用户名: 密码: 验证码:
自身免疫调节因子对大分子自噬及细胞吞噬功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分自身免疫调节因子与大分子自噬
     目的
     自身免疫调节因子(AIRE)具有诱导中枢免疫耐受的潜能,但在外周免疫耐受中,其功能未明。考虑大分子自噬可参与免疫耐受的诱导,我们初步探讨了自身免疫调节因子在外周中的表达及其对外周单核细胞系THP-1大分子自噬的影响。
     方法
     真核表达载体pEGFP-AIRE经双限制性酶切、PCR扩增及DNA测序分析鉴定;依据密度梯度离心与贴壁培养法进行外周血单个核细胞及单核细胞的分离;THP-1细胞由佛波醇酯诱导分化后通过瑞氏-姬姆萨染色进行形态学鉴定;细胞转染按脂质体法进行;AIRE表达抑制采用siRNA的方法;荧光显微镜观察GFP-AIRE融合蛋白的表达和亚细胞定位;转染效率经RT-PCR与Western Blot进行验证;自噬小体在胞内的形成和定位通过间接免疫荧光染色指示;大分子自噬的抑制采用PI3K抑制剂(渥曼青霉素)进行诱导;LC3B-Ⅱ与p62/SQSTM1的蛋白表达变化经Western Blot进行检测。
     结果
     质粒DNA经双酶切、PCR扩增和琼脂糖凝胶电泳后可见特异性条带;DNA测序结果显示测定序列与AIRE (NM_000383.2)基因序列符合率99%(BLAST评分1698)。外周血单个核细胞、单核细胞、U937和THP-1细胞存在AIRE mRNA表达;单核细胞和THP-1细胞仅表达低水平AIRE蛋白。诱导后,THP-1细胞呈贴壁生长,胞体增大,形态多样性,核不规则,胞浆内空泡,吞噬细胞碎片等典型成熟分化形态。质粒转染48小时后,荧光显微镜显示GFP-AIRE融合蛋白以斑点状定位于细胞核内;在mRNA和蛋白水平,AIRE均呈明显高表达;而AIRE siRNA则明显抑制GFP-AIRE融合蛋白及AIRE mRNA与蛋白的表达。过表达AIRE可上调LC3B-Ⅱ的表达和自噬小体的形成;而大分子自噬抑制剂与AIRE siRNA可抑制AIRE介导的上调效应。过表达AIRE或大分子自噬抑制剂与AIRE siRNA对p62/SQSTM1蛋白表达无影响。
     结论
     真核表达载体pEGFP-AIRE构建正确,可应用于体外转染研究。AIRE可表达于外周单核细胞并通过上调LC3B-Ⅱ的表达和自噬小体的形成促进单核细胞大分子自噬。AIRE介导单核细胞大分子自噬的信号转导通路可能与p62/SQSTM1蛋白无关。通过促进单核细胞大分子自噬,AIRE可能在外周免疫耐受中具有功能。
     第二部分自身免疫调节因子与凋亡细胞的吞噬清除
     目的
     凋亡细胞是自身抗原成分的主要来源之一,适时清除凋亡细胞对维持免疫自稳具有重要意义。作为细胞死亡的两种不同形式——大分子自噬与凋亡共享许多调节因子,基于本文第一部分研究结果,为继续探讨自身免疫调节因子(AIRE)在外周免疫耐受中的功能,我们在非“职业”吞噬细胞——上皮细胞系16HBE中探讨了AIRE对吞噬凋亡细胞的影响。
     方法
     16HBE细胞的转染使用来源于第一部分研究的真核表达载体pEGFP-AIRE通过FuGENEHD转染法进行;转染效率经荧光显微镜、RT-PCR与Western Blot进行验证;HL-60细胞的凋亡由喜树碱诱导后通过Annexin V-FITC/碘化丙啶双染色进行流式细胞仪检测:吞噬凋亡细胞的检测通过髓过氧化物酶(MPO)染色进行显示;吞噬相关基因(Rac
     1)的表达变化经RT-PCR与Western Blot进行检测。
     结果
     pEGFP-AIRE转染48小时后,荧光显微镜显示GFP-AIRE融合蛋白以斑点状定位于16HBE细胞核内;通过RT-PCR与Western Blot检测,AIRE mRNA和蛋白均呈明显高表达。对比未经凋亡诱导的阴性对照组,流式细胞仪检测显示,喜树碱诱导的HL-60细胞凋亡率上升约3倍[(4.08±0.26)%Vs(13.46±1.71)%]。在与凋亡细胞共孵育1小时后,可见转AIRE基因16HBE细胞吞噬率为(25.5±3.67)%,而转染空载体16HBE细胞吞噬率为(6.25±1.58)%,两者间具有显著性差异(P<0.05);但过表达AIRE对16HBE细胞吞噬未凋亡细胞无明显影响[(1.0±0.67)%]。同时,过表达AIRE可上调16HBE细胞Rac 1 mRNA和蛋白表达。
     结论
     16HBE细胞对凋亡细胞具有基础吞噬率,可作为体外研究吞噬凋亡细胞的细胞模型。MPO染色法对检测吞噬来源于MPO阳性靶细胞的吞噬效应具有较好对比度,可作为体外显示吞噬效应的检测方法。AIRE可促进上皮细胞对凋亡细胞的吞噬,通过上调Rac1的表达促进对凋亡细胞吞噬清除防止“自我”抗原“暴露”,AIRE可能在外周免疫耐受中具有功能。
Part 1 Autoimmune Regulator and Macroautophay
     Purpose
     Autoimmune regulator (AIRE) has the potential to induce central immune tolerance. However its function in peripheral immune tolerance has so far remained unknown. Assuming that macroautophagy may have a role in the induction of immune tolerance, we intended to explore the expression of AIRE in periphery and its possible effect upon the macroautophagy of THP-1 human monocytes.
