用户名: 密码: 验证码:
Mfn2基因抑制血管平滑肌细胞增殖的功能序列及肽研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     携带Mfn2基因不同结构序列的重组腺病毒的构建、扩增和纯化
     1.目的
     采用DNA重组技术,构建、制备、鉴定、扩增和纯化含线粒体融合素2基因(Mitofusin 2, Mfn2)不同结构序列的重组腺病毒。
     2.方法
     利用聚合酶链反应(Polymerase chain reaction, PCR)扩增大鼠Mfn2不同区段的互补DNA (cDNAs),将PCR产物连接到TA克隆载体(pCR8/GW/TOPO)上,筛选出含有正确片段的质粒。利用Gateway方法将含有正确片段的重组质粒与腺病毒目的质粒(pAd/CMV/V5-DEST),在LR Clonase的帮助下进行重组反应。用PacI将所得到的重组腺病毒载体切开,再利用脂质体(Lipofectamine 2000)包装后转染到293细胞中,产生重组的腺病毒。经测序鉴定无误后进行大量扩增,利用氯化铯密度梯度离心法,超高速离心纯化病毒,分装冻存于-80℃中。用紫外分光光度仪测定病毒液光密度(Optical density, OD)值,计算病毒滴度。采用Western blot方法检测目的基因在大鼠血管平滑肌细胞(Vascular smooth muscle cells, VSMCs)中的表达。
     3.结果
     8种目的基因结构序列(1A、2A、3A、4A、5A、6A、7A、8A)正确,通过PCR鉴定可检测到相应条带。8种重组腺病毒的滴度分别为27.8×109 pfu/ml、24×109 pfu/ml、19×109 pfu/ml、30.8×109 pfu/ml、6.7×109 pfu/ml、12.7×109 pfu/ml、27.6×109 pfu/ml、11.8×109 pfu/ml。Western blot检测结果显示相应的Mfn2蛋白表达。
     4.结论
     利用DNA重组技术可成功构建携带Mfn2基因不同结构序列的重组腺病毒,并通过扩增和纯化获得大量高滴度的病毒液,为进一步研究其对VSMCs增殖和凋亡的影响奠定了基础。
     第二部分
     Mfn2基因不同结构序列对血管平滑肌细胞增殖和凋亡的影响
     1.目的
     研究大鼠线粒体融合素2基因(Mitofusin 2, Mfn2)不同结构序列对大鼠血管平滑肌细胞(Vascular smooth muscle cells, VSMCs)增殖和凋亡的影响,寻找能有效抑制VSMCs增殖和促进凋亡的最小cDNA (scDNA),并探讨其相关的信号通路。
     2.方法
     利用携带Mfn2基因不同结构序列的重组腺病毒感染大鼠VSMCs.采用细胞计数法、水溶性四氮唑盐(WST-8,CCK-8)法比较其对VSMCs增殖的影响;流式细胞术比较各组细胞周期的变化;流式细胞术和细胞凋亡ELISA观察各组对VSMCs凋亡的影响;Western blot法分析各组磷酸化Raf-1 (p-Raf-1)、磷酸化ERK1/2 (p-ERK1/2)、磷酸化Akt (p-Akt)蛋白表达的变化。
     3.结果
     细胞计数和CCK-8结果显示,与对照组相比,Mfn2基因不同结构序列对VSMCs的增殖均有不同程度的抑制作用(P<0.01),其中以1A、4A和8A的抑制效果最明显;流式细胞仪细胞周期检测结果表明,Mfn2基因不同结构序列较对照组均能不同程度使VSMCs生长停滞于G0/G1期(P<0.01),其中以1A、4A和8A最为明显,进入S期的细胞比例分别为(59.85±3.26)%、(34.73±2.65)%和(60.73±2.69)%;流式细胞仪Annexin V-FITC细胞凋亡检测结果表明,与对照组相比,1A、4A和8A均有明显的促VSMCs凋亡作用(P<0.01),且呈时间依赖性(48h-72h);细胞凋亡ELISA结果显示,与对照组相比,1A、4A和8A均有显著的促VSMCs凋亡作用(P)<0.01); Western blot检测结果显示,1A、4A和8A的p-Raf-1、p-ERK1/2和p-Akt表达水平较对照组均有明显降低(P<0.01)。
     4.结论
     与Mfn2全长序列(8A, Adv-Mfn2)和去除穿膜区的Mfn2序列(4A, Adv-tMfn2)相比,Mfn2最小结构序列1A同样具有显著抑制VSMCs增殖的作用,使细胞周期停滞于G0/G1期,这一作用主要是使Ras-Raf-ERK1/2通路受到抑制,p-Raf-1和p-ERK1/2的表达下调,从而发挥抑制血管平滑肌细胞增殖的作用。此外,1A也具有促VSMCs凋亡的作用,该作用主要是通过抑制.Ras-PI3K-Akt信号通路而实现。
     第三部分
     Mfn2基因相关合成肽对血管平滑肌细胞增殖和凋亡的影响
     1.目的
     研究Mfn2基因相关合成肽(Mfn2 gene-related synthetic peptide, MRSP)对大鼠血管平滑肌细胞(Vascular smooth muscle cells, VSMCs)增殖和凋亡的影响,并探讨其相关的信号通路。
     2.方法
     在Mfn2最小功能序列1A的C端加上TAT穿膜多肽,人工合成MRSP。采用细胞计数法、水溶性四氮唑盐(WST-8, CCK-8)法观察不同浓度的MRSP(1μM、10μM、25μM、50μM、100μM)对VSMCs增殖的影响;流式细胞术比较不同浓度MRSP对VSMCs细胞周期的影响;细胞凋亡ELISA和流式细胞术观察MRSP对VSMCs凋亡的影响;Western blot法分析各组磷酸化Raf-1 (p-Raf-1)、磷酸化ERK1/2(p-ERK1/2)、磷酸化Akt (p-Akt)蛋白表达的变化。
     3.结果
     人工合成MRSP为白色冻干粉末,纯度97.2%,分子量3305,水溶性良好(PBS中的溶解度为1mg/ml)。细胞计数和CCK-8结果均显示,与对照组相比,MRSP在10μM~100μM范围内可成剂量和时间依赖性的抑制VSMCs的增殖(P<0.01)。流式细胞仪细胞周期检测结果表明,不同浓度的MRSP (10μM、25μM.50μM)较对照组均能使VSMCs生长停滞于G0/G1期(P<0.01),G0/G1期的细胞比例分别为(24.90±3.46)%、(36.85±3.57)%和(62.45±2.83)%;流式细胞仪Annexin V-FITC细胞凋亡检测结果表明,与对照组相比,随着时间的延长(24h、48h、72h),25μM MRSP可有效诱导VSMCs的凋亡,作用72h时的细胞凋亡率为(30.4±2.1)%(P<0.01);细胞凋亡ELISA结果表明,随着时间的延长,25μM MRSP与对照组相比有显著的促VSMCs凋亡作用(P<0.01);Western blot检测结果显示,与对照组相比,MRSP可成浓度依赖性(10μM、25μM、50μM)的抑制p-Raf-1、p-ERK1/2和p-Akt的表达水平(P<0.01)。
