用户名: 密码: 验证码:
维生素D受体调控尿钙重吸收的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     靶向大鼠维生素D受体基因miRNA重组腺病毒载体的构建及腺病毒的制备
     目的:设计、筛选能有效抑制大鼠维生素D受体(VDR)基因表达的miRNA序列,并将miRNA序列与腺病毒载体重组,制备能表达VDR-miRNA的腺病毒。
     方法:根据大鼠VDR基因序列设计并合成4对miRNA oligo序列(SR-63-1-SR-63-4),退火成双链,将其分别插入到miRNA表达载体pcDNATM6.2-GW/EmGFP-miR中,构建4个miRNA表达质粒,并转化至感受态细胞DH5α。用载体通用引物进行菌落PCR筛选,筛选得到的阳性克隆进行测序,以验证重组克隆中插入片段序列是否与设计的oligo序列一致。将大鼠PC-12细胞VDR克隆至pcDNA3.1质粒构建VDR高表达载体,VDR高表达载体和miRNA干扰质粒共转染293A细胞,Real time q-PCR和Western Blot分别检测共转染干扰效果。将构建成功的靶向大鼠VDR基因的干扰效率最高的miRNA干扰质粒pcDNATM6.2-GW/EmGFP-VDR-miR,通过BP/LR反应,将EmGFP-VDR-miR表达框整合重组到腺病毒载体pAD/CMV/V5-DEST上,测序鉴定。重组腺病毒质粒转染293A细胞,包装收集并检测腺病毒滴度。
     结果:测序证实pcDNATM6.2-GW/EmGFPmiR干扰质粒中插入了设计的miRNA序列。与NCBI序列比对,pcDNA3.1高表达质粒中插入了大鼠VDR基因序列。Real time q-PCR和Western Blot证实3号干扰质粒(SR-63-3-1)对VDR基因的干扰效果最为明显,在转录水平基因抑制效率达83%。经测序鉴定证实,成功构建了靶向大鼠VDR基因的miRNA腺病毒载体pAD/CMV/V5-GW/EmGFP-VDR-miR,平均滴度为1.44×1011ifu/ml,阴性对照病毒pAd-GFP的平均滴度为7.56×1010ifu/ml。
     结论:成功构建能在转录和翻译水平有效抑制大鼠VDR基因表达的miRNA腺病毒干扰载体,并制备了高滴度的腺病毒。
     第二部分
     腺病毒载体介导维生素D受体基因RNAi对正常大鼠肾上皮细胞钙转运蛋白表达和细胞内游离钙浓度的影响
     目的:研究维生素D受体(VDR)对正常大鼠肾上皮细胞钙转运蛋白表达的调控作用及对细胞内游离钙离子浓度的影响,以了解VDR在特发性高钙尿症发生中的作用及其机制。
     方法:利用构建靶向VDR基因RNA干扰的腺病毒载体,转染正常大鼠肾小管上皮细胞(NRK),于转染后48h,72h,96h和120h收集细胞,提取细胞总RNA和蛋白质,使用real time q-PCR和western blot法分别检测干扰前后不同时间点VDR及编码上皮钙转运蛋白基因mRNA和蛋白的表达水平;应用Ca2+荧光探针标记NRK细胞胞浆内游离Ca2+,激光扫描共聚焦显微镜检测干扰前后不同时间点细胞胞浆内游离Ca2+浓度。
     结果:转染48h后,NRK细胞VDR mRNA和蛋白表达水平开始下降,96h达最低值,与空白对照组比较差异均有统计学意义(P<0.05),而NRK细胞上皮钙转运相关蛋白瞬时感受电位通道V5 (TRPV5)、钙结合蛋白28kd (Calbindin-D28k)和细胞膜钙泵1b (PMCA1b)的mRNA和蛋白表达水平在转染48h后开始下降,72h后与对照组比较差异达统计学意义(P<0.05),96h达最低值。而瞬时感受电位通道V6 (TRPV6)和钠钙交换子1 (NCX1) mRNA和蛋白表达水平在VDR干扰前后不同时间点差异均无统计学意义;同时,抑制NRK细胞VDR基因的表达48h后,胞浆内游离钙离子浓度开始下降,96h降至最低,与基线水平比较,差异有统计学意义(P<0.01),120h后胞浆内钙离子浓度恢复正常。
     结论:维生素D受体可正性调控正常大鼠肾小管上皮细胞钙转运蛋白TRPV5、Calbindin-D28k和PMCAlb基因的表达,对TRPV6和NCX1基因的表达无明显调控作用,抑制VDR基因的表达可导致NRK细胞胞浆内游离钙离子浓度降低。然而,VDR基因的异常表达在特发性高钙尿症发生中的作用及机制仍需进一步研究。
     第三部分
     体内干扰大鼠肾脏维生素D受体基因的表达对大鼠肾组织钙转运蛋白表达及尿钙排泄的影响
     目的:应用遗传高钙尿结石形成(GHS)大鼠模型,研究肾脏维生素D受体(VDR)异常表达与GHS大鼠尿钙重吸收障碍的相关性,以及发生的分子机制。
     方法:选取培育的第18代GHS大鼠和正常尿钙SD(NC)大鼠各24只,随机分为6组,平均每组4只。第1-4组采用外科手术方法经肾静脉每侧肾脏分别注入2.5×1010ifu VDR-miRNA干扰腺病毒载体,第5组注入相同剂量的阴性病毒载体作为阴性对照,第6组注入相同体积的生理盐水作为空白对照。第1-4组分别于注入病毒后3、7、14和21天麻醉下取出双肾并处死大鼠,阴性对照组和空白对照组于注射后14天取出双肾并处死大鼠,处死大鼠前2天连续收集2个24小时尿液标本,取肾标本同时留取血清标本。肾组织制作冰冻切片,荧光显微镜观察肾小管上皮病毒感染效率。Real-time q-PCR法和western blot法分别检测肾组织VDR、钙敏感受体(CaSR)和编码上皮钙转运相关蛋白基因的mRNA和蛋白表达水平,后者包括瞬时感受电位通道V5 (TRPV5)、瞬时感受电位通道V6 (TRPV6)、钙结合蛋白9kd (Calbindin-D9k)、钙结合蛋白28kd(Calbindin-D28k)、钠钙交换子1(NCX1)和细胞膜钙泵1b(PMCA1b)。检测尿钙浓度及血清钙、磷、甲状旁腺激素和1,25(OH)2D3水平。
     结果:GHS大鼠肾组织VDR、Calbindin-D28k和CaSR表达的基础水平比NC大鼠高,而TRPV5、TRPV6、Calbindin-D9k和PMCAlb表达的基础水平比NC大鼠低,差异均有统计学意义(P<0.01)。荧光显微镜观察腺病毒载体成功感染GHS和NC大鼠肾小管上皮细胞,注入VDR-miR RNAi病毒载体后第3天,GHS大鼠肾组织VDR mRNA和蛋白的表达水平较空白对照组和阴性对照组显著降低(P<0.01), VDR基因表达水平在RNAi后第21天达最低值(P<0.01),表明肾组织VDR基因干扰成功,而NC大鼠干扰后VDR的表达水平无显著下降,与空白对照组和阴性对照组比较差异未达统计学意义(P>0.05)。GHS大鼠肾组织VDR基因敲减后导致组织TRPV5、Calbindin-D9k和NCX1基因表达上调,对CaSR和其它上皮钙转运蛋白基因的表达调控作用不明显,而NC大鼠肾组织VDR基因敲减对上述各基因的表达无明显影响。GHS大鼠肾组织VDR基因敲减后第7-21天,24小时尿钙排泄量较干扰前显著增加,差异有统计学意义(P<0.01),NC大鼠24小时尿钙排泄量较干扰前轻微增加,差异未达统计学意义(P>0.05),空白对照组和阴性对照组GHS和NC大鼠24小时尿钙排泄量较干预前轻微增加,但差异无统计学意义(P>0.05)。肾组织VDR基因敲减后对血清钙、磷、甲状旁腺激素和1,25(OH)2D3水平无明显影响。
     结论:GHS大鼠肾组织VDR基础水平显著高于NC大鼠,而TRPV5基础水平显著低于NC大鼠。GHS大鼠肾脏尿钙重吸收减少可能与肾组织TRPV5基础表达水平下降相关,并且这一过程受VDR调控。肾组织VDR基因的异常表达可能是GHS大鼠产生高钙尿的机制之一。
Part1
     Construction of adenovirus vector-delivered miRNA targeting rat VDR gene and preparation of the adenovirus
     OBJECTIVE:To design and select the miRNA sequences which can effectively depress the expression of VDR gene, and construct a recombinant adenovirus vector expressing VDR miRNA