     Methods
     pEGFP-AIRE, the eukaryotic expression vector, was identified by double restriction enzyme digestion, then amplified by PCR and verified identified by DNA sequencing analysis. Using density gradient centrifugation and adhesive culture, peripheral blood mononuclear cells (PBMC) and monocytes were separated from peripheral blood. The phorbol ester (PMA) was adopted to induce the differentiation of THP-1 cells, which then was morphologically indentified by Wright-Giemsa staining and transfected by the Llipofectamine 2000. AIRE expression was inhibited by siRNA. Under the fluorescence microscope, the expression of GFP-AIRE fusion protein was observed and the subcellular location of proteins was indicated. The transfection efficiency was confirmed by RT-PCR and Western Blot. The intracellular formation and localization of autophagosome was indicated by indirect immunofluorescence staining. Macroautophagy was inhibited by PI3K inhibitor (wortmannin); the protein expression of LC3B-Ⅱand p62/SQSTM1 were detected by Western Blot.
     Results Specific bands appeared after plasmid DNA was treated by restriction enzyme digestion, PCR amplification and agarose gel electrophoresis. According to the result of DNA sequencing, the compliance rate is as high as 99% with that of AIRE (NM_000383.2) (BLAST scores 1698). AIRE mRNA expression existed in PBMC, monocytes, U937 and THP-1 cells; AIRE protein expression is low in monocytes and THP-1 cells. Followed by induction, THP-1 cells present a series of typical manifestations of mature differentiation: an increased adherence to tissue culture plastic, expanded cell body, morphological diversity, irregular nucleus, phagocytic vacuoles and cellular debris in cytoplasm.48 hours after plasmid transfection, the dot-like GFP-AIRE fusion protein was spotted in the nucleus under fluorescence microscopy; in mRNA and protein level, AIRE showed significantly high expression while AIRE siRNA markedly inhibited the GFP-AIRE fusion protein expression as well as AIRE mRNA and protein expression. The over-expression of AIRE upregulated the LC3B-Ⅱexpression and promoted the formation of autophagosome. But this effect could be counteracted by macroautophagy inhibitors and AIRE siRNA. Neither over-expression of AIRE nor macroautophagy inhibitors and AIRE siRNA had any effect on the expression of p62/SQSTM1.
     Conclusion
     The correct construction of pEGFP-AIRE, the eukaryotic expression vector, can be applied to the in vitro research of transfection. AIRE can be expressed in peripheral monocytes and by upregulating both the expression of LC3B-Ⅱand the formation of autophagosome, it is able to promote monocytic macroautophagy. The signal transduction pathway through which AIRE mediated monocytic macroautophagy may bear no relation to p62/SQSTM1 protein. It is probably by promoting monocytic macroautophagy that AIRE functions in peripheral immune tolerance.
     Part 2 Autoimmune Regulator and Phagocytosis of Apoptotic Cells
     Purpose
     An opportune clearance of apoptotic cells, which are a major source of self-antigenic components, is of great significance for maintaining immunological homeostasis. As two different forms of programmed cell death, autophagic cell death and apoptosis share many common regulators. Based on the findings of the first part in this study, we continue to explore the function of autoimmune regulator (AIRE) in peripheral immune tolerance by focusing on the effect AIRE has upon phagocytosis of apoptotic cells by non-professional phagocytes-epithelial 16HBE cells.
     Methods
     16HBE cells were transfected by pEGFP-AIRE, the same plasmid in Part 1, using FuGENE HD transfection reagent. The transfection efficiency was verified by fluorescence microscopy, RT-PCR and Western Blot. The apoptosis of HL-60 cells was first induced by the CPT (Camptothecin), then double stained by Annexin V-FITC/propidium iodide (PI) and finally detected by flow cytometry. Phagocytosis of apoptotic cells was displayed by myeloperoxidase (MPO) staining. Both RT-PCR and Western Blot were adopted to detect the expression of the phagocytosis-related gene (Rac 1).
     Results
     48 hours after the pEGFP-AIRE transfection, we observed the predominant location of the GFP-AIRE fusion proteins in the nuclear dots by using fluorescence microscope; through RT-PCR and Western Blot assays, AIRE mRNA and protein expression were both significantly high. Compared to the negative control group with no apoptosis induction, the data from flow cytometry indicated that the percentage of apoptosis was approximately increased threefold [(4.08±0.26)% Vs (13.46±1.71)%] in HL-60 cells induced by camptothecin. Being incubated with apoptotic cells for 1 hour, the AIRE-transfected 16HBE cells enjoyed a phagocytosis rate of (25.5±3.67)%, while those transfected by empty vector had a phagocytosis rate of (6.25±1.58)%, indicating a significant differences (P<0.05). However, over-expression of AIRE had little effect on 16HBE phagocytosis of non-apoptotic cells [(1.0±0.67)%] but upregulated the Rac 1 mRNA and protein expression.
     Conclusion
     16HBE cells possess a basic phagocytic rate in removing apoptotic cells and thus can be used as an alternative model in the study of phagocytosis of apoptotic cells in vitro. MPO staining is an optional testing method since it provides a sharp contrast in detecting engulfment of MPO-positive target cells in vitro. AIRE can promote the phagocytosis of apoptotic cells by epithelial cells. The upregulation of the expression of Rac 1 by AIRE can strengthen the phagocytic clearance of apoptotic cells and thus prevent the exposure of self-antigens, suggesting that AIRE might play a role in peripheral immune tolerance.
引文
[1]Pitkanen J, Doucas V, Sternsdorf T, et al. The autoimmune regulator protein has transcriptional transactivating properties and interacts with the common coactivator CREB-binding protein. J Biol Chem,2000,275(22):16802-16809.
    [2]Ramsey C, Winqvist O, Puhakka L, et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet,2002, 11(4):397-409.
    [3]Macedo C, Evangelista AF, Magalhaes DA, et al. Evidence for a network transcriptional control of promiscuous gene expression in medullary thymic epithelial cells. Mol Immunol,2009,46(16):3240-3244.
    [4]Goodnow CC, Sprent J, Fazekas de St Groth B, et al. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature,2005,435(7042):590-597.
    [5]Mathis D, Benoist C. A decade of AIRE. Nat Rev Immunol,2007,7(8):645-650.