     4.结论
     根据Mfn2的最小功能序列人工合成的MRSP具有显著抑制VSMCs增殖的作用,使细胞周期停滞于G0/G1期,这一作用主要是使Ras-Raf-ERK1/2通路受到抑制,p-Raf-1和p-ERK1/2的表达下调,从而发挥抑制血管平滑肌细胞增殖的作用。此外,MRSP也具有促VSMCs凋亡的作用,该作用主要是通过抑制]Ras-PI3K-Akt信号通路而实现。
Construction, amplification and purification of recombinant adenoviruses containing various sequence structures of Mfn2
     1. Objective
     To construct, identify and purify the recombinant adenoviral vector containing various sequence structures of Mfn2.
     2. Methods
     Various complementary DNA (cDNA) was first amplified and subcloned into pCR8/GW/TOPO TA cloning plasmid. Subsequently, we performed LR recombination reaction between the pCR8/GW/TOPO-tMfn2 and pAd/CMV/V5-DEST to obtain the adenoviral expression vector. After packaging the pAd/CMV/V5-DEST-Mfn2 in 293 cells, the replication-defective adenovirus was produced. CsCl density gradient centrifugation was used to measure the titer of various adenovirus. Western blot analysis was used to confirm the expression of Mfn2 at the protein level.
     3. Results
     The recombinant adenoviruses which carried various sequence structures of Mfn2 (1 A, 2A,3A,4A,5A,6A,7A,8A) was successfully constructed and identified by PCR. The titer of recombinant adenoviruses was 27.8×109 pfu/ml,24×109 pfu/ml,19×109 pfu/ml, 30.8×109 pfu/ml,6.7×109 pfu/ml,12.7×109 pfu/ml,27.6×109 pfu/ml and 11.8×109 pfu/ml, respectively. Western blot analysis showed the expression of Mfn2 protein in infected vascular smooth muscle cells (VSMCs).
     4. Conclusions
     The recombinant adenoviruses which carried various sequence structures of Mfn2 can be successfully constructed by Recombinant DNA technology, which provides the basis for further study on the effect of various Mfn2 sequence structures on the proliferation and apoptosis of VSMCs.
     Part II
     Various sequence structures of Mfn2 on proliferation and apoptosis of vascular smooth muscle cells (VSMCs)
     1. Objective
     To investigate the effect of various sequence structures of Mfn2 on proliferation and apoptosis of vascular smooth muscle cells (VSMCs), seek the shortest complementary DNA (scDNA) that can both effectively inhibit proliferation of VSMCs and induce apoptosis of VSMCs and explore the potential molecular mechanisms.
     2. Methods
     VSMCs were infected by recombinant adenoviruses containing various sequence structures of Mfn2 (1A,2A,3A,4A,5A,6A,7A,8A). The effect of various sequence structures on proliferation of VSMCs were tested by cell counting and CCK-8, the cell cycle was observed by flow cytometry; Cell death ELISA and flow cytometry were used to investigate the effect on apoptosis of VSMCs. Western blot analysis was used to detect the expression of phosphorylation of Raf (p-Raf), ERK1/2 (p-ERK1/2) and protein kinase B (p-Akt).