     MATERIALS AND METHODS:Based VDR gene mRNA sequence, four pair of miRNA oligonucletide (SR-63-1-SR-63-4) were designed and synthesized. The oligonucletide were annealed into double strands, then inserted into miRNA expression vector pcDNATM6.2-GW/EmGFPmiR, respectively. The vectors were transformed into competent E.coli DH5αcells. The positive clone was screened with colony polymerase chain reaction and identified by sequencing. VDR cDNA in rat PC-12 cell was cloned into vector pcDNA3.1 to construct the high expression vector containing VDR. The miRNA vector and the high expression vector were co-transfected into 293A cells. Real-time PCR and western blot were used to determine the interference efficacy. The pcDNATM 6.2-GW/EmGFP-VDR-miR vector with the highest RNA interference efficacy was recombined with pAD/CMV/V5-DEST by BP/LR reaction and identified by sequencing. The recombinants were linearized with Pac I and transfected into 293A cells to produce adenovirus. The titer was determined by immune methods.
     RESULTS:The miRNA oligonucletide sequence was successfully inserted into the plasmid pcDNATM6.2-GW/EmGFPmiR. The third plasmid (SR-63-3) revealed the highest interference efficacy which VDR mRNA knockdown reached 83%. It was confirmed by sequencing that the adenovirus vector was successfully constructed. The mean titer of the positive and negative adenovirus is 1.44×1011ifu/ml and 7.56×1010ifu/ml, respectively。
     CONCLUSIONS:The adenovirus vector-delivered miRNA targeting rat VDR was successfully constructed, which could inhabit the mRNA and protein expression of VDR, and the high titer of adenovirus was prepared.
     Part 2
     Adenovirus-delivered microRNA targeting VDR reduces intracellular Ca2+ concentration by regulating the express of Ca2+ transport proteins in NRK cells
     OBJECTIVE:To determine the effects of vitamin D receptor (VDR) on hypercalciuria and the mechanisms underlying such effects.
     MATERIALS AND METHODS:The adenovirus vector delivered microRNA targeting rat VDR was constructed. NRK cells (Cellbank, China) were infected with the adenovirus and the cells were collected at 0,48,72,96h after infection. The mRNA and protein levels of VDR and VDR-dependent epithelial Ca2+ transport proteins were detected using real time PCR and western blot assays, respectively. Fluorescent Ca2+ indicator Fluo-4 NW (Fluo-4 NW calcium assay kit, Molecular Probes, Invitrogen, USA) and laser scanning confocal microscope (Olympus, FV500-IX71, Japan) were used to detect the cytosolic free Ca2+ concentration at different time points after infection.
     RESULTS:The mRNA and protein level of VDR, TRPV5, Calbindin-D28k and PMCAlb in infected NRK cells was significantly lower at 72,96h after infection than that in control cells. No significant difference was found between 2 groups with regard to the mRNA and protein level of TRPV6 and NCX1. Furthermore, VDR knockdown results in a decrease in intracellular Ca2+ concentration in NRK cell lines.
     CONCLUSIONS:Our study demonstrates that VDR can postively regulate the mRNA and protein expression of TRPV5, Calbindin-D28k and PMCAlb, but not of TRPV6 or NCX1, in NRK cell lines. VDR knockdown results in a decrease in intracellular Ca2+ concentration in NRK cell lines. The effect of the elevated VDR level in kidney on hypercalciuria and the mechanisms underlying need to be further addressed.
     Part 3
     Effect of silencing VDR gene in kidney on renal epithelial calcium transporter proteins and urinary calcium excretion in genetic hypercalciuric stone-forming rats
     OBJECTIVE:Using genetic hypercalciuric stone-forming (GHS) rats, to address the molecular mechanisms that vitamin D receptor (VDR) in kidney may contributes to decreased renal calcium reabsorption in idiopathic hypercalciuria.