    [6]Yano M, Kuroda N, Han H, et al. Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J Exp Med,2008, 205(12):2827-2838.
    [7]Kogawa K, Nagafuchi S, Katsuta H, et al. Expression of AIRE gene in peripheral monocyte/dendritic cell lineage. Immunol Lett,2002,80(3):195-198.
    [8]Poliani PL, Kisand K, Marrella V, et al. Human peripheral lymphoid tissues contain autoimmune regulator-expressing dendritic cells. Am J Pathol,2010, 176(3):1104-1112.
    [9]Jordan MS, Boesteanu A, Reed AJ, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol,2001,2(4):301-306.
    [10]Sakaguchi S, Hori S, Fukui Y, et al. Thymic generation and selection of CD25+CD4+ regulatory T cells:implications of their broad repertoire and high self-reactivity for the maintenance of immunological self-tolerance. Novartis Found Symp,2003,252:6-16; discussion 16-23,106-114.
    [11]Walker LS, Chodos A, Eggena M, et al. Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J Exp Med,2003,198(2):249-258.
    [12]Kekalainen E, Tuovinen H, Joensuu J, et al. A defect of regulatory T cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Immunol, 2007,178(2):1208-1215.
    [13]Aschenbrenner K, D'Cruz LM, Vollmann EH, et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol,2007,8(4):351-358.
    [14]Cheng MH, Shum AK, Anderson MS. What's new in the Aire? Trends Immunol,2007, 28(7):321-327.
    [15]Chen Z, Benoist C, Mathis D. How defects in central tolerance impinge on a deficiency in regulatory T cells. Proc Natl Acad Sci U S A,2005, 102(41):14735-14740.
    [16]Ramsey C, Hassler S, Marits P, et al. Increased antigen presenting cell-mediated T cell activation in mice and patients without the autoimmune regulator. Eur J Immunol, 2006,36(2):305-317.
    [17]Sillanpaa N, Magureanu CG, Murumagi A, et al. Autoimmune regulator induced changes in the gene expression profile of human monocyte-dendritic cell-lineage. Mol Immunol,2004,41(12):1185-1198.
    [18]Brannstrom J, Hassler S, Peltonen L, et al. Defect internalization and tyrosine kinase activation in Aire deficient antigen presenting cells exposed to Candida albicans antigens. Clin Immunol,2006,121(3):265-273
    [19]Perniola R, Congedo M, Rizzo A, et al. Innate and adaptive immunity in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Mycoses,2008, 51(3):228-235.
    [20]Liang XH, Kleeman LK, Jiang HH, et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol,1998, 72(11):8586-8596.
    [21]Orvedahl A, Levine B. Eating the enemy within:autophagy in infectious diseases. Cell Death Differ,2009,16(1):57-69.
    [22]Gutierrez MG, Master SS, Singh SB, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell,2004,119(6):753-766.
    [23]Yano T, Mita S, Ohmori H, et all. Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nat Immunol,2008,9(8):908-916.
    [24]Kasai M, Tanida I, Ueno T, et al. Autophagic compartments gain access to the MHC class Ⅱ compartments in thymic epithelium. J Immunol,2009,183(11):7278-7285.
    [25]Virgin HW, Levine B. Autophagy genes in immunity. Nat Immunol,2009, 10(5):461-470.
    [26]Prescott NJ, Fisher SA, Franke A, et al. A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn's disease and is independent of CARD15 and IBD5. Gastroenterology,2007,132(5):1665-16671.
    [27]Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16Ll enhances endotoxin-induced IL-lbeta production. Nature,2008,456(7219):264-268.
    [28]Akiyoshi H, Hatakeyama S, Pitkanen J, et al. Subcellular expression of autoimmune regulator is organized in a spatiotemporal manner. J Biol Chem.2004, 279(32):33984-33991.
    [29]Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy,2007, 3(6):542-545.
    [30]Colosimo A, Goncz KK, Holmes AR, et al. Transfer and expression of foreign genes in mammalian cells. Biotechniques,2000,29(2):314-318,320-2,324 passim.
    [31]Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J,2000, 19(21):5720-5728.
    [32]Klionsky DJ, Abeliovich H, Agostinis P, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy,2008, 4(2):151-175.
    [33]He H, Dang Y, Dai F, et al. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem,2003,278(31):29278-29287.
    [34]Blommaart EF, Krause U, Schellens JP, et al. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem,1997,243(1-2):240-246.
    [35]Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 2007,282(33):24131-24145.
    [36]Bj(?)rk(?)y G, Lamark T, Pankiv S, et al. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol,2009,452:181-197.
    [37]Simpson AJ, Caballero OL, Jungbluth A, et al. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer,2005,5(8):615-625.
    [38]Klamp T, Sahin U, Kyewski B, et al. Expression profiling of autoimmune regulator AIRE mRNA in a comprehensive set of human normal and neoplastic tissues. Immunol Lett,2006,106(2):172-179.
    [39]Hassler S, Ramsey C, Karlsson MC, et al. Aire-deficient mice develop hematopoetic irregularities and marginal zone B-cell lymphoma. Blood,2006,108(6):1941-1948.
    [40]Pontynen N, Strengell M, Sillanpaa N, et al. Critical immunological pathways are downregulated in APECED patient dendritic cells. J Mol Med,2008, 86(10):1139-1152.
    [41]Gray D, Abramson J, Benoist C, et al. Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J Exp Med,2007,204(11):2521-2528.
    [42]Gonzalez-Polo RA, Boya P, Pauleau AL, et al. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci,2005,118(Pt 14):3091-3102.
    [43]Levine B. Cell biology:autophagy and cancer. Nature.2007,446(7137):745-747.
    [44]Uchida D, Hatakeyama S, Matsushima A, et al. AIRE functions as an E3 ubiquitin ligase. J Exp Med,2004,199(2):167-172.
    [45]Lu Z, Xu S, Joazeiro C, et al. The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol Cell,2002, 9(5):945-956.
    [46]Hanada T, Noda NN, Satomi Y, et al. The Atgl2-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem,2007,282(52):37298-37302.
    [47]Fujita N, Itoh T, Omori H, et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell,2008, 19(5):2092-2100.