     3. Results
     Cell counting and CCK-8 both indicated that various sequence structures of Mfn2 significantly inhibited proliferation of VSMCs (P<0.01). Most of the VSMCs were blocked in the stage of G0/G1 and few entered into the S phase in all sequence structures groups (P<0.01). Cell Death ELISA assay and flow cytometry both indicated that 1A,4A and 8A promoted apoptosis of VSMCs remarkably. Western blot analysis showed that 1A, 4A and 8A significantly down-regulated expression of phosphorylation of Raf (p-Raf), ERK1/2 (p-ERK1/2) and protein kinase B (p-Akt) (P<0.01).
     4. Conclusions
     1A is the shortest complementary DNA (scDNA) of Mfn2 that can both effectively inhibit proliferation of VSMCs via Ras-Raf-ERK1/2 signaling pathway and induce apoptosis of VSMCs via Ras-PI3K-Akt signaling pathway.
     PartⅢ
     Mfn2 gene-related synthetic peptide (MRSP) on proliferation and apoptosis of vascular smooth muscle cells (VSMCs)
     1. Objective
     To investigate the effect of Mfn2 gene-related synthetic peptide (MRSP) on proliferation and apoptosis of vascular smooth muscle cells (VSMCs) and the potential molecular mechanisms.
     2. Methods
     MRSP was synthesized according to the shortest complementary DNA (scDNA) of Mfn2 (1A) and TAT-PTD (transactiviting-protein transduction domain). VSMCs were cultured in DMEM containing MRSP of various concentration (1μM,10μM,25μM,50μM, 10μM). The effect of various concentration of MRSP on proliferation of VSMCs were tested by cell counting and CCK-8, the cell cycle was observed by flow cytometry;; Cell death ELISA and flow cytometry were used to investigate the effect on apoptosis of VSMCs. Western blot analysis was used to detect the expression of phosphorylation of Raf (p-Raf), ERK1/2 (p-ERK1/2) and protein kinase B (p-Akt).
     3. Results
     Cell counting and CCK-8 both indicated that MRSP caused a marked dose-dependent and time-dependent proliferation inhibitory effect on VSMCs from 10μM to 100μM (P< 0.01). Flow cytometry showed that most of the VSMCs were inhibited in the stage of G0/G1 and few cells entered into the S phase in all the three MRSP groups (P<0.01). Cell Death ELISA assay and flow cytometry both indicated that MRSP promoted apoptosis of VSMCs effectively. Western blot analysis showed that MRSP significantly down-regulated expression of phosphorylation of Raf (p-Raf), ERK1/2 (p-ERK1/2) and protein kinase B (p-Akt) (P<0.01).
     4. Conclusions
     The MRSP synthesized according to the shortest complementary DNA (scDNA) of Mfn2 can significantly inhibit the proliferation of VSMCs via the Ras-Raf-ERK1/2 signaling pathway, it can also effectively induce the apoptosis of VSMCs via the PI3K-Akt signaling pathway.
引文
1. 中华医学会心血管病学分会中华心血管病杂志编辑委员会.中国心血管病预防指南.中华心血管病杂志,2011,39(1):3-22.
    2. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics--2011 update:a report from the American Heart Association. Circulation,2011,123(4): e18-e209.
    3. Liang KW, Ting CT, Yin SC, et al. Berberine suppresses MEK/ERK-dependent Egr-1 signaling pathway and inhibits vascular smooth muscle cell regrowth after in vitro mechanical injury. Biochem Pharmacol,2006,71(6):806-817.
    4.廖华,糜涛,郭小梅.血管平滑肌细胞增殖信号转导通路与血管再狭窄防治.医药导报,2007,26(2):116-120.
    5. Braun-Dullaeus RC, Mann MJ, Dzau VJ. Cell cycle progression:new therapeutic target for vascular proliferative disease. Circulation,1998,98(1):82-89.
    6. Braun-Dullaeus RC, Mann MJ, Seay U, et al. Cell cycle protein expression in vascular smooth muscle cells in vitro and in vivo is regulated through phosphatidylinositol 3-kinase and mammalian target of rapamycin. Arterioscler Thromb Vasc Biol,2001, 21(7):1152-1158.
    7. Olson MF, Marais R. Ras protein signaling. Seminars in Immunology,2000,12(1): 63-73.
    8. Kavurma MM, Khachigian LM. ERK, JNK, and p38 MAP kinases differentially regulate proliferation and migration of phenotypically distinct smooth muscle cell subtypes. J Cell Biochem,2003,89(2):289-300.
    9. Guo YH, Chen K, Gao W, et al. Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit. Biochem Biophys Res Commun,2007, 363(2):411-417.
    10. Ross R. Atherosclerosis is an inflammatory disease. Am Heart J,1999,138(5 Pt 2): S419-S420.
    11. Dzau VJ, Braun-Dullaeus RC, Sedding DG Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med,2002,8(11):1249-1256.
    12. Andres V, Castro C. Antiproliferative strategies for the treatment of vascular proliferative disease. Curr Vase Pharmacol,2003,1(1):85-98.