     MATERIALS AND METHODS:Twenty-four eighteen generation male GHS rats with body weight of 200 to 280 g and Twenty-four Sprague-Dawley male rats with body weight-and age-match were used for these studies. GHS and NC rats were divided into six groups with four of each, respectively. Each kidney for group 1 to 4 rats were injected with 2.5×1010 ifu adenovirus expressing VDR-miRNA via renal venous through surgery. Group 5 received empty adenovirus injection with the same amount through the same transduction methods as negative control. Group 6 received vehicle injection with the same volume as sham-operated control. Groups 1 to 4 were killed 3,7,14 and 21 days after injection, respectively. Group 5 and 6 were killed 14 days after injection. Kidney cortical tissue was removed for subsequent analysis including real time PCR and western blot to quantify VDR, CaSR and epithelial Ca2+ transporters mRNA and protein expression levels, respectively. The latter included TRPV5, TRPV6, Calbindin-D9k, Calbindin-D28k, NCX1 and PMCAlb. Two successive 24h urine were collected before being killed, and blood samples were taken. Urine calcium (UCa) and serum Ca2+, phosphorus and PTH levels were measured on an Abbott Aeroset autoanalyzer. Serum 1,25(OH)2D3 was measured by enzyme-linked immunosorbent assay.
     RESULTS:Basal levels of epithelial Ca2+ transporters were detected in kidney in GHS and NC rats. The mRNA and protein expression levels in kidney tissues of VDR, Calbindin-D28k, and CaSR were significantly higher in GHS rats than in NC rats. In contrast, the expression levels of TRPV5, TRPV6, Calbindin-D9k, and PMCAlb were significantly lower in GHS rats than in NC rats. Each kidney was injected with adenovirus vector via renal venous through surgery. Parallel GFP expression allowed evaluation of infection efficiency in renal tubular epithelia. It showed the high infection efficiency in kidney in vivo throughout days 3-21. A significant VDR mRNA knockdown with markedly lower VDR protein level was observed after 3 days of infection compared with control and negative groups in GHS(P<0.01). The reduction reached the lowest level after 21 days (P<0.01). This effect was not found in NC rats. VDR knockdown in kidney caused significant increase in renal TRPV5 mRNA expression level in GHS rats compared with control and negative groups. The similar negative regulation of VDR on the renal mRNA expression of NCX1 and Calbindin-D9k was observed in GHS rats. The renal mRNA expression levels of Calbindin-D28k, PMCAlb and CaSR were not altered in response to VDR depletion. Western blot analysis consistently demonstrated the similar regulation in the protein abundance as in the mRNA expression levels. The proteins expression of TRPV5, Calbindin-D9k and NCX1 were negatively regulated, while the renal proteins levels of Calbindin-D28k, PMCAlb and CaSR were unaltered. However, this effect was not detected in NC rats. GHS rats excreted significantly more UCa in days 7-21 after VDR knockdown. Although UCa excretion tended to increase in NC rats and in control and negative groups in GHS ratrs after VDR knockdown or injection of vehicle and negative vector, no significant difference was found. Serum Ca2+, phosphorus, PTH and 1,25(OH)2D3 levels did not significantly changed in response to VDR depletion during different time periods in GHS and NC rats.
     CONCLUSIONS:Our findings suggest reduced renal Ca reabsorption may be associated with down-regulation of TRPV5 by VDR in GHS rats. This appears to be able to explain the mechanisms that elevated VDR levels contribute to the hypercalciuria. However, the details underlying this effect need to be further elucidated.
引文
1. Murray JF, Alexander JK, Joan HP, et al. Peripheral blood monocyte vitamin D receptor levels are elevated in patients with idiopathic hypercalciuria. J Clin Endocrinol Metab 2004; 89(10):4937-4943.
    2. Rendina D, Mossetti G, Viceconti R, et al. Association between vitamin D receptor gene polymorphisms and fasting idiopathic hypercalciuria in recurrent stone-forming patients.Urology 2004; 64(4):833-838.
    3. Yao JJ, Bai S, Karnauskas AJ, et al. Regulation of renal calcium receptor gene expression by 1,25-dihydroxyvitamin D3 in genetic hypercalciuric stone-forming rats.J Am Soc Nephrol 2005; 16(5):1300-1308.
    4. Hemant KB, Ajay K, Rakesh K, et al. Association of vitamin D receptor gene (FokI) polymorphism with calcium oxalate nephrolithiasis. J Endourol 2005; 19(1):111-115.
    5. Karnauskas AJ, van Leeuwen JP, van den Bemd GJ, et al. Mechanism and function of high vitamin D receptor levels in genetic hypercalciuric stone-forming rats.J Bone Miner·Res 2005; 20(3):447-54
    6. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391:806-811.
    7. Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404:293-296.
    8. Grishok A, Tabara H, Mello CC. Genetic requirements for inheritance of RNAi in C. elegans. Science 2000; 287:2494-2497.
    9. Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001; 106:23-34.
    10. Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 2001; 107:309-321.
    11. Yoshizawa T, Handa Y, Uematsu Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997; 16:391-396.
    12. Li YC, Pirro AE, Amling M, et al. Targeted ablation of the vitamin D receptor:an animal model of vitamin D-dependent rickets type Ⅱ with alopecia. Proc Natl Acad Sci USA 1997; 94:9831-9835.
    13. Van Cromphaut SJ, Dewerchin M, Hoenderop JG, et al. Duodenal calcium absorption in vitamin D receptor-knockout mice:functional and molecular aspects. Proc Natl Acad Sci USA 2001; 98:13324-13329.
    14. Erben RG, Soegiarto DW, Weber K, et al. Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol Endocrinol 2002; 16:1524-1537.