    [48]Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell,2008, 132(1):27-42.
    [49]Bj(?)rk(?)y G, Lamark T, Brech A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol, 2005,171(4):603-614.
    [50]Komatsu M, Wang QJ, Holstein GR, et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A,2007,104(36):14489-14494.
    [51]Wang QJ, Ding Y, Kohtz DS, et al. Induction of autophagy in axonal dystrophy and degeneration. J Neurosci,2006,26(31):8057-8068.
    [52]Komatsu M, Waguri S, Koike M, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell,2007,131(6):1149-1163.
    [53]Puissant A, Robert G, Fenouille N, et al. Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res,2010,70(3):1042-1052.
    [54]Hong M, Ryan KR, Arkwright PD, et al. Pattern recognition receptor expression is not impaired in patients with chronic mucocutanous candidiasis with or without autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. Clin Exp Immunol, 2009,156(1):40-51.
    [1]Hart SP, Haslett C, Dransfield I. Recognition of apoptotic cells by phagocytes. Experientia,1996,52(10-11):950-956.
    [2]Erwig LP, Henson PM. Clearance of apoptotic cells by phagocytes. Cell Death Differ, 2008,15(2):243-250.
    [3]Mevorach D, Zhou JL, Song X, et al. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med,1998,188(2):387-392.
    [4]Herrmann M, Voll RE, Zoller OM, et al. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum,1998,41(7):1241-1250.
    [5]Wilkinson R, Lyons AB, Roberts D, et al. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) acts as a regulator of B-cell development, B-cell antigen receptor (BCR)-mediated activation, and autoimmune disease. Blood,2002,100(1):184-193.
    [6]Taylor PR, Carugati A, Fadok VA, et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp Med,2000, 92(3):359-366.
    [7]Botto M, Walport MJ. C1q, autoimmunity and apoptosis. Immunobiology,2002, 205(4-5):395-406.
    [8]Botto M, Dell'Agnola C, Bygrave AE, et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet,1998, 19(1):56-59.
    [9]Lewis MJ, Botto M. Complement deficiencies in humans and animals:links to autoimmunity. Autoimmunity,2006,39(5):367-378.
    [10]Shao WH, Zhen Y, Eisenberg RA, et al. The Mer receptor tyrosine kinase is expressed on discrete macrophage subpopulations and mainly uses Gas6 as its ligand for uptake of apoptotic cells. Clin Immunol,2009,133(1):138-144.
    [11]Scott RS, McMahon EJ, Pop SM, et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature,2001,411 (6834):207-211.
    [12]Lu Q, Lemke G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science,2001,293(5528):306-311.
    [13]Pittoni V, Valesini G The clearance of apoptotic cells:implications for autoimmunity. Autoimmun Rev,2002,1(3):154-161.
    [14]Cooney R, Baker J, Brain O, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med,2010, 16(1):90-97.
    [15]Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet,2007,39(5):596-604.
    [16]Arsov I, Li X, Matthews G, et al. BAC-mediated transgenic expression of fluorescent autophagic protein Beclin 1 reveals a role for Beclin 1 in lymphocyte development. Cell Death Differ,2008,15(9):1385-1395.
    [17]Kolb S, Vranckx R, Huisse MG, et al. The phosphatidylserine receptor mediates phagocytosis by vascular smooth muscle cells. J Pathol,2007,212(3):249-259.
    [18]Qu X, Zou Z, Sun Q, et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell,2007,128(5):931-946.
    [19]Mellen MA, de la Rosa EJ, Boya P. The autophagic machinery is necessary for removal of cell corpses from the developing retinal neuroepithelium. Cell Death Differ, 2008,15(8):1279-1290.
    [20]Yoshimori T. Autophagy:paying Charon's toll.Cell.2007,128(5):833-836.
    [21]Djavaheri-Mergny M, Maiuri MC, Kroemer G. Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene,2010, 29(12):1717-1719.
    [22]Hong JR, Lin GH, Lin CJ, et al. Phosphatidylserine receptor is required for the engulfment of dead apoptotic cells and for normal embryonic development in zebrafish. Development,2004,131(21):5417-5427.
    [23]Khokhar S, Chawla R. Apoptosis:an ocular perspective. Natl Med J India,2002, 15(3):148-153.
    [24]Hertzberg RP, Caranfa MJ, Hecht SM. On the mechanism of topoisomerase I inhibition by camptothecin:evidence for binding to an enzyme-DNA complex. Biochemistry, 1989,28(11):4629-4638.
    [25]Hachiya M, Osawa Y, Akashi M. Role of TNFalpha in regulation of myeloperoxidase expression in irradiated HL60 promyelocytic cells. Biochim Biophys Acta,2000, 1495(3):237-249.
    [26]Lauber K, Blumenthal SG, Waibel M, et al. Clearance of apoptotic cells:getting rid of the corpses. Mol Cell,2004,14(3):277-287.
    [27]Kinchen JM, Cabello J, Klingele D, et al. Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans. Nature,2005, 434(7029):93-99.
    [28]Dini L, Autuori F, Lentini A, et al. The clearance of apoptotic cells in the liver is mediated by the asialoglycoprotein receptor. FEBS Lett,1992,296(2):174-178.
    [29]Hall SE, Savill JS, Henson PM, et al. Apoptotic neutrophils are phagocytosed by fibroblasts with participation of the fibroblast vitronectin receptor and involvement of a mannose/fucose-specific lectin. J Immunol,1994,153(7):3218-3227.
    [30]Dini L, Lentini A, Diez GD, et al. Phagocytosis of apoptotic bodies by liver endothelial cells. J Cell Sci,1995,108 (Pt 3):967-973.
    [31]Savill J, Smith J, Sarraf C, et al. Glomerular mesangial cells and inflammatory macrophages ingest neutrophils undergoing apoptosis. Kidney Int,1992, 42(4):924-936.
    [32]Walsh GM, Sexton DW, Blaylock MG, et al. Resting and cytokine-stimulated human small airway epithelial cells recognize and engulf apoptotic eosinophils. Blood,1999, 94(8):2827-2835.