    13. Charron T, Nili N, Strauss BH. The cell cycle:a critical therapeutic target to prevent vascular proliferative disease. Can J Cardiol,2006,22(Suppl B):41B-55B.
    14.陈光慧,张晨晖,汤健,等.一个新的高血压病相关基因的克隆和表达.中华医学杂志,1997,77(11):823-828.
    15. Chen GH, Wang FQ, Zhang JH, et al. Cloning and expression of a novel cDNA related to Hypertension. Chin Med J (Engl),1998,111(4):383-384.
    16. Hales KG, Fuller MT. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell,1997,90(1):121-129.
    17. Hermann GJ, Shaw JM. Mitochondrial dynamics in yeast. Annu Rev Cell Dev Biol, 1998,14:265-303.
    18. Chen KH, Guo XM, Ma DL, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol,2004,6(9):872-883.
    19. Chien KR. Unravelling Ras signals in cardiovascular disease. Nature Cell Biology, 2004,6(9):807-808.
    20. Guo XM, Chen KH, Liao H, et al. Mfn 2 Triggers Vascular Smooth Muscle Cell Apoptosis via Mitochondrial Death Pathway.Circ Res,2007,101 (11):1113-1122.
    21. Pawlikowska P, Gajkowska B, Orzechowski A. Mitofusin 2 (Mfn2):a key player in insulin-dependent myogenesis in vitro. Cell Tissue Res.2007,327(3):571-581.
    22. Santel A, Kaufmann J, Hyland R, et al. The initiator element of the Drosophila beta2 tubulin gene core promoter contributes to gene expression in vivo but is not required for male germ-cell specific expression. Nucleic Acids Res,2000,28(6):1439-1446.
    23. Rojo M, Emery G, Marjomaki V, et al. The transmembrane protein p23 contributes to the organization of the Golgi apparatus. J Cell Sci,2000,113 (Pt 6):1043-1057.
    24. Honda S, Sugita I, Miki K, et al. The semi-quantitative comparison of oxidative stress mediated DNA single and double strand breaks using terminal deoxynucleotidyl transferase mediated end labeling combined with a slot blot technique. Free Radic Res, 2004,38(5):481-485.
    25. Karbowski M, Lee YJ, Gaume B, et al. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J Cell Sci,2010,123(Pt 4):619-626.
    26. Brooks C, Wei Q, Feng L, et al. Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc Natl Acad Sci U S A, 2007,104(28):11649-11654.
    27.赵丽,周炜,王四坤,等.去除穿膜区序列的线粒体融合素2基因促进大鼠血管平滑肌细胞凋亡.中华心血管病杂志,2009,37(7):639-643.
    28.赵丽,王四坤,周炜,等tMfn2基因抑制血管平滑肌细胞增殖的作用与机制.中华急诊医学杂志,2009,18(8):805-809.
    29. Zhao Li, Zhou Wei, Chen Guang-hui, et al. tMfn2 gene induces apoptosis of vascular smooth muscle cells. CRTER.2009,13(41):8187-8191.
    1 Brito OM, Scorrano L. Mitofusin-2 regulates mitochondrial and endoplasmic reticulum morphology and tethering:the role of Ras. Mitochondrion,2009,9(3):222-226.
    2 Santel A. Get the balance right:mitofusins roles in health and disease. Biochim Biophys Acta,2006,1763(5-6):490-499.
    3 Zheng M, Xiao RP. Role of mitofusin 2 in cardiovascular oxidative injury. J Mol Med, 2010,88(10):987-991.
    4 Chen KH, Guo XM, Ma DL, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nature Cell Biology,2004,6:872-883.
    5 Guo XM, Chen KH, Liao H, et al. Mfn 2 Triggers Vascular Smooth Muscle Cell Apoptosis via Mitochondrial Death Pathway. Circulaton Research,2007, 101(11):1113-1122.
    6 赵丽,王四坤,周炜,等tMfn2基因抑制血管平滑肌细胞增殖的作用与机制.中华急诊医学杂志,2009,18(8):805-809.
    7 赵丽,周炜,王四坤,等.去除穿膜区序列的线粒体融合素2基因诱导大鼠血管平滑肌细胞凋亡.中华心血管病杂志,2009,37(7):639-643.
    8 Charron T, Nili N, Strauss BH. The cell cycle:a critical therapeutic target to prevent vascular proliferative disease. Can J Cardiol,2006,22(Suppl B):41B-55B.
    9 Chang MW, Leiden JM. Gene therapy for vascular proliferative disorders. Semin Interv Cardiol,1996,1(3):185-193.
    10 Cai X. Regulation of VSMCs in development and vascular disease:current therapeutic strategies. Expert Rev Cardiovasc Ther,2006,4(6):789-800.
    11廖华,糜涛,郭小梅.血管平滑肌细胞增殖信号转导通路与血管再狭窄防治.医药导报,2007,26(2):116-120.