    1. Yao JJ, Bai S, Karnauskas AJ, Bushinsky DA, Favus MJ. Regulation of renal calcium receptor gene expression by 1,25-dihydroxyvitamin D3 in genetic hypercalciuric stone-forming rats. J Am Soc Nephrol 2005; 16:1300-8
    2. Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia. Physiol Rev 2005; 85:373-422
    3. Lambers TT, Bindels RJ, Hoenderop JG. Coordinated control of renal Ca2+ handling. Kidney Int 2006; 69:650-4
    4. Yao J, Kathpalia P, Bushinsky DA, Favus MJ. Hyperresponsiveness of vitamin D receptor gene expression to 1,25-dihydroxyvitamin D3. A new characteristic of genetic hypercalciuric stone-forming rats. J Clin Invest 1998; 15:101:2223-32
    5. Scott P, Ouimet D, Valiquette L, et al. Suggestive evidence for a susceptibility gene near the vitamin D receptor locus in idiopathic calcium stone formation. J Am Soc Nephrol 1999; 10:1007-13
    6. Erben RG, Soegiarto DW, Weber K, et al. Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol Endocrinol 2002; 16:1524-37
    7. Li YC, Bolt MJ, Cao LP, Sitrin MD. Effects of vitamin D receptor inactivation on the expression of calbindins and calcium metabolism. Am J Physiol Endocrinol Metab 2001;281:E558-64
    8. Hoenderop JG, Dardenne O, Van Abel M, et al. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice. FASEB J 2002; 16:1398-406
    9. Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health:lessons from vitamin D receptor null mice. Endocr Rev 2008 10:29:726-76
    10. Kip SN, Strehler EE. Vitamin D3 upregulates plasma membrane Ca2+-ATPase expression and potentiates apico-basal Ca2+ flux in MDCK cells. Am J Physiol Renal Physiol 2004; 286:F363-9
    11. Wang S, Xi Q, Ye Z, et al. Abnormal expression of calcium sensing receptor mRNA in kidney of rats with genetic hypercalciuric stone-forming and implication. Chin J Exp Surg (chinese) 2007; 24:1118-20
    12. Wang S, Hu D, Xi Q, et al. The expression and implication of TRPV5, Calbindin-D28k and NCX1 in idiopathic hypercalciuria. J Huazhong Univ Sci Technolog Med Sci 2008; 28:580-3
    13. Wang S, Su S, Xi Q, et al. Abnormal expression of Ca2+active transport proteins on basolateral membrane of renal tubule epithelial cells in kidney of rats with genetic hypercalciuric stone-forming and implication. Chin J Exp Surg (chinese) 2008; 25:1178-80
    14. Dusso AS. Vitamin D receptor:mechanisms for vitamin D resistance in renal failure. Kidney Int Suppl 2003; 85:S6-S9
    15. Kim MS, Fujiki R, Murayama A, et al. 1a,25(OH)2D3-induced transrepression by vitamin D receptor through E-box-type elements in the human parathyroid hormone gene promoter. Mol Endocrinol 2007; 21:334-42
    16. Murayama A, Takeyama K, Kitanaka S, et al. The promoter of the human 25-hydroxyvitamin D3 1 a-hydroxylase gene confers positive and negative responsiveness to PTH, calcitonin, and 1a,25(OH)2D3. Biochem Biophys Res Commun 1998; 249:11-6
    17. Murayama A, Kim MS, Yanagisawa J, et al. Transrepression by a liganded nuclear receptor via a bHLH activator through co-regulator switching. EMBO J 2004;23:1598-608
    18. Zehnder D, Bland R, Williams MC, et al. Extrarenal expression of 25-hydroxyvitamin d(3)-1 a-hydroxylase. J Clin Endocrinol Metab 2001;86:888-94
    19. Favus MJ, Karnauskas AJ, Parks JH, et al. Peripheral blood monocyte vitamin D receptor levels are elevated in patients with idiopathic hypercalciuria. J Clin Endocrinol Metab 2004;89:4937-43
    20. Stechman MJ, Loh NY, Thakker RV. Genetics of hypercalciuric nephrolithiasis:renal stone disease. Ann N Y Acad Sci 2007; 1116:461-84
    21. Worcester EM, Coe FL, Evan AP, et al. Evidence for increased postprandial distal nephron calcium delivery in hypercalciuric stone-forming patients. Am J Physiol Renal Physiol 2008; 295:F1286-F1294
    1. Devuyst O, Pirson Y. Genetic of hypercalciuric stone forming diseases. Kidney Int 2007; 72:1065-1072.
    2. Taylor EN, Curhan GC. Diet and fluid prescription in stone disease. Kidney Int 2006; 70:835-839.
    3. Coe FL, Evan A, Worcester E. Kidney stone disease. J Clin Invest 2005; 115: 2598-2608.
    4. Moe OW, Bonny O. Genetic hypercalciuria. J Am Soc Nephrol 2005; 16:729-745.
    5. Gambaro G, Vezzoli G, Casari G et al. Genetics of hypercalciuria and calcium nephrolithiasis:from the rare monogenic to the common polygenic forms. Am J Kidney Dis 2004; 44:963-986.
    6. Suzuki Y, Landowski CP, Hediger MA. Mechanisms and regulation of epithelial Ca2+ absorption in health and disease. Annu Rev Physiol 2008; 70:257-271.
    7. Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia. Physiol Rev 2005; 85:373-422.
    8. Worcester EM, Coe FL. New insights into the pathogenesis of idiopathic hypercalciuria. Semin Nephrol 2008; 28:120-132.
    9. Yao J, Kathpalia P, Bushinsky DA, Favus MJ. Hyperresponsiveness of vitamin D receptor gene expression to 1,25-dihydroxyvitamin D3. A new characteristic of genetic hypercalciuric stone-forming rats. J Clin Invest 1998; 101:2223-2232.
    10. Favus MJ, Karnauskas AJ, Parks JH, Coe FL. Peripheral blood monocyte vitamin D receptor levels are elevated in patients with idiopathic hypercalciuria. J Clin Endocrinol Metab 2004; 89:4937-4943.
    11. Bushinsky DA, Frick KK, Nehrke K. Genetic hypercalciuric stone-forming rats. Curr Opin Nephrol Hypertens 2006; 15:403-418.
    12. Wang SG, Luo DX, Liu JH et al. Establishment of genetic hypercalciuric stone-forming rats model. Chin J Urol (Chinese) 2006; 27(Suppl 2):63-65.
    13. Wang SG, Xi QL, Ye ZQ, et al. Abnormal expression of calcium sensing receptor mRNA in kidney of rats with genetic hypercalciuric stone-forming and implication. Chin J Exp Surg (chinese) 2007; 24:1118-1120.
    14. Nordin BEC, Peacock M, Wilkinson R. Hypercalciuria and calcium stone disease. Clin Endo Metab 1972; 1:169-183.
    15. Robertson WG, Peacock M, Marshall RW, et al. Saturation inhibition index as a measure of the risk of calcium oxalate stone formation in the urinary tract. N Engl J Med 1976; 294:249-252.
    16. Pak CYC, Adams-Huet B, Poindexter JR, et al. Relative effect of urinary calcium and oxalate on saturation of calcium oxalate. Kidney Int 2004; 66:2032-2037.
    17. Kuo RL, Lingeman J, Evan AP, et al. Urine calcium and volume predict coverage of renal papilla by Randall's plaque. Kidney Int,2003; 64:2150-2154.
    18. Evan AP, Lingerman J, Coe FL, et al. Randall's plaque:Pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 2006; 69:1313-1318.
    19. Moe OW, Bonny O. Genetic hypercalciuria. J Am Soc Nephrol 2005; 16:729-745.
    20. Yao JJ, Bai S, Karnauskas AJ, Bushinsky DA, et al. Regulation of renal calcium receptor gene expression by 1,25-dihydroxyvitamin D3 in genetic hypercalciuric stone-forming rats. J Am Soc Nephrol 2005; 16:1300-1308.