    [33]Sato K, Sato U, Tateishi S, et al. Aire downregulates multiple molecules that have contradicting immune-enhancing and immune-suppressive functions. Biochem Biophys Res Commun,2004,318(4):935-940.
    [34]Reddien PW, Horvitz HR. The engulfment process of programmed cell death in caenorhabditis elegans. Annu Rev Cell Dev Biol,2004,20:193-221.
    [35]Suzuki E, Nakayama M. MEGF10 is a mammalian ortholog of CED-1 that interacts with clathrin assembly protein complex 2 medium chain and induces large vacuole formation. Exp Cell Res,2007,313(17):3729-3742.
    [36]Suzuki E, Nakayama M. The mammalian Ced-1 ortholog MEGF10/KIAA1780 displays a novel adhesion pattern. Exp Cell Res,2007,313(11):2451-2464.
    [37]Yu X, Lu N, Zhou Z. Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells. PLoS Biol,2008,6(3):e61.
    [38]Su HP, Nakada-Tsukui K, Tosello-Trampont AC, et al. Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP). J Biol Chem,2002, 277(14):11772-11779.
    [39]Smits E, Van Criekinge W, Plaetinck G, et al. The human homologue of Caenorhabditis elegans CED-6 specifically promotes phagocytosis of apoptotic cells. Curr Biol,1999, 9(22):1351-1354.
    [40]Moynault A, Luciani MF, Chimini G ABC1, the mammalian homologue of the engulfinent gene ced-7, is required during phagocytosis of both necrotic and apoptotic cells. Biochem Soc Trans,1998,26(4):629-635.
    [41]Wu YC, Horvitz HR. The C. elegans cell corpse engulfinent gene ced-7 encodes a protein similar to ABC transporters. Cell,1998,93(6):951-960.
    [42]Tosello-Trampont AC, Kinchen JM, Brugnera E, et al. Identification of two signaling submodules within the CrkII/ELMO/Dock180 pathway regulating engulfinent of apoptotic cells. Cell Death Differ,2007,14(5):963-972.
    [43]Wang X, Wu YC, Fadok VA, et al. Cell corpse engulfinent mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. Science,2003, 302(5650):1563-1566.
    [44]Gumienny TL, Brugnera E, Tosello-Trampont AC, et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell,2001,107(1):27-41.
    [45]Wu YC, Tsai MC, Cheng LC, et al. C. elegans CED-12 acts in the conserved crkII/DOCK180/Rac pathway to-control cell migration and cell corpse engulfinent. Dev Cell,2001, 1(4):491-502.
    [46]Fullard JF, Kale A, Baker NE. Clearance of apoptotic corpses. Apoptosis,2009, 14(8):1029-1037.
    [47]Nakaya M, Kitano M, Matsuda M, et al. Spatiotemporal activation of Racl for engulfinent of apoptotic cells. Proc Natl Acad Sci U S A,2008,105(27):9198-9203.
    [48]Zhou Z, Caron E, Hartwieg E, et al. The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. Dev Cell,2001, 1(4):477-489.
    [49]Henson PM. Engulfment:ingestion and migration with Rac, Rho and TRIO. Curr Biol, 2005,15(1):R29-30.
    [50]Rubartelli A, Poggi A, Zocchi MR. The selective engulfment of apoptotic bodies by dendritic cells is mediated by the alpha (v) beta3 integrin and requires intracellular and extracellular calcium. Eur J Immunol,1997,27(8):1893-1900.
    [51]Albert ML, Pearce SF, Francisco LM, et al. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med,1998,188(7):1359-1368.
    [52]Stuart LM, Lucas M, Simpson C, et al. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation. J Immunol,2002, 168(4):1627-1635.
    [53]Bellone M, Iezzi G, Rovere P, et al. Processing of engulfed apoptotic bodies yields T cell epitopes. J Immunol,1997,159(11):5391-5399.
    [54]Savill J, Dransfield I, Gregory C, et al. A blast from the past:clearance of apoptotic cells regulates immune responses. Nat Rev Immunol,2002,2(12):965-975.
    [55]Peter C, Wesselborg S, Herrmann M, et al. Dangerous attraction:phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis,2010, [Epub ahead of print]
    [56]Devitt A, Moffatt OD, Raykundalia C, et al. Human CD 14 mediates recognition and phagocytosis of apoptotic cells. Nature,1998,392(6675):505-509.
    [1]Notarangelo LD, Mazza C, Forino C, et al. AIRE and immunological tolerance: insights from the study of autoimmune polyendocrinopathy candidiasis and ectodermal dystrophy. Curr Opin Allergy Clin Immunol,2004,4(6):491-496.
    [2]Rizzi M, Ferrera F, Filaci G, et al. Disruption of immunological tolerance:role of AIRE gene in autoimmunity. Autoimmun Rev,2006,5(2):145-147.
    [3]Meriluoto T, Halonen M, Pelto-Huikko M, et al. The autoimmune regulator:a key toward understanding the molecular pathogenesis of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Keio J Med,2001, 50(4):225-239.
    [4]Bjorses P, Aaltonen J, Horelli-Kuitunen N, et al. Gene defect behind APECED:a new clue to autoimmunity. Hum Mol Genet,1998,7(10):1547-1553.
    [5]Peterson P, Org T, Rebane A. Transcriptional regulation by AIRE:molecular mechanisms of central tolerance. Nat Rev Immunol,2008,8(12):948-957.
    [6]Pitkanen J, Vahamurto P, Krohn K, et al. Subcellular localization of the autoimmune regulator protein. Characterization of nuclear targeting and transcriptional activation domain. J Biol Chem,2001,276(22):19597-19602.
    [7]Bjorses P, Pelto-Huikko M, Kaukonen J, et al. Localization of the APECED protein in distinct nuclear structures. Hum Mol Genet,1999,8(2):259-266.
    [8]Ramsdell F, Ziegler SF. Transcription factors in autoimmunity. Curr Opin Immunol, 2003,15(6):718-724.