    12 Inoue T, Node K. Molecular basis of restenosis and novel issues of drug-eluting stents. Circ J,2009,73(4):615-621.
    13 Morice WG, Wiederrecht G, Brunn GJ, et al. Rapamycin inhibition of interleukin-2-dependent p33cdk2 and p34cdc2 kinase activation in T lymphocytes. J Biol Chem,1993,268(30):22737-22745.
    14 Sollott SJ, Cheng L, Pauly RR, et al. Taxol inhibits neointimal smooth muscle cell accumulation after angioplasty in the rat. J Clin Invest,1995,95(4):1869-1876.
    15 Axel DI, Kunert W, Goggelmann C, et al. Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation,1997,96(2):636-645.
    16 Giordano A, Romano A. Inhibition of human in-stent restenosis:a molecular view. Curr Opin Pharmacol,2011 Apr 13. [Epub ahead of print].
    17 Chen GH, Wang FQ, Zhang JH, et al. Cloning and expression of a novel cDNA related to Hypertension. Chin Med J (Engl),1998,111(4):383-384.
    18 Molina I, Baars S, Brill JA, et al. A chromatin-associated kinesin-related protein required for normal mitotic chromosome segregation in Drosophila. J Cell Biol,1997, 139(6):1361-1371.
    19 Hermann GJ, Thatcher JW, Mills JP, et al. Mitochondrial Fusion in Yeast Requires the Transmembrane GTPase Fzolp. J Cell Biol,1998,143(2):359-373.
    20 Guo YH, Chen KH, Gao W, et al. Overexpression of Mfn2 inhibited oxidized low-density lipoprotein (ox-LDL) induced VSMCs proliferation and reduced atherosclerotic lesion formation in rabbit. BBRC,2007,363(2):411-417.
    21 Shen T, Chen C, Tang J, et al. Mfn2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. Journal of Biological Chemistry,2007,282(32): 23354-23361.
    22 Wu L, Zhang P, Zhu X, et al. Adenovirus-expressed human HSG induces apoptosis in cancer cells. Mol Cancer Ther,2008,7(1):222-232.
    23 Jin B, Fu G, Pan H, et al. Anti-tumour efficacy of mitofusin-2 in urinary bladder carcinoma. Med Oncol,2010 [Epub ahead of print].
    24夏耘,吴亚群,龙浩成,等.线粒体融合素基因-2对乳腺癌细胞增殖的影响及其机制.中华实验外科杂志,2008,25(1):9-11.
    25夏耘,吴亚群,郑启昌,等.线粒体融合素基因-2对乳腺癌细胞凋亡的影响.中华肿瘤杂志,2007,29(9):653-656.
    26 Burova E, Ioffe E. Chromatographic purification of recombinant adenoviral and adeno-associated viral vectors:methods and implications. Gene Ther,2005,12(Suppl 1):S5-S17.
    27 Xu ZL, Mizuguchi H, Mayumi T, et al. Regulated gene expression from adenovirus vectors:a systematic comparison of various inducible systems. Gene,2003,309(2): 145-151.
    1.赵丽,王四坤,周炜,等. tMfn2基因抑制血管平滑肌细胞增殖的作用与机制.中华急诊医学杂志,2009,18(8):805-809.
    2.赵丽,周炜,王四坤,等.去除穿膜区序列的线粒体融合素2基因促进大鼠血管平滑肌细胞凋亡.中华心血管病杂志,2009,37(7):639-643.
    3. Koshiba T, McCaffery JM, Chan DC, et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science,2004,305(5685):858-862.
    4. Brito OM, Scorrano L. Mitofusin-2 regulates mitochondrial and endoplasmic reticulum morphology and tethering:the role of Ras. Mitochondrion,2009,9(3):222-226.
    5. Song Z, Ghochani M, McCaffery JM, et al. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell,2009,20(15):3525-3532.
    6. Merkwirth C, Langer T. Mitofusin 2 Builds a Bridge between ER and Mitochondria. Cell,2008,135(7):1165-1167.
    7. de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature,2008,456(7222):605-610.
    8. Chen KH, Guo XM, Ma DL, Guo Y, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nature Cell Biology,2004,6(9):872-883.
    9. Chien KR. Unravelling Ras signals in cardiovascular disease. Nature Cell Biology, 2004,6(9):807-808.
    10. Guo XM, Chen KH, Liao H, et al. Mfn2 Triggers Vascular Smooth Muscle Cell Apoptosis via Mitochondrial Death Pathway.Circ Res,2007,101(11):1113-1122.
    11. Santel A, Kaufmann J, Hyland R, et al. The initiator element of the Drosophila beta2 tubulin gene core promoter contributes to gene expression in vivo but is not required for male germ-cell specific expression. Nucleic Acids Res,2000,28(6):1439-1446.
    12. Rojo M, Emery G, Marjomaki V, et al. The transmembrane protein p23 contributes to the organization of the Golgi apparatus. J Cell Sci,2000,113 (Pt 6):1043-1057.
