用户名: 密码: 验证码:
中国中低纬电离层闪烁监测、分析与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电离层中电子密度随机、快速的不均匀变化,会导致穿越电离层的无线电信号振幅、相位和偏振方向的快速随机起伏,即电离层闪烁。电离层闪烁不仅反映了电离层中不规则结构及其变化的物理特性,而且可能导致通信误码和信号畸变,从而影响卫星导航精度和通信畅通。随着全球范围导航和通信系统对空间平台的依赖日益增长,电离层闪烁的监测研究显现出越来越重要的应用价值。同时,以美国全球定位系统(GPS)为代表的各类导航定位卫星的广泛应用,为利用这类卫星信号作为信标,观测研究全球或地区的电离层闪烁提供了一种方便、廉价和有效的手段。本文利用武汉(30.6°N, 114.4°E)、三亚(18.3o N, 109.5o E)地区的GPS电离层闪烁/TEC监测系统与北斗电离层闪烁监测系统的观测数据,主要研究了中国中低纬地区电离层闪烁与不规则结构漂移的统计特征、磁暴期间影响电离层闪烁发生的因素和不同程度的闪烁对通信系统的影响。
     首先,本文介绍了电离层闪烁测量原理和闪烁指数的计算,以及GPS电离层闪烁/TEC监测系统与北斗电离层闪烁监测系统的硬件结构原理及实现。在此基础上,介绍了自主研制的一系列软件:包括电离层闪烁实时监测与分析(根据闪烁发生情况自动保存闪烁前后原始幅度和相位数据,用于对闪烁事件的详细分析)、通用数据传输、服务器数据分类接收处理以及无人值守集成系统软件等,实现了从数据采集到传输以及服务端处理、网上实时发布等各种功能。这些软件的研制,不仅使电离层闪烁的实时采集,分析和闪烁期间原始数据保留成为可能,而且实现了电离层闪烁网上现报。
     其次,依据GPS电离层闪烁/TEC监测系统在武汉、三亚的观测与北斗电离层闪烁监测系统在三亚的观测,分析了2002-2006年,太阳活动下降期间中国中低纬地区电离层闪烁、闪烁谱的统计特征,并估算不规则体漂移速度。统计结果表明:电离层幅度闪烁主要发生在日落后到午夜附近,并有可能持续到午夜后,其中春秋分季节发生率明显高于冬季与夏季;但电离层相位闪烁并没有表现出类似的随地方时和季节变化特征。在对北斗电离层闪烁监测系统的观测数据分析中发现,在接近太阳活动低年(2005-2006年),三亚地区很少观测到北斗信号电离层闪烁现象,幅度闪烁指数0.6以上的北斗信号电离层闪烁基本没有,中等闪烁(S4≥0.3)的出现时段与同时段的GPS电离层闪烁观测结果一致,但其发生率要低于GPS电离层闪烁发生率,且闪烁强度要低。由于闪烁功率谱信息中包含着引起闪烁的不规则体重要信息,本文利用在三亚观测的电离层闪烁期间的原始信号功率数据,采用自相关估计每分钟计算一次功率谱密度。结果表明:在弱闪烁期间(0.1≤S4<0.3),随着闪烁的增强,不规则体谱指数有增加的趋势,而在中等以上闪烁强度时(S4≥0.3),谱指数不再随闪烁指数S4的增加而增加,而是逐渐趋于饱和。同时估算的磁静日期间不规则体漂移速度随时间的统计表明,在地方时22:00 LT之前,漂移速度变化幅度范围很大,而22:00 LT之后,基本趋于一个恒定范围。
     最后,我们研究了在2002-2006年发生的磁暴期间影响中国中低纬地区电离层闪烁发生的因素。结合电离层数字测高仪、地磁以及卫星观测数据,对暴时武汉、三亚地区的电离层闪烁发生情况以及影响闪烁的因素进行了较为详细的分析,结果显示磁暴对赤道扩展F或等离子体泡的影响(抑制/触发)主要受控于Dst变化率,dDst/dt最大值决定的地方时在不规则结构的产生中发挥着主要作用,当该地方时接近日落时分时,磁暴的发生将有助于建立不规则结构产生的条件,从而可能引起穿越电离层的电波信号闪烁;而磁暴期间偶发E层的出现,则可能通过改变Pedersen电导率从而抑制不规则结构的产生。
     此外,利用三亚地区电离层闪烁期间的原始信号功率数据,本文探讨了电离层闪烁对通信系统的影响。通过假设衰减门限,计算了不同程度电离层闪烁发生时信号的可信度,得到了一些有意义的结果。这对电离层闪烁发生时通信系统影响的预测,以及改进电离层闪烁频发地区通信系统的设计有着理论指导和实际应用意义。
Ionospheric scintillation is a rapid change in the amplitude and phase of a radio signal as it passes through small-scale plasma density irregularities in the ionosphere. The scintillation may cause problems such as signal power fading, phase cycle slips, receiver loss of lock, etc., and degrade the quality of satellite navigation systems. Being concerned about these effects, ionospheric irregularities/scintillations have become a key component of space weather. By using the GPS ionospheric scintillation/TEC and Beidou ionospheric scintillation measurements over Wuhan (30.6°N, 114.4°E) and Sanya (18.3o N, 109.5o E), a statistical analysis of ionospheric scintillations and transverse drift velocities of irregularities, effects of geomagnetic storm on ionospheric scintillations, and scintillation effects on communication system have been performed. Main results are outlined as follows.
