用户名: 密码: 验证码:
超宽带穿墙雷达成像及多普勒特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带穿墙雷达能够实现对建筑物或障碍物后面目标的探测、定位、成像和跟踪,在军事装备、城市安全、火灾及地震等自然灾害搜救方面有着广泛的应用前景。要实现穿墙雷达探测的良好性能,除了系统设计时考虑好雷达的各种参数,设计出性能良好的雷达系统外,信号处理也是一个非常重要的方面。因此,本论文对穿墙雷达信号处理的四个重要方面:目标定位、成像、多普勒频率特性分析和运动模式识别,进行了深入而细致的研究。本论文的主要创新之处在于:
     1、对于有墙体情况,提出了采用牛顿法求解非线性定位方程组和二维空间搜索法两种目标定位方法,给出了单发双收模式下穿墙雷达目标定位的仿真结果。分析了噪声对定位精度的影响,研究了两个墙参数(墙的介电常数和厚度)都未知情况下的墙参数估计和目标定位问题,给出了目标定位的仿真结果。
     2、针对有桌椅、柜子等家具的复杂背景房间中,采用后向投影(Back Projection,简称BP)成像,人等运动目标无法与背景区分开来的问题,提出一种动目标BP成像算法。对于超宽带脉冲穿墙雷达,将连续两帧对应接收天线的回波信号相减再BP成像,能够有效消除收发天线间的直耦、墙及墙后家具等静止背景杂波图像,保留人等动目标的像;对于超宽带噪声穿墙雷达,将连续两帧对应接收天线回波与发射噪声信号的互相关信号相减,也能够有效消除收发天线间的直耦、墙及墙后家具等静止背景杂波,保留人等动目标的回波信息。将相减后的信号(对脉冲雷达是回波信号之差,对噪声雷达是互相关信号之差)利用BP算法进行时域相干叠加,从而获得动目标人的像,有效提高了图像信杂比。对上述两种穿墙雷达体制,将生成的动目标图像相叠加,均可得到动目标的运动轨迹图。利用时域有限差分方法(Finite Difference of Time Domain,简称FDTD)模拟了多种穿墙成像场景,仿真结果表明,该方法行之有效,能够对人等动目标进行检测、定位、成像和跟踪。
     3、由于经验模式分解(Empirical Mode Decomposition,简称EMD)可能存在模式混合问题,并且整体平均经验模式分解(Ensemble Empirical Mode Decomposition,简称EEMD)对信号中的噪声抑制作用不明显,提出了一种改进的EEMD方法。将该方法应用到穿墙雷达人的运动多普勒特性分析中,并通过希尔伯特-黄变换(Hilbert-Huang Transform,简称HHT)得到多普勒信号的时间-频率-能量谱。仿真实例和实验结果分析均表明,改进的EEMD方法不仅能够有效地消除模式混合问题,将被测信号中体现不同运动细节的多普勒频移成分独立分解在不同的本征模式函数(Intrinsic Mode Function,简称IMF)中,而且还能够有效抑制原信号中的噪声,得到更清晰的时频分布。
     4、利用经验模式分解和支持向量机(Support Vector Machine,简称SVM)相结合的方法对穿墙雷达墙后人的多种运动进行模式识别。分别采用EMD、EEMD和改进的EEMD将穿墙雷达多普勒探测中人的静止站立、静止手臂摆动、前进后退一步、行走、跑步共5种运动的多普勒信号进行分解,选取各IMF能量占总IMF能量的百分比作为特征向量,对实验采集的564组数据采用支持向量机学习算法进行训练和识别,最大正确识别率达到94%以上。
Because the ultra wide band (UWB) through wall radar has the ability of moving targets detection, localization, imaging and tracking behind the buildings or the barriers, it is widely used in military devices, city security, person secure at fire or earthquakes, etc. In order to obtain good performance, all kinds of key parameters should be considered seriously in the UWB through wall radar system design. Besides that, signal processing is also an important aspect. In this thesis, four important contents including targets localization, imaging, Doppler characteristic analysis and targets movement classification are studied. The main innovations of this thesis are as follows:
     1. For wall existing situation, two localization methods are proposed, which are the method of getting the numerical value of nonlinear localization equations using Newton method and the method of searching the position of the target in two dimentional geometry space. Simulation results of the target localization are given using the radar with one transmit antenna and two received antennas. Noise effect to the target localization precision is analyzed. The issues of wall parameters estimation and the target localization with unknown wall parameters (the wall thickness and dielectric constant) are discussed and simulation results are given.