    21. Karnauskas AJ, van Leeuwen JP, van den Bemd GJ, Kathpalia PP, et al. Mechanism and function of high vitamin D receptor levels in genetic hypercalciuric stone-forming rats. J Bone Miner Res 2005; 20:447-454.
    22. Bushinsky DA, Frick KK, Nehrke K. Genetic hypercalciuric stone-forming rats. Curr Opin Nephrol Hypertens 2006; 15:403-418.
    23. Jiang Y, Ferguson WB, Peng JB. WNK4 enhances TRPV5-mediated calcium transport: potential role in hypercalciuria of familial hyperkalemic hypertension caused by gene mutation of WNK4. Am J Physiol Renal Physiol 2007; 292:F545-554.
    24. Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest 2003; 112:1906-1914.
    25. Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, et al. Duodenal calcium absorption in vitamin D receptor-knockout mice:functional and molecular aspects. Proc Natl Acad Sci USA 2001; 98:13324-13329.
    26. Weber K, Erben RG, Rump A, Adamski J. Gene structure and regulation of the murine epithelial calcium channels ECaC1 and 2. Biochem Biophys Res Commun 2001; 289: 1287-1294.
    27. Hoenderop JG, Muller D, Van Der Kemp AW, Hartog A, et al. Calcitriol controls the epithelial calcium channel in kidney. J Am Soc Nephrol 2001; 12:1342-1349.
    28. Hoenderop JG, Dardenne O, Van Abel M, Van Der Kemp AW, et al. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice. FASEB J 2002; 16: 1398-1406.
    29. Moe SM, Drueke TB. Management of secondary hyperparathyroidism:the importance and the challenge of controlling parathyroid hormone levels without elevating calcium, phosphorus, and calcium-phosphorus product. Am J Nephrol 2003; 23:369-379.
    30. van Abel M, Hoenderop JG, van der Kemp AW, Friedlaender MM, et al. Coordinated control of renal Ca2+ transport proteins by parathyroid hormone. Kidney Int 2005; 68: 1708-1721.
    1. Hodkinson A, Pyrah LN. The urinary excretion of calcium and inorganic phosphate in 344 patients with calcium stone of renal origin. Br J Surg 1958;48:10-18.
    2. Coe FL. Treated and untreated recurrent calcium nephrolithiasis in patients with idiopathic hypercalciuria, hyperuricosuria, or no metabolic disorder. Ann Intern Med 1977;87:404-410.
    3. Flocks RH. Calcium and phosphorus excretion in the urine of patients with renal or ureteral calculi. JAMA 1939;113:1466.
    4. Henneman PH, Benedict PH, Forbes AP, Dudley HR. Idiopathic Hypercalciuria. N Engl J Med 1958;259:802-807.
    5. van't Hoff WG. Aetiological factors in paediatric urolithiasis. Nephron Clin Pract 2004;98:45-48.
    6. Coe FL, Parks JH, Moore ES. Familial idiopathic hypercalciuria. N Engl J Med 1979;300:337-340.
    7. Levy FL, Adams-Huet B, Pak CYC. Ambulatory evaluation of nephrolithiasis:An update of a 1980 protocol. Am J Med 1995;98:50-59.
    8. Pak CYC, Ohata M, Lawrence EC, Snyder W. The hypercalciurias:Causes, parathyroid functions, and diagnostic criteria. J Clin Invest 1974;54:387-400.
    9. Coe, FL.; Favus, MJ.; Asplin, JR. Nephrolithiasis. In:Brenner, BM.; Rector, FC., Jr, editors. The Kidney.7. chap.39. Philadelphia:Elsevier; 2004. p.1819-1866.
    10. Coe, FL.; Parks, JH.; Evan, AP.; Worcester, E. Pathogenesis and Treatment of Nephrolithiasis. In:Alpern, R.; Hebert, S., editors. Seldin and Giebisch's The Kidney. chap.68. Elsevier, Inc; 2007. p.1945-1977.
    11. Liberman JA, Sperling O, Atsmon A, et al. Metabolic and calcium kinetic studies in hypercalciuria. J Clin Invest 1968;47:2580-2590.
    12. Lemann, J, Jr. Idiopathic hypercalciuria. In:Coe, FL.; Favus, M., editors. Disorders of
    Bone and Mineral Metabolism.2. chap.30. Lippincott:2002. p.673-697.
    13. Hoenderop JGJ, Nilius B, Bindels RJM. Calcium absorption across epithelia. Physiol Rev 2005;85:373-422.
    14. Kaplan RA, Haussler MR, Deftos LJ, et al. The role of 1 alpha 25 dihydroxyvitamin D in the mediation of intestinal hyperabsorption of calcium in primary hyperparathyroidism and absorptive hypercalciuria. J Clin Invest 1977;59:756-760.
    15. Monk, RD.; Bushinsky, DA. Pathogenesis of idiopathic hypercalciuria. In:Coe, FL.; Favus, MJ.; Pak, CYC., et al., editors. Kidney Stones:Medical and Surgical Management. chap.32. Lippincott-Raven; 1996. p.759-772.
    16. Coe FL, Favus MJ, Crockett T, et al. Effects of low-calcium diet on urine calcium excretion, parathyroid function and serum 1,25(OH)2D3 levels in patients with idiopathic hypercalciuria and in normal subjects. Am J Med 1982;72:25-32.
    17. Maierhofer WJ, Gray RW, Adams ND. Bone resorption stimulated by elevated serum 1,25-(OH)2-vitamin D concentrations in healthy men. Kidney Int 1983;24:555-560.
    18. Adams ND, Gray RW, Lemann J Jr, Cheung HS. Effects of calcitriol administration on calcium metabolism in healthy men. Kidney Int 1982;21:90-97.
    19. Bushinsky DA, Frick KK, Nehrke K. Genetic hypercalciuric stone-forming rats. Curr Opin Nephrol Hypertens 2006; 15:403-418.
    20. Bushinsky DA, Asplin JR, Grynpas MD, et al. Calcium oxalate stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 2002;61:975-987.
    21. Li XQ, Tembe V, Horwitz GM, et al. Increased intestinal vitamin D receptor in genetic hypercalciuric rats. A cause of intestinal calcium hyperabsorption. J Clin Invest 1993;91:661-667.
