用户名: 密码: 验证码:
肝细胞生长因子基因修饰的骨髓间充质干细胞移植的促血管新生作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分人肝细胞生长因子重组慢病毒载体的构建及病毒的制备
     目的:构建能表达重组人肝细胞生长因子(rhHGF)基因的第三代慢病毒载体,为实现rhHGF基因在大鼠骨髓间充质干细胞中长期、高效的表达奠定基础。
     方法:(1)通过NheI/XbaI双酶切将pRNAT-U6.2慢病毒载体质粒中GFP基因敲除,然后将目的基因hHGF连接到该载体质粒上,构建重组载体质粒pRNAT-U6.2-hHGF。通过限制性内切酶酶切、菌落PCR和DNA测序进行鉴定。(2)利用TELEVECTORTM载体试剂盒将pRNAT-U6.2-hHGF联合辅助质粒pMDLg/pRRE、pMD2G-VSVG、pRSV-Rev共转染293T细胞,收集并浓缩慢病毒上清,逐孔稀释法测病毒滴度。
     结果:(1)经限制性内切酶酶切及DNA测序分析表明,目的基因hHGF-cDNA已经插入载体质粒,且基因序列与基因库序列完全一致;(2)成功制备表达hHGF的慢病毒颗粒浓缩液,滴度为4×108Tu/ml。
     结论:表达人肝细胞生长因子的第三代重组慢病毒载体pRNAT-U6.2-hHGF构建成功。
     第二部分人肝细胞生长因子在大鼠骨髓间充质干细胞中的表达及生物学活性观察
     目的:观察慢病毒载体介导的人肝细胞生长因子(hHGF)基因在骨髓间充质干细胞(BM-MSCs)中的表达及其生物学活性。
     方法:(1)利用差速贴壁法联合Percoll密度梯度离心法分离、纯化大鼠原代BM-MSCs,流式鉴定MSC的表型,茜素红染色和油红O染色鉴定BM-MSCs的成骨、成脂分化潜能。(2)用高滴度表达hHGF (Lenti-HGF)或GFP (Lenti-GFP)的慢病毒液感染第三代的BM-MSCs,通过倒置相差荧光显微镜和流式鉴定来评估转染效率。ELISA检测细胞培养基上清中的hHGF浓度。(3)分别通过MTT法、Transwell小室法和Hoechst染色法检测脐静脉内皮细胞(HUVECs)和血管平滑肌细胞(VSMCs)的增殖、迁移及凋亡,评估感染Lenti-HGF的BM-MSCs分泌的hHGF的生物学活性。
     结果:(1)通过联合差速贴壁法和密度梯度离心法可获得大量高纯度、具有多向分化潜能的BM-MSCs。(2)在转染Lenti-GFP后72h,即可在荧光显微镜下见明亮的绿色荧光,最佳感染复数(MOI)为50,流式鉴定转染效率约为75%。ELISA结果显示,Lenti-HGF感染BM-MSCs的培养上清液中的hHGF可持续较高水平地表达14d以上,且明显高于感染Lenti-GFP者(P<0.01)。(3)感染Lenti-HGF的MSCs分泌的hHGF在体外显示出促HUVECs增殖、迁移并抑制其凋亡,且能促进VSMCs迁移的生物学活性。
     结论:Lenti-HGF慢病毒能够高效地介导转移外源基因hHGF至BM-MSCs表达,并具有生物学活性。
     第三部分肝细胞生长因子基因修饰的骨髓间充质干细胞移植的促血管新生作用
     目的:比较hHGF基因修饰的BM-MSCs移植与单纯BM-MSCs移植在大鼠后肢缺血模型中的促血管新生作用及其机制。
     方法:在结扎左股动脉及其分支1天后,SD大鼠随机分为3组:HGF-MSC组(即HGF基因修饰的MSCs移植,n=8),MSC组(单纯的MSCs移植,n=8)以及PBS对照组(注射PBS,n=8)。在术后7天,进行细胞移植。实验组每只大鼠接受总计5×106个同一来源的HGF-MSCs或MSCs,分成5个点注入大鼠缺血后肢的股部肌肉;对照组注入同等体积的无菌PBS。分别在处理后1周或3周时处死大鼠,比较各组缺血股部肌肉中的毛细血管密度,移植细胞的分化转归,T淋巴细胞浸润以及生长因子HGF、VEGF蛋白表达等。ELISA检测HGF-MSC移植前和移植3周后大鼠血清HGF的水平。
     结果:细胞移植3周后,MSC组和HGF-MSC组缺血肌肉组织的血管新生均明显增强,以HGF-MSC组的毛细血管密度最高(P<0.05)。从移植后1周开始,HGF-MSC组缺血组织中来源于移植细胞的内皮细胞数目明显高于MSC组(P<0.05)。在移植1周后,HGF-MSC和MSC的同种异体移植几乎不引起T淋巴细胞浸润,与PBS组相近(P>0.05)。Western-blot结果显示,MSC组和HGF-MSC组缺血肌肉组织中HGF、VEGF蛋白表达均明显高于PBS对照组,以HGF-MSC组的表达量最高(P<0.05)。HGF-MSC移植前和移植后3周,大鼠血清HGF浓度无明显变化(P>0.05)。
     结论:与单纯的MSC细胞移植疗法相比,HGF基因修饰的MSC移植疗法具有更强的促进血管新生和侧枝血管形成的能力。以干细胞为基础的血管新生基因治疗策略将可能为治疗严重缺血性心血管病提供新思路。
Part I Construction of recombinant lentiviral vector carrying human hepatocyte growth factor gene
     Objective:To construct a third-generation lentiviral vector carrying human hepatocyte growth factor (hHGF) for transfection.