     2. For a room with complex background such as full of furniture with desks and chairs, using the back projection (BP) algorithm the moving target of the human can not be distinguished from other background objects. To solve the problem, the moving target BP algorithm is proposed. For the UWB pulse through wall radar, using the BP algorithm to the difference signal obtained by subtracting the previous received signal from the current received signal, the image of background is eliminated greatly and the image of the moving target can be seen clearly. For the UWB noise through wall radar, by subtracting the previous frame cross-correlation functions between the received signal with the transmit noise signal from current frame cross-correlation functions, the coupling signal between the transmit and receive antennas as well as the background clutter including the wall and the furniture behind the wall are eliminated greatly and the reflection information of the moving target is reserved. Using the BP algorithm to the difference signal the cross-correlation functions of two successive frame samples, the image of the moving target is obtained and the signal to clutter ratio of the image is improved greatly. For above two radar systems, by refreshing difference images on the screen sequentially and adding all the images of the moving target together, we can get the track of the moving target. Many through wall senarioes are simulated using the finite difference time domain (FDTD) method for two radar systems. The simulation results show that the moving target BP algorithm is valid for human detection, localization, imaging and tracking in complex environment.
     3. Because the mode mixing problem may exist in the empirical mode decomposition (EMD) and the ensemble empirical mode decomposition (EEMD) method doesn’t have good effect on noise suppression in the signal, an improved EEMD method is proposed. This method is applied to the Doppler characteristic analysis of the human movements and the time-frequency-energy spectrum is obtained by Hilbert-Huang transform (HHT). Simulation and experimental results show that the improved EEMD method can not only eliminate the mode mixing problem by decomposing different Doppler frequency components to different intrinsic mode functions (IMFs), but also suppress the noise in the signal effectively so that more detail information can be seen clearly in the time-frequency spectrum.
     4. The classification of different kinds of movements of the human is realized by EMD combined with the method of support vector machine (SVM). Five types of movements of the human including standing still, standing with arms waving, one stepping forward and back, walking and running are analized respectively by EMD, EEMD and improved EEMD. The IMFs of each type of movement are obtained by three decomposition methods. Selecting the energy ratio of each IMF to the total IMFs as the feacture vector, using the SVM to the 564 group experimental samples, different types of movements of the human can be recognized and the biggest correct recognition rate is above 94%.
引文
[1] L. M. Frazier. Surveillance through walls and other opaque materials. Proc. IEEE National Radar Conference Electronic Systems, 1996, 27-31.
    [2] D. D. Ferris, N. C. Currie. A survey of current technologies for through-the-wall surveillance (TWS). SPIE Conference on Sensors, C31 Information, and Training Technologies for Law Enforcement, Boston, MA, November. 1998, 3577: 62-72.
    [3] E. F. Greneker III. Radar flashlight for through-the-wall detection of humans. Proc. of SPIE Targets and Backgrounds: Characterization and Representation IV, 1998, 3375: 280-285.
    [4] S. Nag, M. A. Barnes, T. Payment, et al.. An ultra-wideband through-the-wall radar for detecting the motion of people in real time. Proc. of SPIE: Radar Sensor Technology and Data Visualization, 2002, 4744: 48-57.
    [5] M. Dawood and R. M. Narayanan. Doppler Measurements Using a Coherent Ultrawideband Random Noise Radar. IEEE Antennas and Propagation Society International Symposium, 1999, 2226-2229.
    [6] L. P. Song, C. Yu, Q. H. Liu. Through-wall imaging (TWI) by radar: 2-D tomographic results and analyses. IEEE Trans. on Geoscience and Remote Sensing, 2005, 43(12): 2793- 2798.