     First, the scintillation index computation, the principles of ionospheric scintillation monitoring, and the hardware design of GPS/Beidou ionospheric scintillation monitoring system are introduced. Based on the hardware system, several programs have been developed under Windows operating system, which includes a real-time GPS/Beidou ionospheric scintillation monitoring software for measuring and displaying scintillation (when ionospheric scintillation occurs, the raw amplitude and phase data can be saved automatically), data transferring, data processing etc. The realization of these programs provides a basis for obtaining the ionospheric scintillation data and the nowcasting of ionospheric scintillation.
     Next, automatic recorded raw digital scintillation data are analyzed to obtain the spectral characteristics of irregularities producing ionospheric scintillations, the transverse drift velocities of irregularities during geomagnetic quiet days (Kp<4) and the correlation between amplitude scintillation and power spectral density are estimated. The statistical results reveal that amplitude scintillations mainly occur from postsunset to near midnight or post-midnight. The occurrence rate and intensity of amplitude scintillations are evidently enhanced in equinox months and reduced in winter and summer months. In comparison with amplitude scintillation, the variation of phase scintillation doesn’t have these regular variations. Within the period of Year 2005-2006, the simultaneous GPS and Beidou scintillation measurements show that GPS and Beidou amplitude scintillations nearly occur at the same time, but GPS scintillation is stronger than scintillation observed by Beidou. For the analysed dataset, no strong Beidou amplitude scintillation (S4>0.6) is observed. Since the power spectra of scintillation event contain information about the irregularities that produce the scintillation, automatic recorded raw digital scintillation data are analyzed to obtain the spectral characteristics. The statistical results of S4 indices and power spectral indices indicate that the power spectral indices show a linear change with weak amplitude scintillation indices (0.1≤S4<0.3). They increase toward the generation phase of amplitude scintillation activities, and decrease toward the decay phase. But for moderate and strong amplitude scintillations (S4≥0.3), the spectral indices tend to be saturated. The spectral indices range 1.0 to 6.4 with mean value of 3.6. The correlation between estimated transverse drift velocities and LT probably demonstrated that the motion of the irregularities which cause scintillations is highly variable in the initial phase of irregularity development on geomagnetic quiet days. After about 22:00 LT, the estimated velocity tends to follow the same pattern on different days.