    13. Honda S, Sugita I, Miki K, et al. The semi-quantitative comparison of oxidative stress mediated DNA single and double strand breaks using terminal deoxynucleotidyl transferase mediated end labeling combined with a slot blot technique. Free Radic Res, 2004,38(5):481-485.
    14. Grewe PH, Deneke T, Muller KM. Stent-induced changes of coronary morphology--pathologic-anatomic and experimental findings after balloon expansion. Z Kardiol,2001,90(9):630-636.
    15. Farb A, Lindsay J Jr, Virmani R. Pathology of bailout coronary stenting in human beings. Am Heart J,1999,137(4 Pt 1):621-631.
    16.廖华,糜涛,郭小梅.血管平滑肌细胞增殖信号转导通路与血管再狭窄防治.医药导报,2007,26(2):116-120.
    17. Wang H, Yoshizumi M, Lai K, et al. Inhibition of growth and p21ras methylation in vascular endothelial cells by homocysteine but not cysteine. J Biol Chem,1997, 272(40):25380-25385.
    18. Izumi Y, Kim S, Yoshiyama M, et al. Activation of apoptosis signal-regulating kinase 1 in injured artery and its critical role in neointimal hyperplasia. Circulation,2003, 108(22):2812-2818.
    19. Martelli AM, Falcieri E, Zweyer M, et al. The controversial nuclear matrix:a balanced point of view. Histol Histopathol,2002,17(4):1193-1205.
    20. Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT--a major therapeutic target. Biochim Biophys Acta,2004,1697(1-2):3-16.
    21. Giordano A, Romano A. Inhibition of human in-stent restenosis:a molecular view. Curr Opin Pharmacol,2011 Apr 13. [Epub ahead of print].
    22. Inoue T, Node K. Molecular basis of restenosis and novel issues of drug-eluting stents. Circ J,2009,73(4):615-621.
    1.中华医学会心血管病学分会中华心血管病杂志编辑委员会.经皮冠状动脉介入治疗指南(2009).中华心血管病杂志,2009,37(1):4-25.
    2. Cutlip DE, Mehran R, Vranckx P. FAME and coronary stent investigations:is there a kink in the wire? J Am Coll Cardiol,2011,57(1):115-116.
    3. Schofer J, Bode C, Silber S. Drug-eluting stents for in-stent restenosis and acute myocardial infarction:present data from nonrandomized studies. Herz,2004, 29(2):195-200.
    4. Colombo A, Gerber RT. Should dual antiplatelet therapy after drug-eluting stents be continued for more than 1 year?:Dual antiplatelet therapy after drug-eluting stents should not be continued for more than 1 year and preferably indefinitely. Circ Cardiovasc Interv,2008, 1(3):226-232.
    5. Claudio PP, Fratta L, Farina F, et al. Adenoviral RB2/p130 gene transfer inhibits smooth muscle cell proliferation and prevents restenosis after angioplasty. Circ Res,1999, 85(11):1032-1039.
    6. Jin G, Chieh-Hsi Wu J, Li YS, et al. Effects of active and negative mutants of Ras on rat arterial neointima formation. J Surg Res,2000,94(2):124-132.
    7. Wu CH, Lin CS, Hung JS, et al. Inhibition of neointimal formation in porcine coronary artery by a Ras mutant. J Surg Res,2001,99(1):100-106.
    8. Chen KH, Guo XM, Ma DL, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nature Cell Biology,2004,6(9):872-883.
    9. Chi en KR. Unravelling Ras signals in cardiovascular disease. Nature Cell Biology, 2004,6(9):807-808.
    10. Check E. Gene therapy:shining hopes dented-but not dashed. Nature,2002,420(6917): 735.
    11.岳立辉,郭娜,赵砚丽.TAT蛋白转导结构域的研究进展.国际麻醉学与复苏杂志, 2009,30(6):580-582.
    12. Pei DS, Wang XT, Liu Y, et al. Neuroprotection against ischaemic brain injury by a GluR6-9c peptide containing the TAT protein transduction sequence. Brain,2006, 129(Pt 2):465-479.
    13.Hotchkiss RS, McConnell KW, Bullok K, et al. TAT-BH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo. J Immunol,2006, 176(9):5471-5477.
    1.陈光慧,刘乃奎,周爱儒,等.高血压相关基因(HRG-1)在心血管病发病中的作用.Chin Med J (Engl),2001,114(8):833-836.
    2. Chen GH, Wang FQ, Zhang JH, et al. Cloning and expression of a novel cDNA related to Hypertension. Chin Med J (Engl),1998,111(4):383-384.
    3.陈光慧,张晨晖,朱燕青,等.一个新的高血压病相关基因的克隆和表达.中华医学杂志,1997,77(11):823-828.
    4. Molina I, Baars S, Brill JA, et al. A chromatin-associated kinesin-related protein required for normal mitotic chromosome segregation in Drosophila. J Cell Biol,1997, 139(6):1361-1371.
    5. Hermann GJ, Shaw JM. Mitochondrial dynamics in yeast. Annu Rev Cell Dev Biol, 1998,14:265-303.
    6. Santel A, Kaufmann J, Hyland R, et al. The initiator element of the Drosophila beta2 tubulin gene core promoter contributes to gene expression in vivo but is not required for male germ-cell specific expression. Nucleic Acids Res,2000,28(6):1439-1446.