    22. Yao J, Kathpalia P, Bushinsky DA, Favus MJ. Hyperresponsiveness of Vitamin D Receptor Gene Expression to 1,25-Dihydroxyvitamin D3. A New Characteristic of Genetic Hypercalciuric Stoneforming Rats. J Clin Invest 1998; 101:2223-2232.
    23. Yao J, Karnauskas AJ, Bushinsky DA, Favus M. Regulation of renal calcium-sensing receptor gene expression in response to 1,25(OH)2D3 in genetic hypercalciuric stone forming rats. J Am Soc Nephrol 2005;16:1300-1308.
    24. Breslau NA, Preminger GM, Adams BV, et al. Use of ketoconazole to probe the pathogenetic importance of 1,25-dihydroxyvitamin D in absorptive hypercalciuria. J Clin Endocrinol Metab 1992;75:1446-1452.
    25. Favus MJ, Karnauskas AJ, Parks JH, Coe FL. Peripheral blood monocyte vitamin D receptor levels are elevated in patients with idiopathic hypercalciuria. J Clin Endocrinol Metab 2004;89:4937-4943.
    26. Peacock M, Nordin BEC. Tubular reabsorption of calcium in normal and hypercalciuric subjects. J Clin Pathol 1968;21:353-358.
    27. Schwille PO, Rumenapf G, Schmidtler JKR. Fasting and post calcium load serum calcium, parathyroid hormone, calcitonin, in male idiopathic calcium urolithiasis. Exp Clin Endocrinol 1987;90:71-75.
    28. Worcester EM, Gillen DL, Evan AP, et al. Evidence that postprandial reduction of renal calcium reabsorption mediates hypercalciuria of patients with calcium nephrolithiasis. Am J Physiol Renal Physiol 2007;292:F66-F75.
    29. Sutton RAL, Walker VR. Responses to Hydrochlorothiazide and Acetazolamide in Patients with Calcium Stones. N Engl J Med 1980;13:709-713.
    30. Lemann, J, Jr. Pathogenesis of Idiopathic Hypercalciuria and Nephrolithiasis. In:Coe, FL.; Favus, MJ., editors. Disorders of Bone and Mineral Metabolism.1. chap.32. New York:Raven Press; 1992.p.685-706.
    31. Prie D, Ravery V, Boccon-Gibod L, Friedlander G. Frequency of renal phosphate leak among patients with calcium nephrolithiasis. Kidney Int·2001;60:272-276.
    32. Lemann J Jr, Worcester EM, Gray RW. Hypercalciuria and stones. Am J Kidney Dis 1991;17:386-391.
    33. Nijenhuis T, Renkema KY, Hoenderop JGJ, Bindels RJM. Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins. J Am Soc Nephrol
    2006;17:617-626.
    34. Borghi L, Schianchi T, Meschi T, et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med 2002;346:77-84.
    35. Lemann J Jr, Lennon EJ, Piering WF, et al. Evidence that glucose ingestion inhibits net renal tubular reabsorption of calcium and magesium in man. J Lab Clin Med 1970;75:578-585.
    36. Lemann J Jr, Piering WF, Lennon EJ. Possible role of carbohydrate-induced calciuria in calcium oxalate kidney-stone formation. N Engl J Med 1969;280:232-237.
    37. Lennon EJ, Lemann J Jr, Piering WF, Larson LS. The effect of glucose on urinary cation excretion during chroinic extracellular volume expansion in normal man. J Clin Invest 1974;53:1424-1433.
    38. Lennon EJ, Piering WF. A comparison of the effects of glucose ingestion and NH4C1 acidosis on urinary calcium and magnesium excretion in man. J Clin Invest 1970;49:1458-1465.
    39. DeFronzo RA, Goldberg M, Agus ZS. The effects of glucose and insulin on renal electrolyte transport. J Clin Invest 1976;58:83-90.
    40. Schwille PO, Rumenapf G, Kohler R. Blood levels of glucometabolic hormones and urinary saturation with stone forming phases after an oral test meal in male patients with recurrent idiopathic calcium urolithiasis and in healthy controls. J Am Coll Nutr 1989;8:557-566.
    41. Alhava EM, Juuti M, Karjalainen P. Bone mineral density in patients with urolithiasis. Scand J Urol Nephrol 1976; 10:154-156.
    42. Fuss M, Pepersack T, Van Geel J, et al. Involvement of low calcium diet in the reduced mineral content in idiopathic renal stone formers. Calcif Tissue Int 1990;46:9-13.
    43. Casez JP, Hug C, Ackermann D, et al. Bone mineral density of lumbar spine, femoral neck and distal tibia in patients with calcium nephrolithiasis. Urol Res 1990;18:66.
    44. Casez JP, Hug C, Hess B, et al. The myth of low bone mass in idiopathic calcium renal stone formers. Kidney Int 1993;44:264.
    45. Barkin J, Wilson DR, Manuel MA, et al. Bone mineral content in idiopathic calcium nephrolithiasis. Miner Electrolyte Metab 1985;11:19-24.
    46. Velentzas, C.; Oreopoulos, DG.; Meema, S., et al. Dietary calcium restriction may be good for patient's stone but not for their bones. In:Smith, L.; Robertson, WG.; Finlayson, B., editors. Urolithiasis; Clinical and Basic Research. New York, NY: Plenum; 1981. p.847-854.
    47. Pietschmann F, Breslau NA, Pak CYC. Reduced vertebral bone density in hypercalciuric Nephrolithiasis. J Bone Min Res 1992;7:1383-1388.
    48. Alonso, E.; Durrego, P.; Blassini, A., et al. Role of cytokines and type of hypercalciuria in the bone mineral loss of idiopathic hypercalciuria. Ⅻth International Congress of Nephrology; Jerusalem, Israel.1993. p.620.
    49. Jaeger P, Lippuner K, Casez JP, et al. Low bone mass in idiopathic renal stone formers: magnitude and significance. J Bone Min Res 1994;9:1525-1532.
    50. Fuss M, Gillet C, Simon J, et al. Bone mineral content in idiopathic renal stone disease and in primary hyperparathyroidism. Eur Urol 1983;9:32-34.
    51. Bataille, P.; Bergot, C.; Fournier, A., et al. Lower vertebral density in calcium stone formers with normocalciuria and idiopathic hypercalciuria. In:Dirk, SJM.; Sutham, RH., editors. Evidence for primary bone resorption in idiopathic hypercalciuria; Proceedings of Vlth International Symposium on Urolithiasis; New York, NY:Plenum; 1988. p.391-397.
    52. Pacific R, Rothstein M, Pifas L, et al. Increased monocyte interleukin-1 activity and decreased vertebral bone density in patients with fasting idiopathic hypercalciuria. J Clin Endocrinol Metab 1990;71:138-145.