     Finally, we investigate the effects (trigger or inhibit/not trigger) of geomagnetic storms on ionospheric scintillations at Wuhan and Sanya. Magnetometer data, Digisonde data and topside plasma data are also used to help elucidate the possible mechanisms responsible for the effects. The results show that the storm effects on scintillation depend on the maximum dDst/dt determined local time sector. When the determined time is close to postsunset, the enhanced eastward electric field sets the plasma into motion via the vertical ExB drift, which causes the Rayleigh-Taylor mode becomes unstable, and leads to the development of irregularities (spread F and plasma bubbles) producing scintillation. Also, the sporadic E layer played a role in the generation of ionospheric scintillation through changing the Pederson conductivity ratio and suppressing the upward plasma drift, thus reducing the growth rate of irregularities associated with spread-F.
     Furthermore, the paper presents the statistical analysis of the effects of ionospheric scintillation on fade duration and message reliability. If the fade duration is longer than the message length and the fade depth is below the system threshold, the information can be lost fully or partially. The investigation of the scintillation effects will help engineers to determine margins necessary for communication systems during times of severe ionospheric scintillations.
引文
Aarons, J., Global morphology of ionospheric scintillation, Proc. IEEE, 70, 360-378, 1982.
    Aarons, J., and DasGupta, A., Equatorial scintillations during the major magnetic storm of April 1981, Radio Sci., 19, 731-739, 1984.
    Aarons, J., The role of the ring current in the generation or inhibition of equatorial F-layer irregularities during magnetic storms, Radio Sci., 26, 1131-1149, 1991.
    Aarons, J., The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence, Space Sci. Rev., 63, 209-243, 1993.
    Aarons, J., Mendillo, M., Yantosca, M., GPS Phase Fluctuations in the Equatorial region during the MISETA 1994 Campaign, Journal of Geophysical Research, 101(A12), 26851-26862, 1996.
    Aarons, J., Mendillo, M., Yantosca, M., GPS phase fluctuations in the equatorial region during sunspot minimum, Radio Sci., 32, 1535-1550, 1997.
    Abdu, M. A., Batista, I. S., Walker, G.. O., Sobral, J. H. A., Trivedi, N. B., and de Paula, E. R., Equatorial ionospheric electric fields during magnetospheric disturbances: Local time/longitude dependencies from recent EITS campaigns, J. Atmos. Terr. Phys., 57, 1065-1083, 1995.
    Adeniyi, J. O., Magnetic storm efects on the morphology of the equatorial F2-layer, J. Atmos. Terr. Phys., 48, 695-702, 1986.
    Appleton, E. V., and Ingram, L. J., Magnetic storm and upper-atmospheric ionization, Nature, 136, 548-549, 1935.
    Banerjee, P. K., Dabas, R. S., and Reddy, B. M., C and L band transionospheric scintillation experiment: some results for applications to Satellite Radio Systems, Radio Sci., 27(6), 955-969, 1992.
    Basu. S., and Khan, B. K., Model of equatorial Scintillation from in-situ Measurements, Radio Sci., 11, 821-832, 1976.
    Basu, S., Basu, S., Aarons, J., McClure, J. P., Cousins, M. D., On the co-existence of kilometer- and meter-scale irregularities in the nighttime equatorial F-region, J. Geophys. Res., 83, 1978.
    Basu, S., and Whitney, H. F., The temporal structure of intensity scintillations near the magnetic equator, Radio Sci., 18, 263-272, 1983.
    Basu, S., and Basu, S., Equatorial scintillations, Advances since ISEA-6, J. Atmos. Terr. Phys., 47, 753-768, 1985.
    Basu, S., and Basu, S., Ionospheric structures and scintillation spectra, in wave propagation in Random Media (Scintillation), eds. V.I. Tatarski,A.Ishimaru, and V.U.Zavorotny, 139-153, The International Society for Optical Engineering, Bellingham, WA, USA, 1993.
    Basu, Su., Basu, S., Eastes, R., Huffman, R. E., Daniell, E., Chaturvedi, P. K., Valladares, C. E., and Livingston, R. C., Remote sensing of auroral E-region plasma structures by radio, radar, and UV techniques at solar minimum, J. Geophys. Res., 98 (2), 1589-1602, 1993.