     Methods:Lentiviral vector plasmid carrying human HGF (pRNAT-U6.2-hHGF) was generated by removal of green fluorescence protein (GFP) gene from pRNAT-U6.2 plasmid by NheI/XbaI digestion and ligation of human HGF cDNA, which was identified by restriction endonuclease analysis, PCR and DNA sequence analysis. Recombinant plasmid pRNAT-U6.2-hHGF was co-transfected into 293T cells with the helper plasmids pMDLg/pRRE, pMD2G-VSVG and pRSV-Rev using the TELEVECTOR Lentiviral Vector Easy-high Production kit. The recombinant lentiviral stock (Lenti-HGF) was generated, concentrated, and then the titer was determined.
     Results:The hHGF cDNA was identical to that of GeneBank. Recombinant lentiviral plasmid pRNAT-U6.2-hHGF was successfully constructed, and the titer of Lenti-HGF was 4×108Tu/ml.
     Conclusion:Recombinant third-generation lentiviral vector plasmid carrying hHGF (pRNAT-U6.2-hHGF) was constructed successfully.
     PartⅡExpression of human hepatocyte growth factor in primary rat bone marrow-derived mesenchymal stem cells and its biological activity
     Objective:To explore the usability of lentiviral vector mediated human hepatocyte growth factor (hHGF) gene delivery into bone marrow-derived mesenchymal stem cells (BM-MSCs), and to observe its expression and biological activity.
     Methods:(1) Primary rat BM-MSCs was isolated, expanded and purified by taking advantage of their differential adherence to dishes combined with Percoll density gradient centrifugation technique. MSC phenotype was analyzed by flow cytometry. Meanwhile, potency of MSCs differentiation into osteocytes and adipocytes were determined by alizarin red S staining and oil red O staining. (2) The third passage MSCs were transfected by high titer lentiviral stocks expressing human HGF (Lenti-HGF) or GFP (Lenti-GFP), and the transfection efficiency was assessed by fluorescent microscope observation and flow cytometry analysis. The concentration of hHGF in cell culture medium supernatants was determined by enzyme linked immunosorbent assay (ELISA). (3) Biological activity of hHGF secreted from Lenti-HGF infected BM-MSCs was determined by MTT cell proliferation assay, Transwell chamber migration assay and Hoechst staining.
     Results:(1) Plenty of highly purified BM-MSCs were achieved by the combined methods. (2) Bright green fluorescence in the MSC was observed under the fluorescent microscope after 72h transfected with Lenti-GFP. The best multiplicity of infection (MOI) was 50, and the transfection efficiency reached about 75%. Furthermore, ELISA showed that hHGF secretion could be stably maintained more than 14 days since the level of hHGF in the culture supernatant from the Lenti-HGF transduced BM-MSCs was significantly higher than that of Lenti-GFP transduced BM-MSCs at day 5 (P<0.01). (3)The hHGF secreted from transduced MSCs showed the proproliferative, promigratory, antiapoptotic effects for human umbilical vein endothelial cells (HUVECs) and promigratory effect on vascular smooth muscle cells (VSMCs) in vitro.
     Conclusion:The recombinant lentivirus (Lenti-HGF) can mediated transduction into BM-MSCs with a highly efficient and long lasting expression of the transgene. Key words:Hepatocyte growth factor; Mesenchymal stem cell; Lentivirus; Apoptosis
     PartⅢHepatocyte growth factor genetically modified bone marrow-derived mesenchymal stem cells transplantation promote angiogenesis
     Objective:To investigate whether a new strategy that combines MSCs transplantation and ex vivo human hepatocyte growth factor (hHGF) gene transferring with lentiviral vectors was more therapeutically efficient than MSCs cell therapy alone in a rat hindlimb ischemia model.
     Methods:One day after resection of left femoral artery, Sprague-Dawley (SD) rats were randomly divided into three groups:(a) HGF genetically modified MSCs (HGF-MSCs) transplantation (HGF-MSC group, n=8), (b) BM-MSCs transplantation (MSC group, n=8), (c) PBS injection (PBS group, n=8). After creating hindlimb ischemia, an interval of 7 days was permitted for postoperative recovery. Then a total of 5×106 HGF-MSCs, MSCs obtained from same SD rats or PBS of same volume were injected into the ischemic thigh muscles of rats at five different points in each group. The ischemic thigh muscle were analyzed for capillary density, transplanted cell differentiation, T lymphocyte infiltration and the expression of HGF and VEGF protein at one or three weeks after treatment. Serum levels of HGF in HGF-MSC group before and 3 weeks after transplantation were determined by ELISA.
     Results:Three weeks after transplantation, angiogenesis was significantly enhanced by both MSC group and HGF-MSC group, while capillary density was highest in the HGF-MSC group (P<0.05). The number of transplanted cell-derived endothelial cells was higher in the HGF-MSC group than in the MSC group since one week after treatment (P<0.05). In treated ischemic hind limb muscles, allogeneic HGF-MSC and MSC injection were associated with comparatively few T lymphocyte infiltration in PBS group (P>0.05). The expression of angiogenic growth factors like HGF and VEGF in local ischemic muscles undergoing intramuscular cell transplantation was more abundant in HGF-MSC group than the other two groups (P<0.05). Serum levels of HGF in HGF-MSC group before and 3 weeks after transplantation have no significant difference (P>0.05).
     Conclusions:The present study shows that HGF gene-modified MSC transplantation therapy induced more potent angiogenesis and collateral vessel formation than MSC cell therapy alone. Stem cell-based angiogenic gene therapy may be a new therapeutic strategy for the treatment of severe ischemic cardiovascular disease.
引文
1 Yla-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 2003;9:694-701.
    2 Rissanen TT, Vajanto I, Yla-Herttuala S. Gene therapy for therapeutic angiogenesis in critically ischaemic lower limb-on the way to the clinic. Eur J Clin Invest 2001;31:651-66.