    [9]Pitkanen J, Doucas V, Sternsdorf T, et al. The autoimmune regulator protein has transcriptional transactivating properties and interacts with the common coactivator CREB-binding protein. J Biol Chem,2000,275(22):16802-16809.
    [10]Org T, Chignola F, Hetenyi C, et al. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep,2008, 9(4):370-376.
    [11]Bottomley MJ, Collard MW, Huggenvik JI, et al. The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat Struct Biol,2001, 8(7):626-633.
    [12]Surdo PL, Bottomley MJ, Sattler M, et al. Crystal structure and nuclear magnetic resonance analyses of the SAND domain from glucocorticoid modulatory element binding protein-1 reveals deoxyribonucleic acid and zinc binding regions. Mol Endocrinol,2003,17(7):1283-1295.
    [13]Wu JW, Krawitz AR, Chai J, et al. Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski:insights on Ski-mediated repression of TGF-beta signaling. Cell,2002,111(3):357-367.
    [14]Jensik PJ, Huggenvik JI, Collard MW. Identification of a nuclear export signal and protein interaction domains in deformed epidermal autoregulatory factor-1 (DEAF-1). J Biol Chem,2004,279(31):32692-32699.
    [15]Sugihara TM, Bach I, Kioussi C, et al. Mouse deformed epidermal autoregulatory factor 1 recruits a LIM domain factor, LMO-4, and CLIM coregulators. Proc Natl Acad Sci U S A,1998,95(26):15418-15423.
    [16]Carles CC, Fletcher JC. The SAND domain protein ULTRAPETALA1 acts as a frithorax group factor to regulate cell fate in plants. Genes Dev,2009, 23(23):2723-2728.
    [17]Isaac A, Wilcox KW, Taylor JL. SP100B, a repressor of gene expression preferentially binds to DNA with unmethylated CpGs. J Cell Biochem,2006,98(5):1106-1122.
    [18]Burnett E, Christensen J, Tattersall P. A consensus DNA recognition motif for two KDWK transcription factors identifies flexible-length, CpG-methylation sensitive cognate binding sites in the majority of human promoters. J Mol Bio,2001, 314(5):1029-1039.
    [19]Musselman CA, Kutateladze TG PHD fingers:epigenetic effectors and potential drug targets. Mol Interv,2009,9(6):314-323.
    [20]Aasland R, Gibson TJ, Stewart AF. The PHD finger:implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci,1995, 20(2):56-59.
    [21]Joazeiro CA, Hunter T. Biochemistry. Ubiquitination--more than two to tango. Science, 2000,289(5487):2061-2062.
    [22]Bottomley MJ, Stier G, Pennacchini D, et al. NMR structure of the first PHD finger of autoimmune regulator protein (AIRE1). Insights into autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) disease. J Biol Chem,2005,280(12):11505-11512.
    [23]Peterson P, Peltonen L. Autoimmune polyendocrinopathy syndrome type 1 (APS1) and AIRE gene:new views on molecular basis of autoimmunity. J Autoimmun,2005,25 Suppl:49-55.
    [24]Meloni A, Incani F, Corda D, et al. Role of PHD fingers and COOH-terminal 30 amino acids in AIRE transactivation activity. Mol Immunol,2008,45(3):805-809.
    [25]Matsuyama R, Takada I, Yokoyama A, et al. Double PHD fingers protein DPF2 recognizes acetylated histones and suppresses the function of ERR{alpha} through histone deacetylase 1. J Biol Chem,2010 Apr 16. [Epub ahead of print]
    [26]Lan F, Collins RE, De Cegli R, et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature,2007,448(7154):718-722.
    [27]Palacios A, Garcia P, Padro D, et al. Solution structure and NMR characterization of the binding to methylated histone tails of the plant homeodomain finger of the tumour suppressor ING4. FEBS Lett,2006,580(30):6903-6908.
    [28]Koh AS, Kuo AJ, Park SY, et al. Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proc Natl Acad Sci U S A,2008,105(41):15878-15883.
    [29]Savkur RS, Burris TP. The coactivator LXXLL nuclear receptor recognition motif. J Pept Res,2004,63(3):207-212.
    [30]Ferguson BJ, Alexander C, Rossi SW, et al. AIRE's CARD revealed, a new structure for central tolerance provokes transcriptional plasticity. J Biol Chem,2008, 283(3):1723-1731.
    [31]Hofmann K, Bucher P, Tschopp J. The CARD domain:a new apoptotic signalling motif. Trends Biochem Sci,1997,22(5):155-156.
    [32]Hong GS, Jung YK. Caspase recruitment domain (CARD) as a bi-functional switch of caspase regulation and NF-kappaB signals. J Biochem Mol Biol,2002,35(1):19-23.
    [33]Macedo C, Evangelista AF, Magalhaes DA, et al. Evidence for a network transcriptional control of promiscuous gene expression in medullary thymic epithelial cells. Mol Immunol,2009,46(16):3240-3244.
    [34]Guerau-de-Arellano M, Mathis D, Benoist C. Transcriptional impact of Aire varies with cell type. Proc Natl Acad Sci U S A,2008,105(37):14011-14016.
    [35]Villasenor J, Besse W, Benoist C, et al. Ectopic expression of peripheral-tissue antigens in the thymic epithelium:probabilistic, monoallelic, misinitiated. Proc Natl Acad Sci U S A,2008,105(41):15854-15859.
    [36]Venanzi ES, Melamed R, Mathis D, et al. The variable immunological self:genetic variation and nongenetic noise in Aire-regulated transcription. Proc Natl Acad Sci U S A,2008,105(41):15860-15865.
    [37]Derbinski J, Pinto S, Rosch S, et al. Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism. Proc Natl Acad Sci U S A,2008,105(2):657-662.
    [38]Taubert R, Schwendemann J, Kyewski B. Highly variable expression of tissue-restricted self-antigens in human thymus:implications for self-tolerance and autoimmunity. Eur J Immunol,2007,37(3):838-848.
    [39]Halonen M, Kangas H, Ruppell T, et al. APECED-causing mutations in AIRE reveal the functional domains of the protein. Hum Mutat,2004,23(3):245-257.