    7. Koshiba T, Detmer SA, Kaiser JT, et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science,2004,305(5685):858-862.
    8. Liesa M, Sebastian D, Segales J, et al. Mitochondrial fusion proteins:dual regulators of morphology and metabolism. Semin Cell Dev Biol,2010,21(6):566-574.
    9. Song Z, Ghochani M, McCaffery JM, et al. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell,2009,20(15):3525-3532.
    10. Danino D, Hinshaw JE. Dynamin family of mechanoenzymes. Curr Opin Cell Biol, 2001,13(4):454-460.
    11. Westermann B. Mitochondrial membrane fusion. Biochim Biophys Acta,2003, 1641(2-3):195-202.
    12. Osteryoung KW, Nunnari J. The division of endosymbiotic organelles. Science,2003, 302(5651):1698-1704.
    13.Hwa JJ, Hiller MA, Fuller MT, et al. Differential expression of the Drosophila mitofusin genes fuzzy onions (fzo) and dmfn. Mech Dev,2002,116(1-2):213-216.
    14. Poole AC, Thomas RE, Yu S, et al. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One,2010,5(4):e10054.
    15. Castanier C, Garcin D, Vazquez A, et al. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep,2010,11(2):133-138.
    16. Park YY, Lee S, Karbowski M, et al. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J Cell Sci,2010,123(Pt 4):619-626.
    17. Chen KH, Guo X, Ma D, Guo Y, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol,2004,6(9):872-883.
    18. Honda S, Sugita I, Miki K, et al. The semi-quantitative comparison of oxidative stress mediated DNA single and double strand breaks using terminal deoxynucleotidyl transferase mediated end labeling combined with a slot blot technique. Free Radic Res, 2004,38(5):481-485.
    19. Rojo M, Emery G, Marjomaki V, et al. The transmembrane protein p23 contributes to the organization of the Golgi apparatus. J Cell Sci,2000,113 (Pt 6):1043-1057.
    20. Brito OM, Scorrano L. Mitofusin-2 regulates mitochondrial and endoplasmic reticulum morphology and tethering:the role of Ras. Mitochondrion,2009,9(3):222-226.
    21.王萍,毋丽娜,蒋春笋,等.HSG对肿瘤细胞系化疗敏感性的作用.北京大学学报,2005,37(2):117-120.
    22.丁焕然,姜广建,马小兵,等.线粒体融合蛋白-2在非小细胞肺癌组织中的表达及其临床意义.肿瘤,2009,29(12):1129-1132.
    23.付玉环,姜广建,夏庆安.增殖抑制基因在乳腺癌组织中的表达及其意义.肿瘤,2008,28(9):799-801.
    24.郭桃英,潘玫.卵巢上皮性癌组织中线粒体融合蛋白2与VEGF的表达及其临床意义.南昌大学学报(医学版),2010,50(12):89-98.
    25.艾建中,姜广建,李玉红.增殖抑制基因在结直肠癌中的表达及其意义.肿瘤防治研究,2007,34(10):762-763.
    26.郝文炯,刘国华,孙涛,等.大鼠HSG表达变化与脑恶性胶质瘤生长的关系.肿瘤,2009,29(3):235-239.
    27. Bach D, Naon D, Pich S, et al. Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2 A gene, in human skeletal muscle:effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes,2005,54(9):2685-2693.
    28. Liang KW, Ting CT, Yin SC, et al. Berberine suppresses MEK/ERK-dependent Egr-1 signaling pathway and inhibits vascular smooth muscle cell regrowth after in vitro mechanical injury. Biochem Pharmacol,2006,71(6):806-817.
    29.廖华,糜涛,郭小梅.血管平滑肌细胞增殖信号转导通路与血管再狭窄防治.医药导报,2007,26(2):116-120.
    30. Braun-Dullaeus RC, Mann MJ, Dzau VJ. Cell cycle progression:new therapeutic target for vascular proliferative disease. Circulation,1998,98(1):82-89.
    31. Brito OM, Scorrano L. Mitofusin-2 regulates mitochondrial and endoplasmic reticulum morphology and tethering:the role of Ras. Mitochondrion,2009,9(3):222-226.
    32. Zheng M, Xiao RP. Role of mitofusin 2 in cardiovascular oxidative injury. Role of mitofusin 2 in cardiovascular oxidative injury. J Mol Med,2010,88(10):987-991.
    33. Zheng M, Xiao RP. Role of mitofusin 2 in cardiovascular oxidative injury. J Mol Med, 2010,88(10):987-991.
    34.温绍君,王佐广,陈光慧,等.增殖抑制基因上游调控序列单核苷酸多态性的发现及其与高血压的关联.首都医科大学学报,2004,25(4):464-468.
    35.温绍君,陈光慧,王佐广,等.线粒体融合素基因-2单核苷酸多态性与原发性高血压的相关性研究.中华预防医学杂志,2005,39(1):15-18.