    53. Hess B, Casez JP, Takkinen D, et al. Relative hypoparathyroidism and calcitriol upregulation in hypercalciuric calcium renal stone formers; impact of nutrition. Am J Nephrol 1993;13:18-26.
    54. Lawoyin S, Sismilich S, Browne R, et al. Bone mineral content in patients with calcium urolithiasis. Metabolism 1979;28:1250-1254.
    55. Lindergard B, Colleen S, Mansson W, et al. Calcium loading test and bone disease in patients with urolithiasis. Proc EDTA 1983;20:460-465.
    56. Malvasi L, sartori L, Giannimi S, et al. Mineral metabolism and bone mineral content in calcium nephrolithiasis with or without hyperparathyroidism. Urol Res 1988; 16:190.
    57. Bataille D, Achard JM, Fournier A, et al. Diet, vitamin D and vertebral mineral density in hypercalciuric calcium stone formers. Kidney Int 1991;39:1193-1205.
    58. Borghi L, Meschi T, Guerra A, et al. Vertebral mineral content in diet-dependent and diet-independent hypercalciuria. J Urol 1991;46:1334-1338.
    59. Audran M, Bataille P, Sebert JL, et al. La densite osseuse dans l'hypercalciurie idiopathique chezl'homme. Rev Rhum 1991;58:747-750.
    60. Heilberg IP, Martini LA, Szejnfeld VL, et al. Bone disease in calcium stone forming patients. Clin Nephrol 1994;42:175-182.
    61. Asplin JR, Bauer KA, Kinder J, et al. Bone mineral density and urine calcium concentration among subjects with and without hypercalciuria. Kidney Int 2003;63:662-669.
    62. Asplin, JR.; Coe, FL.; Favus, M. Nephrolithiasis. In:Brenner, BM., editor. The Kidney. 6. Philadelphia, Pennsylvania:W.B. Saunders; 2000. p.1774-1819.
    63. Bushinsky DA, Lechleider RJ. Mechanism of proton-induced bone calcium release: calcium carbonate dissolution. Am J Physiol 1987;253:F998-F1005.
    64. Goldhaber P, Rabadjija L. H+ stimulation of cell-mediated bone resorption in tissue culture. Am J Physiol 1987;253:E90-E98.
    65. Melton LJ III, Atkinson EJ, O'Fallon WM, et al. Long-term fracture prediction by bone mineral density assessed at different skeletal sites. J Bone Min Res 1993;8:1227-1233.
    66. Cummings SR, Black DM, Nevitt L, et al. Bone density at various sites for prediction of hip fractures. Lancet 1993;341:72-75.
    67. Melton LJ Ⅲ, Crowson CS, Khosla S, et al. Fracture risk among patients with urolithiasis:a population-based cohort study. Kidney Int 1998;53:459-464.
    68. Sowers MR, Jannausch M, Wood C, et al. Prevalence of renal stones in a population-based study of dietary calcium, oxalate, and medication exposures. Am J Epidemiol 1998;147:914-920.
    69. Lauderdale DS, Thisted RA, Wen M, et al. Bone mineral density and fracture among prevalent kidneystone cases in the third national health and nutrition examination survey. J Bone Min Res 2001;16:1893-1898.
    70. Garnero P, Delmas PD. Biochemical markers of bone turnover applications for osteoporosis. Endocrinol Metab Clin North Am 1998;27:303-323.
    71. Bordier P, Ryckewart A, Gueris J, et al. On the pathogenesis of so-called idiopathic hypercalciuria. Am J Med 1977;63:398-409.
    72. De Vernejoul MC, Hioco D, Villaumey J, et al. Etude histomorpometrique osseuse au cours del'hypercalciurie idiopathique. Rev Rhum 1981;48:389-395.
    73. Malluche HH, Tschoepe W, Ritz E, et al. Abnormal bone histology in idiopathic hypercalciuria. J Clin Endocrinol Metab 1980;50:654-658.
    74. Steiniche T, Mosekilde L, Christensen MS, et al. A histomorphometric determination of iliac bone remodeling in patients with recurrent renal stone formation and idiopathic hypercalciuria. Acta Pathol Microbiol Immunol Scand 1989;97:309-316.
    75. Da Silva, AMM.; Dos Reis, LM.; Pereira, RC., et al. Bone histomorphometric and bone mineral content in idiopathic hypercalciuria patients. Ⅻth International Congress of Nephrology; Jerusalem, Israel.1993. p.620
    76. Bataille P, Hardy P, Marie A, et al. Decreased bone formation in idiopathic hypercalciuric calcium stone formers explains reduced bone density. J Bone Min Res 10(suppl 1):401.
    77. Heller HJ, Zerwekh JE, Gottschalk FA, et al. reduced bone formation and relatively increased bone resorption in absorptive hypercalciuria. Kidney Int 2007;71:808-815.
    78. Weisinger JR, Alonzo E, Machado C, et al. Papel de hueso en la fisiopatologia de la hypercalciuriaidiopatica:efecto del aminobisfosfonato alendronato. Medicina 1997;57(Suppl 1):45-48.
    79. Bushinsky DA, Neumann KJ, Asplin J, et al. Alendronate decreases urine calcium and supersaturation in genetic hypercalciuric rats. Kidney Int 1999;55:234-243.
    80. Sakhaee K, Nicar MJ, Glass K, et al. Postmenopausal osteoporosis as a manifestation of renal hypercalciuria with secondary hyperparathyroidism. J Clin Endocrinol Metab 1985;61:368-373.
    81. Lemann J Jr, Litzow JR, Lennon EJ. The effects of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. J Clin Invest 1966;45:1608-1614.
    82. Amanzadeh J, Gitomer W, Zerwekh JE, et al. Effect of high protein diet on stone-forming propensity and bone loss in rats. Kidney Int 2003;64:2142-2149.
    83. Nijenhuis T, Renkema KY, Hoenderop JGJ, et al. Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins. J Amer Soc Nephrol 2006;17:617-626.
    84. Reddy ST, Wang CY, Sakhaee K, et al. Effect of low carbohydrate, high protein diet on acid-base balance, stone-forming propensity and calcium metabolism. Am J Kid Dis 2002;40:265-274.