    [40]Pitkanen J, Rebane A, Rowell J, et al. Cooperative activation of transcription by autoimmune regulator AIRE and CBP. Biochem Biophys Res Commun,2005, 333(3):944-953.
    [41]Liiv I, Rebane A, Org T, et al. DNA-PK contributes to the phosphorylation of AIRE: importance in transcriptional activity. Biochim Biophys Acta,2008,1783(1):74-83.
    [42]Anderson CW, Lees-Miller SP. The nuclear serine/threonine protein kinase DNA-PK. Crit Rev Eukaryot Gene Expr,1992,2(4):283-314.
    [43]Jackson SP, Jeggo PA. DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK. Trends Biochem Sci,1995,20(10):412-415.
    [44]Sheppard HM, Liu X. Transcription by RNA polymerase II in DNA-PK deficient scid mouse cells. Biochim Biophys Acta,2000,1493(1-2):41-47.
    [45]Ju BG, Rosenfeld MG. A breaking strategy for topoisomerase IIbeta/PARP-1-dependent regulated transcription. Cell Cycle,2006,5(22):2557-2560.
    [46]Oven I, Brdickova N, Kohoutek J, et al. AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells. Mol Cell Biol,2007, 27(24):8815-8823.
    [47]Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell,2006,23(3):297-305.
    [48]Price DH. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol,2000,20(8):2629-2634.
    [49]Reines D, Conaway JW, Conaway RC. The RNA polymerase II general elongation factors. Trends Biochem Sci,1996,21(9):351-355.
    [50]Bres V, Yoh SM, Jones KA. The multi-tasking P-TEFb complex. Curr Opin Cell Biol, 2008,20(3):334-340.
    [51]Abramson J, Giraud M, Benoist C, et al. Aire's partners in the molecular control of immunological tolerance. Cell,2010,140(1):123-135.
    [52]Kyewski B, Peterson P. Aire, master of many trades. Cell,2010,140(1):24-26.
    [53]Chin RK, Lo JC, Kim O, et al. Lymphotoxin pathway directs thymic Aire expression. Nat Immunol,2003,4(11):1121-1127.
    [54]Chin RK, Zhu M, Christiansen PA, et al. Lymphotoxin pathway-directed, autoimmune regulator-independent central tolerance to arthritogenic collagen. J Immunol,2006, 177(1):290-297.
    [55]Boehm T, Scheu S, Pfeffer K, et al. Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTbetaR. J Exp Med,2003,198(5):757-769.
    [56]Venanzi ES, Gray DH, Benoist C, et al. Lymphotoxin pathway and Aire influences on thymic medullary epithelial cells are unconnected. J Immunol,2007, 179(9):5693-5700.
    [57]Seach N, Ueno T, Fletcher AL, et al. The lymphotoxin pathway regulates Aire-independent expression of ectopic genes and chemokines in thymic stromal cells. J Immunol,2008,180(8):5384-5392.
    [58]Hikosaka Y, Nitta T, Ohigashi I, et al. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity,2008,29(3):438-450.
    [59]Akiyama T, Shimo Y, Yanai H, et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity,2008,29(3):423-437.
    [60]Akiyama T, Maeda S, Yamane S, et al. Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science,2005,308(5719):248-251.
    [61]Ilmarinen T, Eskelin P, Halonen M, et al. Functional analysis of SAND mutations in AIRE supports dominant inheritance of the G228W mutation. Hum Mutat,2005, 26(4):322-331.
    [62]Org T, Rebane A, Kisand K, et al. AIRE activated tissue specific genes have histone modifications associated with inactive chromatin. Hum Mol Genet,2009, 18(24):4699-4710.
    [63]Musco G, Peterson P. PHD finger of autoimmune regulator:an epigenetic link between the histone modifications and tissue-specific antigen expression in thymus. Epigenetics, 2008,3(6):310-314.
    [64]Chakravarty S, Zeng L, Zhou MM. Structure and site-specific recognition of histone H3 by the PHD finger of human autoimmune regulator. Structure,2009, 17(5):670-679.
    [65]Gardner JM, Fletcher AL, Anderson MS, et al. AIRE in the thymus and beyond. Curr Opin Immunol,2009,21(6):582-589.
    [1]Scott DW. Mechanisms in immune tolerance. Crit Rev Immunol,1984,5(1):1-25.
    [2]Hartwig M. Control of clonal deletion in the thymus:implications for tolerance induction. Immunol Cell Biol,1993,71(Pt 4):337-340.
    [3]Lafferty KJ, Gazda LS. Tolerance:a case of self/not-self discrimination maintained by clonal deletion? Hum Immunol,1997,52(2):119-126.
    [4]Lesage S, Hartley SB, Akkaraju S, et al. Failure to censor forbidden clones of CD4 T cells in autoimmune diabetes. J Exp Med,2002,196(9):1175-1188.
    [5]Nossal GJ, Pike BL. Evidence for the clonal abortion theory of B-lymphocyte tolerance. J Exp Med,1975,141(4):904-917.
    [6]Kay TW, Pike BL, Nossal GJ. Mechanisms of clonal abortion tolerogenesis. Ⅳ. Verification of the hypothesis in living mice. J Immunol,1980,124(4):1579-1584.
    [7]Thomas JW. Antigen-specific responses in autoimmunity and tolerance. Immunol Res, 2001,23(2-3):235-244.
    [8]Schwartz RH. T cell clonal anergy. Curr Opin Immunol,1997,9(3):351-357.
    [9]Rojas M, Hulbert C, Thomas JW. Anergy and not clonal ignorance determines the fate of B cells that recognize a physiological autoantigen. J Immunol,2001, 166(5):3194-3200.
    [10]Kroemer G, Martinez C. Clonal deletion, anergy and immunosuppression are connected in series to guarantee self-tolerance. Res Immunol,1992,143(3):335-340.
    [11]McKenna KC, Kapp JA. Ocular immune privilege and CTL tolerance. Immunol Res, 2004,29(1-3):103-112.