    Basu, S., Groves, K. M., Quinn, J. M., and Doherty, P., A comparison of TEC fluctuations and scintillations at Ascension Island, J. Atmos. Terr. Phys, 61, 1219-1226, 1999.
    Basu, S., Basu, S., Valladares, C. E., Yeh, H.-C., Su, S.-Y., Mackenzie, E., Sultan, P. J., Aarons, J., Rich, F. J., Doherty, P., Groves, K. M., Bullett, T. W., Ionospheric effects of major magnetic storms during the international space weather period of September and October 1999: GPS observations, VHF/UHF scintillations, and in situ density structures at middle and equatorial latitudes, J. Geophys. Res., 106 (A12), 30389-30414, 2001.
    Basu, Su., Basu, S., Makela, J. J., Sheehan, R. E., MacKenzie, E., Doherty, P., Wright, J. W., Keskinen, M. J., Pallamraju, D., Paxton, L. J., and Berkey, F. T., Two components of ionospheric plasma structuring at mid latitudes observed during the large magnetic storm of October 30, 2003, Geohpys. Res. Lett., 32, 2005.
    Beach, T. L., and Kintner, P. M., Simultaneous Global Positioning System observations of equatorial scintillations and total electron content fluctuations, J. Geophys. Res., 104(A10), 22,553-22,566, 1999.
    Béniguel, Y., Global Ionospheric Propagation Model (GIM): A propagation model for scintillations of transmitted signals, Radio Sci., 37(3), 1032-1044, 2002.
    Bhattacharyya, A., and Rastogi, R. G., Amplitude scintillation during early and late phases of evolution of irregularities in the nighttime equatorial ionosphere, Radio Sci., 20(4), 935-946, 1985.
    Bhattacharyya, A., Rastogi, R. G., and Yeh, K. C., Signal frequency dependence of ionospheric amplitude scintillation, Radio Sci., 25, 289-297, 1990.
    Bhattacharyya, A., and Rastogi, R. G., Structure of ionospheric irregularities from amplitude and phase scintillation observations, Radio Sci., 26(2), 439-449, 1991.
    Bhattacharyya, A., Yeh, K. C., and Franke, S. J., Deducing turbulence parameters from transionospheric scintillation measurements, Space Sci. Rev., 61, 335-386, 1992.
    Bhattacharyya, A., Basu, S., Groves, K. M., Valladares, C. E., and Sheehan, R., Dynamics of equatorial F region irregularities from spaced receiver scintillation observations, Geophys. Res. Lett., 28(1), 119-122, 2001.
    Biktash, L. Z., Role of the magnetospheric and ionospheric currents in the generation of the equatorial scintillations during geomagnetic storms, Ann. Geophys., 22, 3195-3202, 2004.
    Booker, H. G., and Wells, H. W., Scattering of radio waves by the F-region of the ionosphere, J. Geophys. Res., 43, 249, 1938.
    Booker, H. G., Notice of Research Project: Science Information Exchange, 1985.
    Booker, H. G., The effect of ionospheric fluctuations of F region ionograms and on radio communications in the HF band, Private letter, 1985.
    Buonsanto, M. J., Ionospheric storms-A review, Space Sci. Rev., 88, 563-601, 1999.
    Burke, W. J., Gentile, L. C., Huang, C. Y., Valladares, C. E., and Su, S. Y., Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT, J. Geophys. Res., 109, A12301, doi:10.1029/2004JA010583, 2004.
    Burns, A. G., Killeen, T. L, Deng, W., and Carignan, G. R., Geomagnetic storm effects in low- to middle-latitude upper thermosphere, J. Geophys. Res., 100, 14,673-14,691, 1995.
    Cervera, M. A., Thomas, R. M., Groves, K. M., Ramli, A. G., and Effendy, Validation of WBMOD in the Southeast Asian region. Radio Sci., 36(6), 1559-1572, 2001.
    Chandra, H., and Rastogi, R. G., Geomagnetic storm effects on ionospheric drifts and the equatorial ES over the magnetic equator, Indian J. Radio Space Phys., 3, 332-336, 1974.