    3 Rissanen TT, Yla-Herttuala S. Current status of cardiovascular gene therapy. Mol Ther 2007;15:1233-47.
    4 Isner JM, Vale PR, Symes JF, et al. Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res 2001;89:389-400.
    5 Lucerna M, Zernecke A, de Nooijer R, et al. Vascular endothelial growth factor-A induces plaque expansion in ApoE knock-out mice by promoting de novo leukocyte recruitment. Blood 2001;109:122-9.
    6 Vincent KA, Jiang C, Boltje I, et al. Gene therapy progress and prospects:therapeutic angiogenesis for ischemic cardiovascular disease. Gene Ther 2007;14:781-9.
    7 Morishita R, Aoki M, Hashiya N, et al. Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheral arterial disease. Hypertension 2004;44:203-9.
    8 Duan HF, Wu CT, Wu DL, et al. Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther 2003;8:467-74.
    9 Cho KR, Choi JS, Hahn W, et al. Therapeutic angiogenesis using naked DNA expressing two isoforms of the hepatocyte growth factor in a porcine acute myocardial infarction model. Eur J Cardiothorac Surg 2008;34:857-63.
    10 Zhu XY, Zhang XZ, Xu L, et al. Transplantation of adipose-derived stem cells overexpressing hHGF into cardiac tissue. Biochem Biophys Res Commun 2009;379:1084-90.
    11 Nakamura Y, Morishita R, Nakamura S, et al. A vascular modulator, hepatocyte growth factor, is associated with systolic pressure. Hypertension 1996;28:409-13.
    12 Morishita R, Nakamura S, Hayashi S, et al. Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy. Hypertension 1999;33:1379-84.
    13 Matsuki A, Yamamoto S, Nakagami H, et al. No influence of tumor growth by intramuscular injection of hepatocyte growth factor plasmid DNA:safety evaluation of therapeutic angiogenesis gene therapy in mice. Biochem Biophys Res Commun 2004;315:59-65.
    14 Powell RJ, Simons M, Mendelsohn FO, et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 2008;118:58-65.
    15 Herrmann JL, Abarbanell AM, Weil BR, et al. Cell-based therapy for ischemic heart disease:a clinical update. Ann Thorac Surg 2009;88:1714-22.
    16 Kalka C, Baumgartner I. Gene and stem cell therapy in peripheral arterial occlusive disease. Vasc Med 2008;13:157-72.
    17 Reiser J, Zhang XY, Hemenway CS, et al. Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 2005;5:1571-84.
    18 Tongers J, Roncalli JG, Losordo DW. Therapeutic angiogenesis for critical limb ischemia:microvascular therapies coming of age. Circulation 2008;118:9-16.
    19 Gao Y, Lu Y, Mi S, et al. Change of p16(INK4a) and PNCA protein expression in myocardium after injection of hIGF-1 gene modified skeletal myoblasts into post-infarction rats. J Huazhong Univ Sci Technolog Med Sci 2008;28:396-400.
    20 Rong SL, Lu YX, Liao YH, et al. Effects of transplanted myoblasts transfected with human growth hormone gene on improvement of ventricular function of rats. Chin Med J (Engl) 2008;121:347-54.
    1 Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2007--an update. J Gene Med 2007;9:833-42.
    2 Dull T, Zufferey R, Kelly M, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998;72:8463-71.
    3 Goldman MJ, Lee PS, Yang JS, et al. Lentiviral vectors for gene therapy of cystic fibrosis. Hum Gene Ther 1997;8:2261-8.
    4 Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996;272:263-7.
    5 Zufferey R, Nagy D, Mandel RJ, et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997;15:871-5.
    6 Isner JM, Vale PR, Symes JF, et al. Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res 2001;89:389-400.
    7 Isner JM, Walsh K, Symes J, et al. Arterial gene transfer for therapeutic angiogenesis in patients with peripheral artery disease. Hum Gene Ther 1996;7:959-88.
    8 Rissanen TT, Yla-Herttuala S. Current status of cardiovascular gene therapy. Mol Ther 2007;15:1233-47.
    9 Baker AH. Designing gene delivery vectors for cardiovascular gene therapy. Prog Biophys Mol Biol 2004;84:279-99.
    10 Gaffney MM, Hynes SO, Barry F, et al. Cardiovascular gene therapy:current status and therapeutic potential. Br J Pharmacol 2007;152:175-88.
    11 Weber E, Anderson WF, Kasahara N. Recent advances in retrovirus vector-mediated gene therapy:teaching an old vector new tricks. Curr Opin Mol Ther 2001;3:439-53.
    12 Muldoon RR, Levy JP, Kain SR, et al. Tracking and quantitation of retro viral-mediated transfer using a completely humanized, red-shifted green fluorescent protein gene. Biotechniques 1997;22:162-7.
    13 Hacein-Bey-Abina S, von Kalle C, Schmidt M, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003;348:255-6.
    14 Montini E, Cesana D, Schmidt M, et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 2009;119:964-75.
    15 Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003;80:148-58.
    16 Walther W, Stein U. Viral vectors for gene transfer:a review of their use in the treatment of human diseases. Drugs 2000;60:249-71.
    17 Frankel AD, Young JA. HIV-1:fifteen proteins and an RNA. Annu Rev Biochem 1998;67:1-25.
    18 Escors D, Breckpot K. Lentiviral vectors in gene therapy:their current status and future potential. Arch Immunol Ther Exp (Warsz) 2010;58:107-19.
    19 Kafri T, Blomer U, Peterson DA, et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 1997;17:314-7.
    20 Gruber A, Kan-Mitchell J, Kuhen KL, et al. Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood 2000;96:1327-33.
    21 Hematti P, Hong BK, Ferguson C, et al. Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol 2004;2:e423.
    22 Sinn PL, Sauter SL, McCray PB, Jr. Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors--design, biosafety, and production. Gene Ther 2005;12:1089-98.
    23 Iwakuma T, Cui Y, Chang LJ. Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 1999;261:120-32.
    24 Zufferey R, Dull T, Mandel RJ, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998;72:9873-80.
    25 Zhao H, Pestina TI, Nasimuzzaman M, et al. Amelioration of murine beta-thalassemia through drug selection of hematopoietic stem cells transduced with a lentiviral vector encoding both gamma-globin and the MGMT drug-resistance gene. Blood 2009;113: 5747-56.