    [7] S. E. Borek. An Overview of Through the Wall Surveillance for Homeland Security. Applied Imagery and Pattern Recognition Workshop, 2005, 6.
    [8] A. R. Hunt. Image formation through walls using a distributed radar sensor network. Proc. of the SPIE: Laser Physics and Photonics, Spectroscopy, and Molecular Modeling V, 2005, 5778: 169-174.
    [9] S. Bertl, A. Dallinger, J. Detlefsen. Broadband circular interferometric millimeter-wave ISAR for threat detection. Advances in Radio Science, 2007, 5, 147-151.
    [10] E. J. Baranoski. Through wall imaging: historical perspective and future directions. IEEE ICASSP, 2008: 5173-5176.
    [11] Z. Slimane, A. Abdelmalek, M. Feham. OFDM based UWB synthetic aperture through-Wall imaging radar. IEEE International Conference on Broadband Communications, Information Technology & Biomedical Applications, 2008, 293-300.
    [12] O. Sisma, A. Gaugue, C. Liebe, et al.. UWB radar: vision through a wall. TelecommunSystems, 2008, 28, 53-59.
    [13] Y. Q. Yang, A. E. Fathy. Development and implementation of a real-time see-through-wall radar system based on FPGA. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1270-1280.
    [14] M. D. Desai, W. K. Jenkins. Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar. IEEE Trans. on Image Processing, 1992, 1(4), 505-516.
    [15] C. Inigo, G. S. Manuel. Furniture effects on the wideband indoor radio channel at microwave frequencies. Microwave and Optical Technology Letters, 2001, 29(5), 336-340.
    [16] Y. Kim, H. Ling. Human activity classification based on mico-Doppler signatures using a support vector machine. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1328–1337.
    [17] L. Ulander, H. Hellsten, G. Stenstrom. Synthetic-aperture radar processing using fast factorized back-projection. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39(3): 760–776.
    [18] S. S. Ram, H. Ling. Through-wall tracking of human movers using joint Doppler and array processing. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 537–541.
    [19] M. Mahfouz, A. Fathy, Y. Yang, et al.. See-through-wall imaging using ultra wideband pulse systems. Proc. of the 34th Applied Imagery Patten Recognition Workshop. Washington, DC, United States, 2005, 48-53.
    [20] M. G. Amin. Radar, Signal, and image processing techniques for through the wall imaging. Proc. of SPIE, 2005, 5819: 33-45.
    [21] D. D. Fetris, N. C. Currie. Microwave and millimeter-wave systems for wall Penetration. Proc. of SPIE, Oriando, FL, United States, 1998, 3375: 269-279
    [22] S. Nag, M. A. Barnes, T. Payment, et al.. An ultra-wideband through-wall radar for detecting the motion of people in real time. Proc. of SPIE, 2002, 4744: 48-57.
    [23] A. Beeri, R. Daisy. High-resolution through-wall imaging. Proc. of SPIE, Kissirnrnee, FL, United States, 2006, 6201:62010.
    [24] S. Gauthier, W. Chamma. Surveillance through concrete walls. Proc. of SPIE,Orlando, FL, United States, 2004, 5403: 597-60.
    [25] A. S. Bugaev, V. V. Chapursky, S. I. Ivashov, et al.. Though wall sensing of human breathing and heart beating by monochromatic radar. Proc. of the 10th International Conference on Ground Penetrating Radar, Delft, Netherlands, 2004, 291-294.
    [26] E. Engin, B. Ciftcioglu, m. Ozcan, et al.. High resolution ultrawideband wall penetrating radar. Microwave and Optical Technology Letters, 2007, 49(2): 320-325.
    [27] J. Black. Motion and ranging sensor through-the-wall surveillance system. Proc. of SPIE, Orlando, FL, United States, 2002, 4708: 114-121.
    [28] E. F. Greneker. Radar flashlight for through the wall detection of humans. Proc. of SPIE, Orlando, FL, United States, 1998, 3375: 280-285.