    Chandra, H., Hari Om Vats, Sethia, G., Deshpande, M. R., Rastogi, R. G., Sastri, J. H., and Murthy, B. S., Ionospheric scintillations associated with features of equatorial ionosphere, Ann. Geophys., 35, 145-151, 1979.
    Chandra, H., Vyas, G. D., Pathan, B. M., and Rao, D. R. K., Spectral characteristics of magnetic storm induced F-region scintillations extending into daytime, J. Atmos. Terr. Phys., 57(11), 1273-1285, 1995.
    Cosgrove, R. B., and Tsunoda, R. T., Polarization electric fields sustained by closed-current dynamo structures in midlatitude sporadic E, Geophys. Res. Lett., 28, 1455, 2001.
    Cosgrove, R. B., and Tsunoda, R. T., Wind-shear-driven, closed current dynamos in midlatitude sporadic E, Geophys. Res. Lett., 29(2), 1020, 2002a.
    Cosgrove, R. B., and Tsunoda, R. T., A direction-dependent instability of sporadic-E layers in the nighttime midlatitude ionosphere, Geophys. Res. Lett., 29(18), 1864, 2002b.
    Cosgrove, R. B., and Tsunoda, R. T., Simulation of the nonlinear evolution of the sporadic-E layer instability in the nighttime midlatitude ionosphere, J. Geophys. Res., 108(A7), 1283, 2003.
    Cosgrove, R. B., and Tsunoda, R. T., Instability of the E-F coupled nighttime midlatitude ionosphere, J. Geophys. Res., 109, A04305, 2004.
    Cosgrove, R. B., Tsunoda, R. T., Shoichiro Fukao and Mamoru Yamamoto, Coupling of the Perkins instability and the sporadic E layer instability derived from Physical arguments, J. Geophys. Res., 109, A06301, 2004.
    Dabas, R. S., Reddy, B. M., Night VHF scintillations at 23N magnetic latitude and their association with equatorial F-region irregularities, Radio Sci., 21(2), 453-462, 1986.
    Dabas, R. S., Lakshmi, D. R., and Reddy, B. M., Effect of geomagnetic disturbances on VHF nighttime scintillation activity at equatorial and low latitudes, Radio Sci., 4, 563-573, 1989.
    Dandekar, B.S., and Croves, K. M., Using ionospheric scintillation observations for studying the morphology of equatorial ionospheric bubbles, Radio Sci., 2004, 39(3), doi:10.1029/2003RS003020.
    Danilov, A. D., F2-region response to geomagnetic disturbances, J. Atmos. Solar-Terr. Phys., 63. 441-449, 2001.
    Davies, K., Ionospheric Radio, Short Run Press Ltd., Exeter, England, 1990.
    Davies, K., Ionospheric Radio, Vol. 31 of IEEE Electromagnetic Waves Series, Peter Peregrinus Ltd, United Kingdom, 1989.
    Engavale, B., and Bhattacharyya, A., Spatial correlation function of intensity variations in the ground scintillation pattern produced by equatorial spread-F irregularities, Indian J. Radio Space Phys., 34(1), 22-32, 2005.
    Evans, J. V., Satellite Beacon Contribution to Studies of the Structure of the Ionosphere, Rev. Geophys. Space. Res., 15, 325-334, 1977.
    Farley, D. T., Balsley, B. B., Woodman, R. F., and McClure, J. P., Equatorial spread F: Implications of VHF radio observations, J. Geophys. Res., 75, 7199-7216, 1970.
    Fejer, B. G., Natural ionospheric plasma waves, in Modern Ionospheric Science, edited by H. Kohl, R. Ruster, and K. Schelegel, pp. 217-273, Max-Planck Ins. Fur Aeron., Linday, Germany, 1996.
    Fejer, B. G., and Scherliess, L., Empirical models of storm time equatorial zonal electric fields, J. Geophys. Res., 102, 24047-24056, 1997.
    Fejer, B. G., Scherliess, L., and de Paula, E. R., Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104 (A9), 19859-19869, 1999.
    Fejer, B. G., Low latitude storm time ionospheric electrodynamics, J. Atmos. Sol. Terr. Phys., 64, 1401-1408, 2002.