    26 Throm RE, Ouma AA, Zhou S, et al. Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfection. Blood 2009;113:5104-10.
    27 Mantovani J, Charrier S, Eckenberg R, et al. Diverse genomic integration of a lentiviral vector developed for the treatment of Wiskott-Aldrich syndrome. J Gene Med 2009;11:645-54.
    28 Marangoni F, Bosticardo M, Charrier S, et al. Evidence for long-term efficacy and safety of gene therapy for Wiskott-Aldrich syndrome in preclinical models. Mol Ther 2009;17:1073-82.
    29 Brown BD, Cantore A, Annoni A, et al. A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 2007;110:4144-52.
    30 Georgievska B, Jakobsson J, Persson E, et al. Regulated delivery of glial cell line-derived neurotrophic factor into rat striatum, using a tetracycline-dependent lentiviral vector. Hum Gene Ther 2004;15:934-44.
    31 Jacome A, Navarro S, Rio P, et al. Lentiviral-mediated genetic correction of hematopoietic and mesenchymal progenitor cells from Fanconi anemia patients. Mol Ther 2009;17:1083-92.
    32 Menzel O, Birraux J, Wildhaber BE, et al. Biosafety in ex vivo gene therapy and conditional ablation of lentivirally transduced hepatocytes in nonhuman primates. Mol Ther 2009;17:1754-60.
    33 Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009;326: 818-23
    1 Jones WS, Annex BH. Growth factors for therapeutic angiogenesis in peripheral arterial disease. Curr Opin Cardiol 2007;22:458-63.
    2 Carmeliet P. Angiogenesis in health and disease. Nat Med 2003;9:653-60.
    3 Hedman M, Hartikainen J, Syvanne M, et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase Ⅱ results of the Kuopio Angiogenesis Trial (KAT). Circulation 2003;107:2677-83.
    4 Grines CL, Watkins MW, Mahmarian JJ, et al. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol 2003;42:1339-47.
    5 Powell RJ, Simons M, Mendelsohn FO, et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 2008; 118:58-65.
    6 Nakamura Y, Morishita R, Nakamura S, et al. A vascular modulator, hepatocyte growth factor, is associated with systolic pressure. Hypertension 1996;28:409-13.
    7 Gong R, Rifai A, Dworkin LD. Anti-inflammatory effect of hepatocyte growth factor in chronic kidney disease:targeting the inflamed vascular endothelium. J Am Soc Nephrol 2006;17:2464-73.
    8 Li H, Jiang T, Lin Y, et al. HGF protects rat mesangial cells from high-glucose-mediated oxidative stress. Am J Nephrol 2006;26:519-30.
    9 Morishita R, Nakamura S, Hayashi S, et al. Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy. Hypertension 1999;33:1379-84.
    10 Taniyama Y, Morishita R, Aoki M, et al. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models:preclinical study for treatment of peripheral arterial disease. Gene Ther 2001;8:181-9.
    11 Taniyama Y, Morishita R, Hiraoka K, et al. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model:molecular mechanisms of delayed angiogenesis in diabetes. Circulation 2001;104:2344-50.
    12 Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-7.
    13 Reiser J, Zhang XY, Hemenway CS, et al. Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 2005;5:1571-84.
    14 Patel SA, Sherman L, Munoz J, et al. Immunological properties of mesenchymal stem cells and clinical implications. Arch Immunol Ther Exp (Warsz) 2008;56:1-8.
    15 Ozawa K, Sato K, Oh I, et al. Cell and gene therapy using mesenchymal stem cells (MSCs). JAutoimmun 2008;30:121-7.
    16 Picinich SC, Mishra PJ, Glod J, et al. The therapeutic potential of mesenchymal stem cells. Cell-& tissue-based therapy. Expert Opin Biol Ther 2007;7:965-73.
    17 Hamou C, Callaghan MJ, Thangarajah H, et al. Mesenchymal stem cells can participate in ischemic neovascularization. Plast Reconstr Surg 2009;123:45S-55S.
    18 Iwase T, Nagaya N, Fujii T, et al. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res 2005;66:543-51.
    19 Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004;109:1543-9.
    20 Klopper J, Lindenmaier W, Fiedler U, et al. High efficient adenoviral-mediated VEGF and Ang-1 gene delivery into osteogenically differentiated human mesenchymal stem cells. Microvasc Res 2008;75:83-90.
    21 Simons M. Angiogenesis:where do we stand now? Circulation 2005;111:1556-66.
    22 Rissanen TT, Vajanto I, Yla-Herttuala S. Gene therapy for therapeutic angiogenesis in critically ischaemic lower limb-on the way to the clinic. Eur J Clin Invest 2001;31:651-66.
    23 Rajagopalan S, Mohler E,3rd, Lederman RJ, et al. Regional Angiogenesis with Vascular Endothelial Growth Factor (VEGF) in peripheral arterial disease:Design of the RAVE trial. Am Heart J 2003;145:1114-8.
    24 Baumgartner I, Rauh G, Pieczek A, et al. Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Ann Intern Med 2000;132:880-4.
    25 Reinders ME, Sho M, Izawa A, et al. Proinflammatory functions of vascular endothelial growth factor in alloimmunity. J Clin Invest 2003;112:1655-65.
    26 Abid MR, Schoots IG, Spokes KC, et al. Vascular endothelial growth factor-mediated induction of manganese superoxide dismutase occurs through redox-dependent regulation of forkhead and IkappaB/NF-kappaB. JBiol Chem 2004;279:44030-8.
    27 Ushio-Fukai M. VEGF signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal 2007;9:731-9.
    28 Lucerna M, Zernecke A, de Nooijer R, et al. Vascular endothelial growth factor-A induces plaque expansion in ApoE knock-out mice by promoting de novo leukocyte recruitment. Blood 2007;109:122-9.