    36.刘亚萍,温绍君,刘雅.原发性高血压患者血管平滑肌细胞增殖中HSG的作用.中华心血管病杂志,2007,35(10):914-918.
    37. Guo YH, Chen KH, Gao W, et al. Overexpression of Mfn2 inhibited oxidized low-density lipoprotein (ox-LDL) induced VSMCs proliferation and reduced atherosclerotic lesion formation in rabbit. BBRC,2007,363(2):411-417.
    38.廖华,曹文静,陈莉莉,等.腺病毒介导的Mitofusin 2基因诱导大鼠颈动脉球囊损伤后血管平滑肌细胞凋亡.中华急诊医学杂志,2006,15(6):506-509.
    39.李鹏飞,郭艳红,李黔,等.腺病毒介导的大鼠增殖抑制基因转染对自发性高血压大鼠血管平滑肌细胞增殖的影响.北京大学学报,2004,36(3):259-262.
    40. Guo XM, Chen KH, Liao H, et al. Mfn 2 Triggers Vascular Smooth Muscle Cell Apoptosis via Mitochondrial Death Pathway.Circ Res,2007,101(11):1113-1122.
    41.刘成,陈莉莉,陈光慧,等.线粒体融合素基因-2抑制Ras-PI3K-Akt信号途径诱导大鼠血管平滑肌细胞凋亡.华中科技大学学报(医学版),2007,36(2):187-280.
    42.李俐,王剑明,郭小梅,等.线粒体融合素基因-2促进大鼠血管平滑肌细胞凋亡的作用及机制.华中科技大学学报(医学版),2007,36(1):57-70.
    43.郭艳红,于海奕,李黔,等.增殖抑制基因HSG诱导大鼠血管平滑肌细胞凋亡.北京大学学报,2007,39(4):394-398.
    44.赵丽,周炜,王四坤,等.去除穿膜区序列的线粒体融合素2基因促进大鼠血管平滑肌细胞凋亡.中华心血管病杂志,2009,37(7):639-643.
    45.赵丽,王四坤,周炜,等tMfn2基因抑制血管平滑肌细胞增殖的作用与机制.中华急诊医学杂志,2009,18(8):805-809.
    46. Zhao Li, Zhou Wei, Chen Guang-hui, et al. tMfn2 gene induces apoptosis of vascular smooth muscle cells. CRTER.2009,13(41):8187-8191.
    47. Zhou W, Zeng JW, Liao H, et al. PKA phosphorylation site Mutation influences the anti-proliferative activity of Mfn2. Atherosclerosis,2010,211(1):216-223.
    48. Chien KR. Unravelling Ras signals in cardiovascular disease. Nature Cell Biology, 2004,6(9):807-808.
    49. Fang L, Gao XM, Dart AM, et al. Downregulation of Mfn2 expression in cardiac hypertrophy in vitro and in vivo. Life Science,2007,80(23):2154-2160.
    50.陈春蕾,沈涛,郑铭,等.线粒体融合蛋白Mfn2对心肌细胞肥大的抑制作用.北京大学学报(医学版),2008,40(5):528-532.
    51. Shen T, Chen C, Tang J, et al. Mfn2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. Journal of Biological Chemistry,2007,282(32): 23354-23361.
    52. Hofmann WK, Miller CW, Tsukasaki K, et al. Mutation analysis of the DNA-damage checkpoint gene CHK2 in myelodysplastic syndromes and acute myeloid leukemias. Leuk Res,2001,25(4):333-338.
    53. Wu L, Zhang P, Zhu X, et al. Adenovirus-expressed human HSG induces apoptosis in cancer cells. Mol Cancer Ther,2008,7(1):222-232.
    54.夏耘,龚建平,裘法祖,等.Mfn2基因对人乳腺癌细胞株MCF-7增殖和化疗敏感性的影响.癌症,2007,26(8):815-819.
    55.张勇,郑启昌,王尧.线粒体融合素基因-2对乳腺癌细胞RECK基因表达的影响.肿瘤防治研究,2009,36(10):818-820.
    56.夏耘,吴亚群,龙浩成,等.Mfn2基因对乳腺癌细胞增殖的影响及其机制.中华实 验外科杂志,2008,25(1):9-11.
    57.夏耘,吴亚群,郑启昌.线粒体融合素基因-2对乳腺癌细胞凋亡的影响.中华肿瘤杂志,2007,29(9):653-656.
    58.付玉环,夏庆安,姜广建.线粒体融合素基因-2与乳腺癌浸润和转移的相关性.第四军医大学学报,2008,29(12):1128-1130.
    59.艾建中,姜广建,李玉红.增殖抑制基因在结直肠癌中的表达及其意义.肿瘤防治研究,2007,34(10):762-776.
    60.毋丽娜,李志新,卢恬.人增殖抑制基因(hHSG)联合热处理对结肠癌细胞系HT-29的体外诱导凋亡效应.北京大学学报(医学版),2008,40(5):524-527.
    61.夏耘,龚建平,吴亚群.线粒体融合素-2对裸鼠成瘤性及增殖、转移的影响.中华实验外科杂志,2009,26(4):419-421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700