    Foster, J. C., Erickson, P. J., Coster, A. J., Goldstein, J., and Rich, F. J., Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 29(13), 1623, 2002.
    Foster, J. C., and Rideout, W., Midlatitude TEC enhancements during the October 2003 superstorm, Geophys. Res. Lett., 32, L12S04, doi:10.1029/2004GL021719, 2005.
    Fremouw, E. J. , Leadabrand, R. L., Livingston, R. C., Cousins, M. C., Rino, C. L., Fair, B. C., and Long, R. A., Early Results from the DNA WideBand Satellite Experiment-complex Signal Scintillation, Radio Sci., 13(1), 167, 1978.
    Fuller-Rowell, T. J., Codrescu, M. V., Moffett, R. J., and Quegan, S., Response of the thermosphere and ionosphere and geomagnetic storms, J. Geophys. Res., 99, 3893-3914, 1994.
    Fuller-Rowell, T. J., Codrescu, M. V., Rishbeth, H., Moffett, R. J., and Quegan S., On the seasonal response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 101, 2343-2353, 1996.
    Gentile, L. C., Burke, W. J., and Rich, F. J., A climatology of equatorial plasma bubbles from DMSP 1989-2004, Radio Sci., Vol., 41, doi:10.1029/2005RS003340, 2006.
    Groves, K. M., Basu, S., Weber, E., et al., Equatorial scintillation and systems support.Radio Sci., 32(5), 2047-2064, 1997.
    Haerendal, G., Report, Max Planck Institue fur physik und Astrophysik, Garching, West Germany, 1973.
    Haldoupis, C., Schlegel, K., and Farley, D. T., An explanation for Type 1 radar echoes from the midlatitude E region ionosphere, Geophys. Res. Lett., 23, 1997.
    Hamza, A. M., Perkins instability revisited, J. Geophys. Res., 104(10), 22567-22575, 1999.
    Hargreaves, J. K., The solar-terrestrial Environment, 1992, Cambridge University Press, London.
    Heelis, R. A., Hanson, W. B., Burch, J. L., Ion convection reversals in the dayside cleft. J. Geophys. Res., 81(22), 3803—3809, 1976.
    Heppner, J. P., Polar cap electric field distributions related to the interplanetary magnetic field direction. J. Geophys. Res., 77(25), 4877—4887, 1972.
    Heppner, J. P., High-latitude electric fields and the modulations related to interplanetary magnetic field parameters. Radio Sci., 8(11), 933—948, 1973.
    Heppner, J. P., Maynard, N. C., Empirical high-latitude electric field models. J. Geophys. Res., 92(A5), 4467—4489, 1987.
    Heppner, J. P., Liebrecht, M. C., Maynard, N. C., and Pfaff, R. F., High-latitude distributions of plasma waves and spatial irregularities from DE2 alternating current electric field observations, J. Geophys. Res., 98, 1629-1652, 1993.
    Ho, C. M., Mannucci, A. J., Sparks, L., Pi, X., Lindqwister, U. J., Wilson, B. D., Iijima, B. A., and Reyes, M. J., Ionospheric total electron content perturbations monitored by the GPS global network during two northern hemisphere winter storms, J. Geophys. Res., 103, A11, 26409-26420, 1998.
    Huang, C. Y., Burke, W. J., Machuzak, J. S., Gentile, L. C., and Sultan, P. J., DMSP observations of equatorial plasma bubbles in the topside ionosphere near solar maximum, J. Geophys. Res., 106, 8131, 2001.
    Huang, C. Y., Burke, W. J., Machuzak, J. S., Gentile, L. C., and Sultan, P. J., Equatorial plasma bubbles observed by DMSP satellite during a full solar cycle: Toward a global climatology, J. Geophys. Res., 107(A12), 1434, doi:10.1029/2002JA009452, 2002.
    Kaplan, E. D., Understanding GPS principles and Applications, Artech House, Inc. U.S.A, 1996.