    29 Nakamura T, Nishizawa T, Hagiya M, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 1989;342:440-3.
    30 Nakagami H, Morishita R, Yamamoto K, et al. Mitogenic and antiapoptotic actions of hepatocyte growth factor through ERK, STAT3, and AKT in endothelial cells. Hypertension 2001;37:581-6.
    31 Yamamoto K, Morishita R, Hayashi S, et al. Contribution of Bcl-2, but not Bcl-xL and Bax, to antiapoptotic actions of hepatocyte growth factor in hypoxia-conditioned human endothelial cells. Hypertension 2001;37:1341-8.
    32 Morishita R. Recent progress in gene therapy for cardiovascular disease. Circ J 2002;66:1077-86.
    33 Rissanen TT, Markkanen JE, Arve K, et al. Fibroblast growth factor 4 induces vascular permeability, angiogenesis and arteriogenesis in a rabbit hindlimb ischemia model. FASEB J 2003;17:100-2.
    34 Ono K, Matsumori A, Shioi T, et al. Enhanced expression of hepatocyte growth factor/c-Met by myocardial ischemia and reperfusion in a rat model. Circulation 1997;95:2552-8.
    35 Naldini L, Vigna E, Bardelli A, et al. Biological activation of pro-HGF (hepatocyte growth factor) by urokinase is controlled by a stoichiometric reaction. J Biol Chem 1995;270:603-11.
    36 Nakamura Y, Morishita R, Higaki J, et al. Hepatocyte growth factor is a novel member of the endothelium-specific growth factors:additive stimulatory effect of hepatocyte growth factor with basic fibroblast growth factor but not with vascular endothelial growth factor. J Hypertens 1996;14:1067-72.
    37 Van Belle E, Witzenbichler B, Chen D, et al. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor:the case for paracrine amplification of angiogenesis. Circulation 1998;97:381-90.
    38 Hayashi S, Morishita R, Nakamura S, et al. Potential role of hepatocyte growth factor, a novel angiogenic growth factor, in peripheral arterial disease:downregulation of HGF in response to hypoxia in vascular cells. Circulation 1999;100:Ⅱ301-8.
    39 Nakamura T, Mizuno S, Matsumoto K, et al. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 2000;106:1511-9.
    40 Kalka C, Baumgartner I. Gene and stem cell therapy in peripheral arterial occlusive disease. Vasc Med 2008;13:157-72.
    41 Urbich C, Dimmeler S. Endothelial progenitor cells:characterization and role in vascular biology. Circ Res 2004;95:343-53.
    42 Al-Khaldi A, Al-Sabti H, Galipeau J, et al. Therapeutic angiogenesis using autologous bone marrow stromal cells:improved blood flow in a chronic limb ischemia model. Ann Thorac Surg 2003;75:204-9.
    43 Ishikane S, Ohnishi S, Yamahara K, et al. Allogeneic injection of fetal membrane-derived mesenchymal stem cells induces therapeutic angiogenesis in a rat model of hind limb ischemia. Stem Cells 2008;26:2625-33.
    44 Higashi Y, Kimura M, Hara K, et al. Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilation in patients with limb ischemia. Circulation 2004-109:1215-8.
    45 Iba O, Matsubara H, Nozawa Y, et al. Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs. Circulation 2002;106:2019-25.
    46 Hamano K, Li TS, Kobayashi T, et al. The induction of angiogenesis by the implantation of autologous bone marrow cells:a novel and simple therapeutic method. Surgery 2001;130:44-54.
    47 Nakagami H, Maeda K, Morishita R, et al. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol 2005;25:2542-7.
    48 Hirose N, Maeda H, Yamamoto M, et al. The local injection of peritoneal macrophages induces neovascularization in rat ischemic hind limb muscles. Cell Transplant 2008;17:211-22.
    49 Hobo K, Shimizu T, Sekine H, et al. Therapeutic angiogenesis using tissue engineered human smooth muscle cell sheets. Arterioscler Thromb Vasc Biol 2008;28:637-43.
    50 Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004;95:9-20.
    51 Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium:short-and long-term effects. Circulation 2005;112:214-23.
    52 Tongers J, Roncalli JG, Losordo DW. Therapeutic angiogenesis for critical limb ischemia:microvascular therapies coming of age. Circulation 2008;118:9-16.
    53 Abdallah BM, Kassem M. Human mesenchymal stem cells:from basic biology to clinical applications. Gene Ther 2008;15:109-16.
    54 Zhang XY, La Russa VF, Bao L, et al. Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol Ther 2002;5:555-65.
    55 Chan J, O'Donoghue K, de la Fuente J, et al. Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells 2005;23:93-102.
    1 Weitz JI, Byrne J, Clagett GP, et al. Diagnosis and treatment of chronic arterial insufficiency of the lower extremities:a critical review. Circulation 1996;94:3026-49.
    2 Aronow WS. Management of peripheral arterial disease. Cardiol Rev 2005;13:61-8.
    3王洁,李小鹰,何耀,等.北京万寿路地区老年人群周围动脉硬化闭塞病横断面调查.中华流行病学杂志2004;25:221-4.
    4 Isner JM, Rosenfield K, White CJ, et al. In vivo assessment of vascular pathology resulting from laser irradiation. Analysis of 23 patients studied by directional atherectomy immediately after laser angioplasty. Circulation 1992;85:2185-96.
    5 Dawson I, Keller BP, Brand R, et al. Late outcomes of limb loss after failed infrainguinal bypass. J Vasc Surg 1995;21:613-22.
    6 Bobek V, Taltynov O, Pinterova D, et al. Gene therapy of the ischemic lower limb-Therapeutic angiogenesis. Vascul Pharmacol 2006;44:395-405.