    [29]朱亚平,沈庭芝,王卫江,等.穿墙雷达系统中信号检测的新算法.北京理工大学学报, 2005, 25(8): 734-738.
    [30]李禹. UWB-TWDR的运动目标检测及定位.硕士学位论文,长沙:国防科学技术大学, 2003.
    [31]陈洁.超宽带雷达信号处理及成像方法研究.博士学位论文,北京:中国科学院电子学研究所, 2007.
    [32] M. Aftanas, K. Rovnakova, M. Drutarovsky, et al.. Efficient method of TOA estimation for through wall imaging by UWB radar. Proc. of the 2008 IEEE international conference on ultra-wideband, 2008, 2:101-104.
    [33] I. Catapano, L. Crocco. An imaging method for concealed targets. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1301-1309.
    [34]崔国龙.超宽带穿墙雷达合成孔径成像算法研究与实现.硕士学位论文,成都:电子科技大学, 2008.
    [35] C. Le, T. Dogaru, L. Nguyen, et al.. Ultrawideband (UWB) radar imaging of building interior: measurements and predictions. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1409-1420.
    [36] S. Hantscher, A. Reisenzahn, C. G. Diskus. Though-wall imaging with a 3-D UWB SAR algorithm. IEEE signal processing letters, 2008, 15: 269-272.
    [37] E. Ertin, R. L. Moses. Through-the-wall SAR attributed scattering center feature estimation. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1338-1348.
    [38] A. R. Hunt. Use of a frequency-hopping radar for imaging and motion detection through walls. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1402-1408.
    [39] M. G. Amin, F. Ahmad. Wideband synthetic aperture beamforming for through-the-wall imaging. IEEE signal processing magazine, 2008, 25(4): 110-113.
    [40] Y. Yunqiang, A. E. Fathy. See-through-wall imaging using ultra wideband short-pulse radar system. Proc. IEEE Antennas and Propagation Society International Symposium—SpecialSession Through-Wall Imaging Sensing, 2005, 334–337.
    [41] R. M. Narayanan, Y. Xu, P. D. Hoffmeyer, et al.. Design, performance, and applications of a coherent ultra-wideband random noise radar. Optical Engineering, 1998, 27(6): 1855-1869.
    [42] F. Ahmad, M. G. Amin, S. A. Kassam. Synthetic aperture beamformer for imaging through a dielectric wall. IEEE Trans. on Aerospace and Electronic Systems, 2005, 41(1): 271–283.
    [43] F. Ahmad, G. J. Frazer, S. A. Kassam, et al.. Design and implementation of near-field wideband synthetic aperture beamformers. IEEE Trans. on Aerospace and Electronic Systems, 2004, 40(1): 206–220.
    [44] J. Rovnakova, M. Svecova, D. Kocur, et al.. Signal processing for through wall moving target tracking by M-sequence UWB Radar. IEEE Radioelektronika, 2008 18th International Conference, Prague, April 2008, 1-4.
    [45] R. Chandra, A. N. Gaikwad, D. Singh, et al.. An approach to remove the clutter and detect the target for ultra-wideband through-wall imaging. Journal of Geophysics and Engineering, 2008, 5:412-419.
    [46] M. Dehmollaian, K. Sarabandi. Refocusing Through Building Walls Using Synthetic Aperture Radar. IEEE Trans. on Geoscience and Remote Sensing, 2008, 26(6): 1589-1599.
    [47] K. M. Yemelyanov, N. Engheta, A. Hoorfar, et al.. Adaptive Polarization Contrast Techniques for Through-Wall Microwave Imaging Applications. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1362-1374.
    [48] V. Schejbal, D. Cermak, D. Nemec, et al.. Multipath Propagation effects of UWB Radars. IEEE, MIKON, 2006: 1188-1191.
    [49] M. Dehmollaian, M. Thiel, K. Sarabandi. Through-the-Wall Imaging Using Differential SAR. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5), 1289-1296.
    [50] M. G. Amin. Radar, Signal, and image processing techniques for through the wall imaging. Proc. of SPIE, 2005, 5819, 33-45.