    [12]Streilein JW, Takeuchi M, Taylor AW. Immune privilege, T-cell tolerance, and tissue-restricted autoimmunity. Hum Immunol,1997,52(2):138-143.
    [13]Finnish-German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet, 1997,17(4):399-403
    [14]Nagamine K, Peterson P, Scott HS, et al. Positional cloning of the APECED gene. Nat Genet,1997,17(4):393-398
    [15]International Union of Immunological Societies Expert Committee on Primary Immunodeficiencies, Notarangelo LD, Fischer A, et al. Primary immunodeficiencies: 2009 update. J Allergy Clin Immunol,2009,124(6):1161-1178
    [16]Betterle C, Greggio NA, Volpato M. Clinical review 93:Autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab,1998,83 (4):1049-1055
    [17]Michels AW, Gottlieb PA. Autoimmune polyglandular syndromes. Nat Rev Endocrinol, 2010,6(5):270-277.
    [18]Mittaz L, Rossier C, Heino M, et al. Isolation and characterization of the mouse Aire gene. Biochem Biophys Res Commun,1999,255(2):483-490.
    [19]Gibson TJ, Ramu C, Gemund C, et al. The APECED polyglandular autoimmune syndrome protein, AIRE-1, contains the SAND domain and is probably a transcription factor. Trends Biochem Sci,1998,23(7):242-244.
    [20]Kumar PG, Laloraya M, Wang CY, et al. The autoimmune regulator (AIRE) is a DNA-binding protein. J Biol Chem,2001,276(44):41357-41364.
    [21]Heino M, Peterson P, Kudoh J, et al. Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla. Biochem Biophys Res Commun, 1999,257(3):821-825.
    [22]Hubert FX, Kinkel SA, Webster KE, et al. A specific anti-Aire antibody reveals aire expression is restricted to medullary thymic epithelial cells and not expressed in periphery. J Immunol,2008,180(6):3824-3832.
    [23]Kishimoto H, Sprent J. Negative selection in the thymus includes semimature T cells. J Exp Med,1997,185(2):263-271.
    [24]Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol,2006, 24:571-606.
    [25]Derbinski J, Gabler J, Brors B, et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med,2005,202(1):33-45.
    [26]Gavanescu I, Kessler B, Ploegh H, et al. Loss of Aire-dependent thymic expression of a peripheral tissue antigen renders it a target of autoimmunity. Proc Natl Acad Sci U S A,2007,104(11):4583-4587.
    [27]Anderson MS, Venanzi ES, Chen Z, et al. The cellular mechanism of Aire control of T cell tolerance. Immunity,2005,23(2):227-239
    [28]Liston A, Lesage S, Wilson J, et al. Aire regulates negative selection of organ-specific T cells. Nat Immunol,2003,4(4):350-354.
    [29]Liston A, Gray DH, Lesage S, et al. Gene dosage--limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J Exp Med,2004, 200(8):1015-1026.
    [30]Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science,2002,298(5597):1395-1401
    [31]Kuroda N, Mitani T, Takeda N, et al. Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice. J Immunol,2005,174(4):1862-1870.
    [32]Johnnidis JB, Venanzi ES, Taxman DJ, et al. Chromosomal clustering of genes controlled by the aire transcription factor. Proc Natl Acad Sci U S A, 2005,102(20):7233-7238
    [33]Mathis D, Benoist C. Aire. Annu Rev Immunol,2009,27:287-312.
    [34]DeVoss J, Hou Y, Johannes K, et al. Spontaneous autoimmunity prevented by thymic expression of a single self-antigen. J Exp Med,2006,203(12):2727-2735.
    [35]Lee JW, Epardaud M, Sun J, et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol,2007,8(2):181-190.
    [36]Gardner JM, Devoss JJ, Friedman RS, et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science,2008,321(5890):843-847.
    [37]Shintani T, Klionsky DJ. Autophagy in health and disease:a double-edged sword. Science,2004,306(5698):990-995.
    [38]Todde V, Veenhuis M, van der Klei IJ. Autophagy:principles and significance in health and disease. Biochim Biophys Acta,2009,1792(1):3-13.
    [39]Ahlberg J, Marzella L, Glaumann H.Uptake and degradation of proteins by isolated rat liver lysosomes. Suggestion of a microautophagic pathway of proteolysis. Lab Invest, 1982,47(6):523-532.
    [40]Majeski AE, Dice JF. Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol,2004,36(12):2435-2444.
    [41]Esclatine A, Chaumorcel M, Codogno P. Macroautophagy signaling and regulation. Curr Top Microbiol Immunol,2009,335:33-70.
    [42]Levine B, Deretic V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol,2007,7(10):767-777.
    [43]Mizushima N, Yamamoto A, Matsui M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell,2004,15(3):1101-1111.
    [44]Nedjic J, Aichinger M, Emmerich J, et al. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature,2008,455(7211):396-400.
    [45]Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet,2007,39(2):207-211.
    [46]Parkes M, Barrett JC, Prescott NJ, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat Genet,2007,39(7):830-832.
    [47]Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ,2009,16(1):3-11.
    [48]Bursch W, Oberhammer F, Schulte-Hermann R. Cell death by apoptosis and its protective role against disease. Trends Pharmacol Sci,1992,13(6):245-251.
    [49]Rosen A, Casciola-Rosen L. Autoantigens as substrates for apoptotic proteases: implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ, 1999,6(1):6-12.
    [50]Nakamura K, Yuh K, Sugyo S, et al. Unresponsiveness of peripheral T cells induced by apoptotic bodies derived from autologous T cells. Cell Immunol,1999, 193(2):147-154.
    [51]Fadok VA, Bratton DL, Guthrie L, et al. Differential effects of apoptotic versus lysed cells on macrophage production of cytokines:role of proteases. J Immunol,2001, 166(11):6847-6854.
    [52]Truedsson L, Bengtsson AA, Sturfelt G Complement deficiencies and systemic lupus erythematosus. Autoimmunity,2007,40(8):560-566.
    [53]Gaipl US, Kuhn A, Sheriff A, et al. Clearance of apoptotic cells in human SLE. Curr Dir Autoimmun,2006,9:173-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700