P.; Investigators, M. T. Safety and efficacy of mechanical embolectomy in acute ischemic stroke-Results of the MERCI trial. Stroke 36:1432-1438; 2005.
    [40]Fisher, M.; Brott, T. G. Emerging therapies for acute ischemic stroke-New therapies on trial. Stroke 34:359-361; 2003.
    [41]Chan, P. H. Role of oxidants in ischemic brain damage. Stroke 27:1124-1129; 1996.
    [42]Yang, G. Y.; Betz, A. L. Reperfusion-induced injury to the blood-brain-barrier after middle cerebral-artery occlusion in rats. Stroke 25:1658-1664; 1994.
    [43]Aronowski, J.; Strong, R.; Grotta, J. C. Reperfusion injury:Demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. Journal of Cerebral Blood Flow and Metabolism 17:1048-1056; 1997.
    [44]Kaur, J.; Zhao, Z. G.; Klein, G. M.; Lo, E. H.; Buchan, A. M. The neurotoxicity of tissue plasminogen activator? Journal of Cerebral Blood Flow and Metabolism 24:945-963; 2004.
    [45]Wang, J. K.; Yu, L. N.; Zhang, F. J.; Yang, M. J.; Yu, J.; Yan, M.; Chen, G. Postconditioning with sevoflurane protects against focal cerebral ischemia and reperfusion injury via PI3K/Akt pathway. Brain research 1357:142-151; 2010.
    [46]Yuan, Y; Guo, Q.; Ye, Z.; Pingping, X.; Wang, N.; Song, Z. Ischemic postconditioning protects brain from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis through PI3K-Akt pathway. Brain research 1367:85-93; 2010.
    [47]Scartabelli, T.; Gerace, E.; Landucci, E.; Moroni, F.; Pellegrini-Giampietro, D. E. Neuroprotection by group I mGlu receptors in a rat hippocampal slice model of cerebral ischemia is associated with the PI3K-Akt signaling pathway:a novel postconditioning strategy? Neuropharmacology 55:509-516; 2008.
    [48]Casabona, G. Intracellular signal modulation:A pivotal role for protein kinase C. Progress in Neuro-Psychopharmacology & Biological Psychiatry 21:407-425; 1997.
    [49]Sawe, N.; Steinberg, G.; Zhao, H. Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. Journal of Neuro science Research 86:1659-1669; 2008.
    [50]Domoki, F.; Bari, F.; Nagy, K.; Busija, D. W.; Siklos, L. Diazoxide prevents mitochondrial swelling and Ca2+ accumulation in CA1 pyramidal cells after cerebral ischemia in newborn pigs. Brain research 1019:97-104; 2004.
    [51]Robin, E.; Simerabet, M.; Hassoun, S. M.; Adamczyk, S.; Tavernier, B.; Vallet, B.; Bordet, R.; Lebuffe, G. Postconditioning in focal cerebral ischemia:role of the mitochondrial ATP-dependent potassium channel. Brain research 1375:137-146; 2010.
    [52]Lee, J. J.; Li, L. L.; Jung, H. H.; Zuo, Z. Y. Postconditioning with isoflurane reduced ischemia-induced brain injury in rats. Anesthesiology 108:1055-1062; 2008.
    [531 Xing, B.; Chen, H.; Zhang, M.; Zhao, D.; Jiang, R.; Liu, X.; Zhang, S. Ischemic post-conditioning protects brain and reduces inflammation in a rat model of focal cerebral ischemia/reperfusion. Journal of Neurochemistry 105:1737-1745; 2008.
    [54]Abas, F.; Alkan, T.; Goren, B.; Taskapilioglu, O.; Sarandol, E.; Tolunay, S. Neuroprotective effects of postconditioning on lipid peroxidation and apoptosis after focal cerebral ischemia/reperfusion injury in rats. Turkish Neurosurgery 20:1-8; 2010.
    [55]Danielisova, V.; Gottlieb, M.; Nemethova, M.; Burda, J. Effects of bradykinin postconditioning on endogenous antioxidant enzyme activity after transient forebrain ischemia in rat. Neurochemical Research 33:1057-1064; 2008.
    [56]Nemethova, M.; Danielisova, V.; Gottlieb, M.; Kravcukova, P.; Burda, J. Ischemic postconditioning in the rat hippocampus:mapping of proteins involved in reversal of delayed neuronal death. Archives Italiennes de Biologie 148:23-32; 2010.
    [57]Feng, R.; Li, S.; Li, F. Toll-like receptor 4 is involved in ischemic tolerance of postconditioning in hippocampus of tree shrews to thrombotic cerebral ischemia. Brain research; 2010.
    [58]Yoshimura, S.; Enomoto, Y.; Kitajima, H.; Yamada, J.; Kaku, Y.; Iwama, T. Carotid-compression technique for the insertion of guiding catheters. American Journal of Neuroradiology 27:1710-1711; 2006.
    [59]Sakakibara, Y.; Kuramoto, K.; Jikuya, T.; Sato, F.; Nakamura, K.; Abe, M.; Mitsui, T. An approach for acute disruption of large arteries in patients with advanced cervical cancer-Endoluminal balloon occlusion technique. Annals of Surgery 227:134-137; 1998.
    [60]Deriu, G. P.; Franceschi, L.; Milite, D.; Calabro, A.; Saia, A.; Grego, F.; Cognolato, D.; Frigatti, P.; Diana, M. Carotid artery endarterectomy in patients with contralateral carotid artery occlusion: perioperative hazards and late results. Annals of Vascular Surgery 8:337-342; 1994.
    [61]Andreka, G.; Vertesaljai, M.; Szantho, G.; Font, G.; Piroth, Z.; Fontos, G.; Juhasz, E. D.; Szekely, L.; Szelid, Z.; Turner, M. S.; Ashrafian, H.; Frenneaux, M. P.; Andreka, P. Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs. Heart 93:749-752; 2007.
    [62]Penna, C.; Mancardi, D.; Raimondo, S.; Geuna, S.; Pagliaro, P. The paradigm of postconditioning to protect the heart. Journal of Cellular and Molecular Medicine 12:435-458; 2008.
    [63]Clark, D. L.; Penner, M.; Orellana-Jordan, I. M.; Colbourne, F. Comparison of 12,24 and 48 h of systemic hypothermia on outcome after permanent focal ischemia in rat. Experimental Neurology 212:386-392; 2008.
    [64]Min, J.; Senut, M. C.; Rajanikant, K.; Greenberg, E.; Bandagi, R.; Zemke, D.; Mousa, A.; Kassab, M.; Farooq, M. U.; Gupta, R.; Majid, A. Differential neuroprotective effects of carnosine, anserine, and N-acetyl carnosine against permanent focal ischemia. Journal of Neuroscience Research 86:2984-2991; 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700