    [51] K. M. Chen, Y. Huang, J. Zhang. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier. IEEE Trans. on Biomedical Engineering, 2000, 47(1):105–113.
    [52] M. Kikuchi, M. Ishihara, T. Matsui, et al.. Biomedical engineering's contribution to defending the homeland. IEEE Engineering in Medicine and Biology Magazine, 2004, 23(1): 175-186.
    [53] T. Matsui, T. Ishizuka, B. Takase, et al.. Non-contact determination of vital sign alterations in hypovolaemic states induced by massive haemorrhage: An experimental attempt to monitorthe condition of injured persons behind barriers or under disaster rubble. Medical and Biological Engineering and Computing, 2006, 42(6): 807-811.
    [54] I. Arai. Survior search radar systems for persons trapped under earthquake rubble. Proc. of APMC2001, Taipei, Taiwan, 2001, 663-668.
    [55]郭山红,孙锦涛,谢仁宏,等.穿墙生命探测技术研究.南京理工大学学报, 2005, 29(2): 186-192.
    [56] S. Suzuki, T. Matsui, H. Kawahara, et al.. A non-contact vital sign monitoring system for ambulances using dual-frequency microwave radars. Medical and Biological Engineering and Computing, 2009, 47(1): 101-105
    [57] J. Silvious, J. Clark, T. Pizzillo, et al.. Micro-Doppler phenomenology of Humans at UHF and Ku-band for biometric characterization. Proc.of SPIE, 2009, 7308.
    [58]荆西京,王健琪,路国华,等.雷达式非接触生命参数检测的信号预处理.医疗卫生装备, 2003: 21-29.
    [59] R. Innocenti. Sparse array of RF sensors for sensing through the wall. Proc. of SPIE, 2007, 6547: 65470.
    [60] R. A. Dalke, C. L. Holloway, P. McKenna, et al.. Effects of reinforced concrete structures on RF communications. IEEE Trans. on electromagnetic compatibility, 2000, 42(4):486-496.
    [61] A. Muqaibel, A. Safaai-Jazi, A. Bayram, et al.. Ultrawideband through-the-wall propagation. IEEE Pro. Microwaves, Antennas and Propagation, 2005, 152(6): 581-588.
    [62] R. Sikl, D. Dvorak, J. Mrkvica, et al.. Comparision of pulse and continuous wave propagation through the wall, IEEE Radioelektronika, 2007. 17th International Conference, Brno, April 2007, 1-4.
    [63] X. Zhuge, T. G. Savelyev, A. G. Yarovoy. Assessment of electromagnetic requirements for UWB through-wall radar. IEEE ICEAA, Torino, Sept. 2007, 923-926.
    [64] F. Ahmad, M. G. Amin, P. Setlur. Through-the-wall Target Localization using Dual-Frequency CW Radars. Proc. of SPIE, 2006, 6201: 62010.
    [65] G. Greneker, E. O. Rausch. Wall characterization for through-wall radar applications. Proc. of SPIE, 2008, 6947: 1-11.
    [66] G. Mandapati, M. Amin. Blurness and focusing-defocusing for through the wall radar imaging with wall ambiguities. Eighth International Symposium on Signal Processing and its Applications, Sydney, Australia, 2005, 535-538.
    [67] F. Ahmad, M. G. Amin, G. Mandapati. Autofocusing of through-the-wall radar imagery underunknown wall characteristics. IEEE Trans. on Image Process., 2007, 16(7): 1785–1795.
    [68] R. Solimene, F. Soldovieri, G. Prisco, et al.. Three-dimensional through-wall imaging under ambiguous wall parameters, IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1310-1317.
    [69] F. Ahmad, M. G. Amin. Performance of autofocusing schemes for single target and populated scenes behind unknown walls. Proc. of SPIE, 2007, 6547: 654709.
    [70] V. V. Chapursky, V. I. Kalinin. Resolution of UWB noise radar on basis of retrodirective antenna array. Ultrawideband and ultrashort impulse signals, 2008, Sevastopol, Ukraine, 102-104.