    7 Dormandy JA, Rutherford RB. Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). J Vasc Surg 2000;31:S1-S296.
    8 Kalka C, Baumgartner I. Gene and stem cell therapy in peripheral arterial occlusive disease. Vasc Med 2008;13:157-72.
    9 Matsuki A, Yamamoto S, Nakagami H, et al. No influence of tumor growth by intramuscular injection of hepatocyte growth factor plasmid DNA:safety evaluation of therapeutic angiogenesis gene therapy in mice. Biochem Biophys Res Commun 2004;315: 59-65.
    10 Morishita R, Aoki M, Hashiya N, et al. Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheral arterial disease. Hypertension 2004;44:203-9.
    11 Powell RJ, Simons M, Mendelsohn FO, et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 2008;118:58-65.
    12 Hamou C, Callaghan MJ, Thangarajah H, et al. Mesenchymal stem cells can participate in ischemic neovascularization. Plast Reconstr Surg 2009;123:45S-55S.
    13 Iwase T, Nagaya N, Fujii T, et al. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res 2005;66:543-51.
    14 Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004;109:1543-9.
    15 Shintani S, Murohara T, Ikeda H, et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 2001;103:897-903.
    16 Wang JS, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cellular cardiomyoplasty:feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 2000;120:999-1005.
    17 Zhang S, Ge J, Sun A, et al. Comparison of various kinds of bone marrow stem cells for the repair of infarcted myocardium:single clonally purified non-hematopoietic mesenchymal stem cells serve as a superior source. J Cell Biochem 2006;99:1132-47.
    18 Cai L, Johnstone BH, Cook TG, et al. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells 2007;25:3234-43.
    19 Cuenca-Lopez MD, Zamora-Navas P, Garcia-Herrera JM, et al. Adult stem cells applied to tissue engineering and regenerative medicine. Cell Mol Biol (Noisy-le-grand) 2008;54:40-51.
    20 Duan HF, Wu CT, Wu DL, et al. Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther 2003;8:467-74.
    21 Yang ZJ, Ma DC, Wang W, et al. Experimental study of bone marrow-derived mesenchymal stem cells combined with hepatocyte growth factor transplantation via noninfarct-relative artery in acute myocardial infarction. Gene Ther 2006;13:1564-8.
    22 Zhao MZ, Nonoguchi N, Ikeda N, et al. Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector. J Cereb Blood Flow Metab 2006;26:1176-88.
    23 Guo Y, He J, Wu J, et al. Locally overexpressing hepatocyte growth factor prevents post-ischemic heart failure by inhibition of apoptosis via calcineurin-mediated pathway and angiogenesis. Arch Med Res 2008;39:179-88.
    24 Bian L, Guo ZK, Wang HX, et al. In vitro and in vivo immunosuppressive characteristics of hepatocyte growth factor-modified murine mesenchymal stem cells. In Vivo 2009;23:21-7.
    25 Neuss S, Becher E, Woltje M, et al. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells 2004;22:405-14.
    26 Forte G, Minieri M, Cossa P, et al. Hepatocyte growth factor effects on mesenchymal stem cells:proliferation, migration, and differentiation. Stem Cells 2006;24:23-33.
    27 Rosu-Myles M, Stewart E, Trowbridge J, et al. A unique population of bone marrow cells migrates to skeletal muscle via hepatocyte growth factor/c-met axis. J Cell Sci 2005;118:4343-52.
    28 Sakon M, Kita Y, Yoshida T, et al. Plasma hepatocyte growth factor levels are increased in systemic inflammatory response syndrome. Surg Today 1996;26:236-41.
    29 Aoki M, Morishita R, Taniyama Y, et al. Angiogenesis induced by hepatocyte growth factor in non-infarcted myocardium and infarcted myocardium:up-regulation of essential transcription factor for angiogenesis, ets. Gene Ther 2000;7:417-27.
    30 Van Belle E, Witzenbichler B, Chen D, et al. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor:the case for paracrine amplification of angiogenesis. Circulation 1998;97:381-90.
    31 Xin X, Yang S, Ingle G, et al. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol 2001;158:1111-20.
    32 Hashiya N, Jo N, Aoki M, et al. In vivo evidence of angiogenesis induced by transcription factor Ets-1:Ets-1 is located upstream of angiogenesis cascade. Circulation 2004;109:3035-41..
    33 Kinnaird T, Stabile E, Burnett MS, et al. Bone-marrow-derived cells for enhancing collateral development:mechanisms, animal data, and initial clinical experiences. Circ Res 2004;95:354-63.
    34 Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004;10:858-64.
    35 Pillarisetti K, Gupta SK. Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1)1:SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction. Inflammation 2001;25:293-300.
    36 Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 2006;124:175-89.
    37 Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100:II247-56.
    38 Ziegelhoeffer T, Fernandez B, Kostin S, et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 2004;94:230-8.
    39 Baddoo M, Hill K, Wilkinson R, et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 2003;89:1235-49.
    40 Van Damme A, Thorrez L, Ma L, et al. Efficient lentiviral transduction and improved engraftment of human bone marrow mesenchymal cells. Stem Cells 2006;24:896-907.
    41 Tang J, Xie Q, Pan G, et al. Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg 2006;30:353-61.
    42 Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium:short-and long-term effects. Circulation 2005;112:214-23.
    43 Fouillard L, Chapel A, Bories D, et al. Infusion of allogeneic-related HLA mismatched mesenchymal stem cells for the treatment of incomplete engraftment following autologous haematopoietic stem cell transplantation. Leukemia 2007;21:568-70.
    1 Vaananen HK. Mesenchymal stem cells. Ann Med 2005;37:469-79.
    2 da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006;119:2204-13.
    3 Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-7.
    4 Kumar S, Chanda D. Ponnazhagan S. Therapeutic potential of genetically modified mesenchymal stem cells. Gene Ther 2008;15:711-5.
    5 Reiser J, Zhang XY, Hemenway CS, et al. Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 2005;5:1571-84.
    6 Phinney DG. Biochemical heterogeneity of mesenchymal stem cell populations:clues to their therapeutic efficacy. Cell Cycle 2007;6:2884-9.