    85. Zerwekh, JE.; Zou, L.; Pak, CYC., et al. Biochemical and histological assessment of the effects of alkali therapy on bone during high animal protein intake. Presented at the 29th annual meeting of the American Society for Bone and Mineral Research; Honolulu, HI. September 16-16,2007;
    86. Sakhaee K, Maalouf NM, Abrams SA, et al. Effects of potassium alkali and calcium supplementation on bone turnover in postmenopausal women. J Clin Endocrinol Metab 2005;90:3528-3533.
    87. Buck AC, Lote CJ, Sampson WF. The influence of renal prostaglandins on urinary calcium excretion in idiopathic urolithiasis. J Urol 1983;129:421-426.
    88. Raisz, LG.; Martin, TJ. Prostaglandins in bone and mineral metabolism. In:Peck, WA., editor. Bone and Mineral Research, Annual 2. Amsterdam:Elsevier Science; 1983. p. 286-310.
    89. Fall PM, Breault DT, Raisz LG. Inhibition of collagen synthesis by prostaglandins in the immortalized rat osteoblastic cell line, Pyla:structure activity relations and signal transduction mechanisms. J Bone Min res 1994;9:1935-1943.
    90. Weisinger JR, Alonzo E, Bellorin-Font E, et al. Possible role of cytokines on the bone mineral loss in idiopathic hypercalciuria. Kidney Int 1996;49:244-250.
    91. Ghazali A, Fuentes V, Desaint C, et al. Low bone mineral density and peripheral blood monocytes activation profile in calcium stone formers with idiopathic hypercalciuria. J Clin Endocrinol Metab 1997;82:32-38.
    92. Baggio B, Budakovic A. Fatty acids and idiopathic nephrolithiasis. Urol Int 2005;75:97-101.
    93. Reed BY, Gitomer WL, Heller HJ, et al. Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spinal bone density. J Clin Endocrinol Metab 2002;87:1476-1485.
    94. Raisz LG, Kream BE, Smith MD, et al. Comparison of the effects of vitamin D metabolites on collagen synthesis and resorption of fetal rat bone in organ culture. Calcif Tissue Int 1980;32:135-138.
    95. Broadus AE, Erickson SB, Gertner JM, et al. An experimental human model of 1,25-dihydroxyvitamin D-mediated hypercalciuria. J Clin Endocrinol Metab 1984;59:202-206.
    96.56. Broadus AE, Insogna KL, Lang R, et al. Evidence for disordered control of 1,25-dihydroxyvitamin D production in absorptive hypercalciuria. New Eng J Med 1984;311:73-80.
    97. Breslau NA, Preminger GM, Adams BV, et al. Use of ketoconazole to probe the pathogenetic importance of 1,25-dihydroxyvitamin D in absorptive hypercalciuria. J Clin Endocrinol Metab 1992;75:1446-1452.
    98. Zerwekh JE, Reed BY, Heller HJ, et al. G.B. Normal vitamin D receptor concentration and responsiveness to 1,25-dihydroxyvitamin D3 in skin fibroblasts from patients with absorptive hypercalciuria. Min Elec Metab 1998;24:307-313.
    99. Karnauskas AJ, van Leeuwen JP, van den Bemd GJ, et al. Mechanism and function of high vitamin D receptor levels in genetic hypercalciuric stone-forming rats. J Bone Min Res 2005;20:447-454.
    100.Krieger NS, Stathopoulos VM, Bushinsky DA. Increased sensitivity to 1,25(OH)2D3 in bone from genetic hypercalciuric rats. Am J Physiol 1996;271:C130-C135.
    101.Bushinsky, DA.; Coe, FL.; Moe, OW. Nephrolithiasis. In:Brenner, BM., editor. Brenner and Rector's The Kidney.8. chap.37. Philadelphia:Saunders; 2007. p. 1299-1349.
    102.Scheinman SJ, Cox JP, Lloyd SE, et al. Isolated hypercalciuria with mutation in CLCN5:relevance to idiopathic hypercalciuria. Kidney Int 2000;57:232-239.
    103.Reed BY, Heller HJ, Gitomer WL, Pak CY. Mapping a gene defect in absorptive hypercalciuria to chromosome 1q23.3-q24. J Clin Endocrinol Metab 1999;84:3907-3913.
    104.Reed BY, Gitomer WL, Heller HJ, et al. Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spinal bone density. J Clin Endocrinol Metab 2002;87:1476-1485.
    105.Geng W, Wang Z, Zhang J, et al. Cloning and characterization of the human soluble adenylyl cyclase. Am J Physiol Cell Physiol 2005;288:1305-1316.
    106.Rendina D, Mossetti G, Viceconti R, et al. Association between vitamin D receptor gene polymorphisms and fasting idiopathic hypercalciuria in recurrent stone-forming patients. Urol 2004;64:833-838.
    107.Scott P, Ouimet D, Valiquette L, et al. Suggestive evidence for a susceptibility gene near the vitamin D receptor locus in idiopathic calcium stone formation. J Am Soc Nephrol 1999; 10:1007-1013.
    108.Muller D, Hoenderop JGJ, Vennekens R, et al. Epithelial Ca2+ channel (ECaC) in autosomal dominant idiopathic hypercalciuria. Nephrol Dial Transplant 2002; 17:1614-1620.
    109.Vezzoli G, Terranegra A, Arcidiacono T, et al. R990G polymorphism of calcium-sensing receptor does produce a gain-of-function and predispose to primary hypercalciuria. Kidney Int 2007;71:1155-1162.
    110.Vezzoli G, Tanini A, Ferrucci L, et al. Influence of calcium-sensing receptor gene on urinary calcium excretion in stone-forming patients. J Am Soc Nephrol 2002; 13:2517-2523.
    111.Prie D, Huart V, Bakouh N, et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med 2002;347:983-991.
    112.Lapointe J-Y, Tessier J, Paquette Y, et al. NPT2a gene variation in calcium nephrolithiasis with renal phosphate leak. Kidney Int 2006;69:2261-2267.
    113.Murer H, Hernanado N, Forster I, Biber J. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 2000;80:1373-1409.
    114.Torres PU, Prie D, Molina-Bletry V, et al. Klotho:an antiagirig protein involved in mineral and vitamin D metabolism. Kidney Int 2007;71:730-737.
    115.Chang Q, Hoefs S, Van der Kemp AW, et al. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 2005;310:490-493.
    116.Liu S, Quarles LD. How fibroblast growth factor 23 works. J Am Soc Nephrol 2007; 18:1637-1647.
    117.Matsunuma A, Horiuchi N. Leptin attenuates gene expression for renal 25-hydroxyvitamin D3-1α-hydroxylase in mice via the long form of the leptin receptor. Arch Biochem Biophys 2007;463:118-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700