    [71] M. Anatoliy, L. Konstantin, V. Pavlo. SAR imaging based upon nonswitchable antenna array and noise signals. IEEE International Conference on Antenna Theory and Techniques, Sevastopol, Ukraine, 2007: 360-362.
    [72] V. I. Kalinin, V. V. Chapursky. Ultrawideband Noise Radar Based on Antenna Arrays with Signal Recirculation. Journal of Communications Technology and Electronics, 2008, 53(10): 1195-1205.
    [73] T. Dogaru, C. Le. SAR images of rooms and buildings based on FDTD computer models. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5):1388-1401.
    [74] K. Yongwook, L. Hao. Human Activity Classification Based on Micro-Doppler Signatures Using a Support Vector Machine. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1328-1337.
    [75] N. E. Huang, Z. Shen, S. R. Long, et al.. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. of the Royal Society A, 1998, 454(1971): 903–995.
    [76]赵进平.异常事件对EMD方法的影响及其解决方法研究.青岛海洋大学学报, 2001, 31 (6): 805-814.
    [77] Z. H. Wu, N. E. Huang. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. of the Royal Society A, 2004, 460(2046): 1597–1611.
    [78] Z. H. Wu, N. E. Huang. Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in adaptive data analysis, 2009, 1(1): 1–41.
    [79] N. E. Huang, Z. Shen, S. R. Long. A new view of nonlinear water waves: the Hilbert spectrum. Annual Review of Fluid Mechanics, 1999, 31: 417-457.
    [80]胡聿贤,张郁山,梁建文.应用HHT方法从竖向地震动记录识别场地液化的物理过程.地震工程与工程振动, 2004, 24 (3): 1-11.
    [81] J. C. Echeverria, J. A. Crowe, M. S. Woolfson. Application of empirical mode decomposition to heart rate variability analysis. Medical & biological engineering & computing, 2001, 39(4): 471-480.
    [82] E. P. N. Souza, M. A. Custaud, J. C. Cejka. Assessment of cardiovascular autonomic control by the empirical mode decomposition. Methods of information in medicine, 2004, 43(1): 60-65.
    [83] A. M. Kakurin, I. I. Orlovsky. Empirical mode decomposition method for investigating the structure of large-scale MHD instabilities in a tokamak. Plasma Physics Reports, 2004, 30(5): 370-375.
    [84] J. N. Yang, Y. Lei, S. Pan, et al.. System identification of linear structures based on Hilbert-Huang spectral analysis. Earthquake engineering & structural dynamics, 2003, 32 (10): 1533-1554.
    [85] C. P. Lai, Q. Ruan, R. M. Narayanan. Hilbert-Huang transform (HHT) analysis of human activities using through-wall noise radar, IEEE ISSSE, 2007: 115-118.
    [86]刘洪林,周磊.希尔伯特变换在测井资料数据处理中的应用.大庆石油学院学报, 1998, 22(3): 9-12.
    [87]张旻,程家兴,樊甫华,等.利用Hilbert变换提取信号瞬时特征参数的问题研究.电讯技术, 2003, 4: 44-48.
    [88] K. Yee. Numerical Solution of Initial Bondary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE Trans. on Antennas and Propagation, 1966, 14(5): 302-307.
    [89] Y. Wang, S. K. Chaudhuri, S. Safavi-Naeini. An FDTD/Ray-tracing analysis method for wave penetration through inhomogeneous wall. IEEE Trans. on Antenna and Propagation, 2002, 50(11):1598-1604.
    [90] W. A. Chamma. FDTD modeling of a realistic room for through-the-wall radar applications. International journal of numerical modeling: Electronic networks, devices and fields, Int. J. Numer. Model. 2009, 22: 159-174.
    [91] T. Dogaru, L. Nguyen. FDTD models of electromagnetic scattering by the human body. IEEE Antennas and Propagation Society International Symposium, 2006: 1995-1998.
    [92] F. Ahmad, Y. Zhang, M. G. Amin. Three-dimensional wideband beamforming for imaging through a single wall. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 176-179.