    7 Patel S A, Sherman L, Munoz J, et al. Immunological properties of mesenchymal stem cells and clinical implications. Arch Immunol Ther Exp (Warsz) 2008;56:1-8.
    8 Chiu RC. MSC immune tolerance in cellular cardiomyoplasty. Semin Thorac Cardiovasc Surg 2008;20:115-8.
    9 Wang JS, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cellular cardiomyoplasty:feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 2000;120:999-1005.
    10 Ozawa K, Sato K, Oh I, et al. Cell and gene therapy using mesenchymal stem cells (MSCs). JAutoimmun 2008;30:121-7.
    11 Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005;33:1402-16.
    12 Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA 2002;99:2199-204.
    13 Abdallah BM, Kassem M. Human mesenchymal stem cells:from basic biology to clinical applications. Gene Ther 2008;15:109-16.
    14 Baddoo M, Hill K, Wilkinson R, et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 2003;89:1235-49.
    15 Chamberlain G, Fox J, Ashton B, et al. Concise review:mesenchymal stem cells:their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007;25:2739-49.
    16 Aggarwal S, Pittenger MF.Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105:1815-22.
    17 Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium:short-and long-term effects. Circulation 2005; 112:214-23.
    18 Fouillard L, Chapel A, Bories D, et al. Infusion of allogeneic-related HLA mismatched mesenchymal stem cells for the treatment of incomplete engraftment following autologous haematopoietic stem cell transplantation. Leukemia 2007;21:568-70.
    19 Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93-8.
    20 Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000;6:1282-6.
    21 Saito T, Kuang JQ, Bittira B, et al. Xenotransplant cardiac chimera:immune tolerance of adult stem cells. Ann Thorac Surg 2002;74:19-24; discussion
    22 Ringden O, Uzunel M, Rasmusson I, et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 2006;81:1390-7.
    23 Studeny M, Marini FC, Champlin RE, et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002;62:3603-8.
    24 Studeny M, Marini FC, Dembinski JL, et al. Mesenchymal stem cells:potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004;96:1593-603.
    25 Deans RJ, Moseley AB. Mesenchymal stem cells:biology and potential clinical uses. Exp Hematol 2000;28:875-84.
    26 Schwarz EJ, Alexander GM, Prockop DJ, et al. Multipotential marrow stromal cells transduced to produce L-DOPA:engraftment in a rat model of Parkinson disease. Hum Gene Ther 1999;10:2539-49.
    27 Marx JC, Allay JA, Persons DA, et al. High-efficiency transduction and long-term gene expression with a murine stem cell retroviral vector encoding the green fluorescent protein in human marrow stromal cells. Hum Gene Ther 1999;10:1163-73.
    28 Allay JA, Dennis JE, Haynesworth SE, et al. LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors. Hum Gene Ther 1997;8:1417-27.
    29 Chuah MK, Brems H, Vanslembrouck V, et al. Bone marrow stromal cells as targets for gene therapy of hemophilia A. Hum Gene Ther 1998;9:353-65.
    30 Jaalouk DE, Eliopoulos N, Couture C, et al. Glucocorticoid-inducible retro vector for regulated transgene expression in genetically engineered bone marrow stromal cells. Hum Gene Ther2000;11:1837-49.
    31 Zhang XY, La Russa VF, Bao L, et al. Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol Ther 2002;5:555-65.
    32 Mochizuki H, Schwartz JP, Tanaka K, et al. High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol 1998;72:8873-83.
    33 Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 1999;181:67-73.
    34 Zhang XY, La Russa VF, Reiser J. Transduction of bone-marrow-derived mesenchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J Virol 2004;78:1219-29.
    35 Lee CI, Kohn DB, Ekert JE, et al. Morphological analysis and lentiviral transduction of fetal monkey bone marrow-derived mesenchymal stem cells. Mol Ther 2004;9:112-23.
    36 Anjos-Afonso F, Siapati EK, Bonnet D. In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 2004;117:5655-64.
    37 Conget PA, Minguell JJ. Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells. Exp Hematol 2000;28:382-90.
    38 Hung SC, Lu CY, Shyue SK, et al. Lineage differentiation-associated loss of adenoviral susceptibility and Coxsackie-adenovirus receptor expression in human mesenchymal stem cells. Stem Cells 2004;22:1321-9.
    39 Olmsted-Davis EA, Gugala Z, Gannon FH, et al. Use of a chimeric adenovirus vector enhances BMP2 production and bone formation. Hum Gene Ther 2002;13:1337-47.
    40 Tsuda H, Wada T, Ito Y, et al. Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector. Mol Ther 2003;7:354-65.
    41 Bian L, Guo ZK, Wang HX, et al. In vitro and in vivo immunosuppressive characteristics of hepatocyte growth factor-modified murine mesenchymal stem cells. In Vivo 2009;23:21-7.
    42 Ito H, Goater JJ, Tiyapatanaputi P, et al. Light-activated gene transduction of recombinant adeno-associated virus in human mesenchymal stem cells. Gene Ther 2004;11:34-41.
    43 Kumar S, Mahendra G, Nagy TR, et al. Osteogenic differentiation of recombinant adeno-associated virus 2-transduced murine mesenchymal stem cells and development of an immunocompetent mouse model for ex vivo osteoporosis gene therapy. Hum Gene Ther 2004;15:1197-206.
    44 Kumar S, Nagy TR, Ponnazhagan S. Therapeutic potential of genetically modified adult stem cells for osteopenia. Gene Ther 2010;17:105-16.
    45 Ren C, Kumar S, Chanda D, et al. Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells 2008;26:2332-8.
    46 Ren C, Kumar S, Chanda D, et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther 2008;15:1446-53.
    47 Zhao MZ, Nonoguchi N, Ikeda N, et al. Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector. J Cereb Blood Flow Metab 2006;26:1176-88.