    [93] N. H. Younan, C. D. Taylor, M. R. Zunoubi. FDTD analysis of noise radiation and propagation.IEEE Trans. on Electromagnetic Compatibility, 2000, 42(2), 225-229.
    [94] M. Dehmollaian, K, Sarabandi. Simulation of through-wall microwave imaging: forward and inverse models, IEEE IGARSS, 2006: 407-410.
    [95] L. S. Mark, J. F. Benjamin, A. W. Daniel. Investigation of radar propagation in buildings: a 10-billion element cartesian-mesh FETD simulation. IEEE Trans. on Antennas and Propagation, 2008, 56(8): 2241-2250.
    [96]王秉中.计算电磁学.中国科学技术出版社,北京, 2002.
    [97]余文华,苏涛, R. Mittra,刘永峻.并行时域有限差分.中国传媒大学出版社,北京, 2005, 1-7.
    [98] http://www.remcom.com/.
    [99] R. M. Narayanan, X. Xu, J. A. Henning. Radar penetration imaging using ultra-wideband (UWB) random noise waveforms. IEE Proc.-Radar, Sonar and Navigation, 2004, 151(3): 143-148.
    [100] X. Xu, R. M. Narayana. Range sidelobe suppression technique for coherent ultra wide-band random radar imaging. IEEE Trans. on Antennas and Propagation, 2001, 49(12): 1836-1842.
    [101] C. P.Lai, R. M. Narayanan, G. Culkowksi. Through wall surveillance using ultrawideband random noise radar. Proc. of the 25th Army Science Conference, Orlando, FL, 2006, 1-11.
    [102] L. Cohen.时频分析:理论与应用.西安:西安交通大学出版社,1998.
    [103] E. Osuna, R. Freund, F. Girosi. Training support vector machines: an application to face detection. Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997, 130–136.
    [104] M. Pontil, A. Verri. Support vector machines for 3D object recognition. IEEE Trans. Pattern Analysis and Machine Intelligence, 1998, 20(6):637–646.
    [105] A. Tefas, C. Kotropoulos, I. Pitas. Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2001, 23(7):735–746.
    [106] D. J. Sebald, J. A. Bucklew. Support vector machine techniques for nonlinear equalization. IEEE Trans. on Signal Processing, 2000, 48(11):3217–3226.
    [107] S. Chen, A. K. Samingan, L. Hanzo. Support vector mmachine multiuser receiver for DS-CDMA signals in multipath channels. IEEE Trans. on Neural Networks, 2001, 12(3):604–611.
    [108] T. S. Huang, X. S. Zhou, M. Nakazato, et al.. Learning in content-based image retrieval. Proc.the 2nd International Conference on Development and Learning, 2002, 155–162.
    [109] S. Tong, E. Change. Support vector machine active learning for image retrieval. Proc. ACM International Conference on Multimedia, 2001, 107–118.
    [110] G. D. Guo, A. K. Jain, W. Y. Ma, et al.. Learning similarity measure for natural image retrieval with relevance feedback. IEEE Trans. on Neural Networks, 2002, 13(4): 811–820.
    [111] V. N. Vapnik. Estimation of Dependencies Based on Empirical Data, Berlin: Springer-Verlag, 1982.
    [112] V. N. Vapnik. The Nature of Statistical Learning Theory. New York, NY: Springer-Verlag, 1995.
    [113] V. N. Vapnik. An Overview of Statistical Learning Theory. IEEE Trans. on Neural Networks, 1999, 10(5): 988–999.
    [114] C. Cortes, V. N. Vapnik. Support vector networks. Machine Learning, 1995, 20(3):273–297.
    [115] P. Flandrin, G. Rilling, P. Gongalvis. Empirical mode decomposition as a filterbank. IEEE Signal Processing Letters, 2004, 11: 112-114.
    [116] A. O. Boudraa, J. C. Cexus. EMD-based signal filtering. IEEE Trans. on Instrumentation and Measeurement, 2007, 56(6): 2190-2202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700