    48 Pan D. In situ (in vivo) gene transfer into murine bone marrow stem cells. Methods Mol Biol 2009;506:159-69.
    49 Song L,Chau L, Sakamoto Y, et al. Electric field-induced molecular vibration for noninvasive, high-efficiency DNA transfection. Mol Ther 2004;9:607-16.
    50 Peister A, Mellad JA, Wang M, et al. Stable transfection of MSCs by electroporation. Gene Ther 2004;11:224-8.
    51 Hoelters J, Ciccarella M, Drechsel M, et al. Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells. J Gene Med 2005;7:718-28.
    52 Vanderbyl S, MacDonald GN, Sidhu S, et al. Transfer and stable transgene expression of a mammalian artificial chromosome into bone marrow-derived human mesenchymal stem cells. Stem Cells 2004;22:324-33.
    53 Gotherstrom C, Ringden O, Westgren M, et al. Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant 2003;32:265-72.
    54 Guo X, Zheng Q, Kulbatski I, et al. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds. Biomed Mater 2006;1:93-9.
    55 Guo X, Zheng Q, Yang S, et al. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor betal gene. Biomed Mater 2006;1:206-15.
    56 Robey PG, Bianco P. The use of adult stem cells in rebuilding the human face. J Am Dent Assoc 2006;137:961-72.
    57 Andrades JA, Han B, Becerra J, et al. A recombinant human TGF-betal fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells. Exp Cell Res 1999;250:485-98.
    58 Van Damme A, Thorrez L, Ma L, et al. Efficient lentiviral transduction and improved engraftment of human bone marrow mesenchymal cells. Stem Cells 2006;24:896-907.
    59 Gao F, He T, Wang H, et al. A promising strategy for the treatment of ischemic heart disease:Mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. Can J Cardiol 2007;23:891-8.
    60 Schuleri KH, Boyle AJ, Hare JM. Mesenchymal stem cells for cardiac regenerative therapy. Handb Exp Pharmacol 2007:195-218.
    61 Shim WS, Jiang S, Wong P, et al. Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun 2004;324:481-8.
    62 Rangappa S, Entwistle JW, Wechsler AS, et al. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg 2003;126:124-32.
    63 Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 2005;111:150-6.
    64 Tang J, Xie Q, Pan G, et al. Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg 2006;30:353-61.
    65 Nagaya N, Fujii T, Iwase T, et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am JPhysiol Heart Circ Physiol 2004;287:H2670-6.
    66 Chen SL, Fang WW, Qian J, et al. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin Med J(Engl) 2004;117:1443-8.
    67 Matsumoto R, Omura T, Yoshiyama M, et al. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol 2005;25:1168-73.
    68 Sun L, Cui M, Wang Z, et al. Mesenchymal stem cells modified with angiopoietin-1 improve remodeling in a rat model of acute myocardial infarction. Biochem Biophys Res Commun 2007;357:779-84.
    69 Al-Khaldi A, Al-Sabti H, Galipeau J, et al. Therapeutic angiogenesis using autologous bone marrow stromal cells:improved blood flow in a chronic limb ischemia model. Ann Thorac Surg 2003;75:204-9.
    70 Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004;109:1543-9.
    71 Hamou C, Callaghan MJ, Thangarajah H, et al. Mesenchymal stem cells can participate in ischemic neovascularization. Plast Reconstr Surg 2009;123:45S-55S.
    72 Iwase T, Nagaya N, Fujii T, et al. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res 2005;66:543-51.
    73 Ishikane S, Ohnishi S, Yamahara K, et al. Allogeneic injection of fetal membrane-derived mesenchymal stem cells induces therapeutic angiogenesis in a rat model of hind limb ischemia. Stem Cells 2008;26:2625-33.
    74 Potapova I, Plotnikov A, Lu Z, et al. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 2004;94:952-9.
    75 Chang MG, Tung L, Sekar RB, et al. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation 2006;113:1832-41.
    76 Beeres SL, Atsma DE, van der Laarse A, et al. Human adult bone marrow mesenchymal stem cells repair experimental conduction block in rat cardiomyocyte cultures. J Am Coll Cardiol 2005;46:1943-52.
    77 Katritsis DG, Sotiropoulou P, Giazitzoglou E, et al. Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells. Europace 2007;9:167-71.
    78 Valiunas V, Doronin S, Valiuniene L, et al. Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J Physiol 2004;555:617-26.
    79 Yokokawa M, Ohnishi S, Ishibashi-Ueda H, et al. Transplantation of mesenchymal stem cells improves atrioventricular conduction in a rat model of complete atrioventricular block. Cell Transplant 2008;17:1145-55.
    80 Katritsis D. Cellular replacement therapy for arrhythmia treatment:early clinical experience. J Interv Card Electrophysiol 2008;22:99-105.
    81 Fukuda K. Reprogramming of bone marrow mesenchymal stem cells into cardiomyocytes. C R Biol 2002;325:1027-38.
    82 Hattan N, Kawaguchi H, Ando K, et al. Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovasc Res 2005;65:334-44.
    83 Xu W, Zhang X, Qian H, et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med (Maywood) 2004;229:623-31.
    84 Nagaya N, Kangawa K, Itoh T, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 2005;112:1128-35.
    85 Li L, Zhang Y, Li Y, et al. Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure. Transpl Int 2008;21:1181-9.
    86 Li L, Zhang S, Zhang Y, et al. Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Mol Biol Rep 2009;36:725-31.
    87 Shabbir A, Zisa D, Suzuki G, et al. Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells:a noninvasive therapeutic regimen. Am JPhysiol Heart Circ Physiol 2009;296:H1888-97.
    88 Tao ZW, Li LG, Geng ZH, et al. Growth factors induce the improved cardiac remodeling in autologous mesenchymal stem cell-implanted failing rat hearts. J Zhejiang Univ Sci B 2010;11:238-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700