    Kelley, M. C., The Earth’s Ionosphere, Academic Press, SanDiego, 1989.
    Kelley, M. C., and Maruyama, T., A diagnostic method for equatorial spread F, 2, The effect of magnetic activity, J. Geophys. Res., 97, 1271-1277, 1992.
    Kersley, L., and Chandra, H., Power spectra of VHF intensity scintillations from F2 and E region ionospheric irregularities, J. Atmos. Terr. Phys., 46(8), 667-672, 1984.
    Keskinen, M. J., and Ossakow, S. L., Theories of high-latitude irregularities: A review, Radio Sci., 18, 1077-1092, 1983.
    Klobuchar, J. A., Basu, S., and Doherty, P., Potential limitations in making absolute ionospheric measurements using dual frequency radio waves from GPS satellites, in Proceedings of the Seventh International Ionospheric Effects Symposium, (Ed.) Goodman, J., 187, SRI International, Arlington, Va., 1993.
    Kumar, S., Gwal, A. K., VHF ionospheric scintillations near the equatorial anomaly crest: solar and magnetic activity effects, J. Atmos. Solar-Terr. Phys., 62(3), 157-167, 2000.
    Ledvina, B. M., Makela, J. J., Kintner, P. M., First observations of intense GPS L1 amplitude scintillations at midlatitude, Geophys. Res. Lett., 29(14), 1659, 2002.
    Li, G., Ning, B., Wan, W., and Zhao, B., Observations of GPS ionospheric scintillations over Wuhan during geomagnetic storms, Ann. Geophys., 24, 1581-1590, 2006.
    Li, G., Ning, B., and Yuan, H., Analysis of ionospheric scintillation spectra and TEC in the Chinese low latitude region, Earth Planets Space, 59(4), 279-285, 2007.
    Liu, C., and Franke, S.J., Experimental and Theoretical studies of Ionospheric Irregularities Using Scintillation Techniques, Radio Sci., Vol, 21, P363, 1986.
    Matsushita, S., A study of the morphology of ionospheric storms, J. Geophys. Res., 64, 305-321, 1959.
    McClure, J. P., Hanson, W. B., and Hoffman, J. H., Plasma bubbles and irregularities in the equatorial ionosphere, J. Geophys. Res., 82, 2650-2656, 1977.
    Pathan, B. M., Koparkar, P. V., Rastogi, R. G., and Rao, D. R. K., Dynamics of ionospheric irregularities producing VHF radio wave scintillations at low latitudes, Ann. Geophys., 9, 126-132, 1991.
    Perkins, F., Spread F and ionospheric currents, J. Geophys. Res., 78, 218, 1973.
    Pi, X., Mannucci, A. J., Lindqwister, U. J., and Ho, C. M., Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophys. Res. Lett., 24, 2283-2286, 1997.
    Pr(?)lss, G. W., and U. von Zahn, Erso 4 gas analyzer results. 2. Direct measurements of changes in the neutral composition during an ionosperic storm, J. Geophys. Res., 79, 2535-2539, 1974.
    Rastogi, R. G., Solar cycle effect in radio wave scintillations at Huancayo, Ind. J. Radio Space Phys., 11, 215-221, 1982.
    Rastogi, R. G., Chandra, H., and Deshpande, M. R., Equatorial radio scintillations of ATS-6 radio beacons: Phase II Ootacamund 1975-76, Ind J. Radio Space Phys., 11, 240-246, 1982.
    Richmond, A. D., and G. Lu, Upper-atmospheric effects of magnetic storms: a brief tutorial, J. Atmos. and Solar-Terr. Phy., 62. 1115-1127, 2000.
    Rishbeth, H., F-region storms and thermospheric circulation, J. Atmos. Terr. Phys., 37, 1055-1064, 1975.
    Sahai, Y., Aarons, J., Mendillo, M., Baumgardner, J., Bittencourt, J. A., and Takahashi, H., OI 630 nm imaging observations of equatorial plasma depletions at 16S dip latitude, J. Atmos. Terr. Phys., 56, 1461, 1994.
    Sahai, Y., Fagundes, P. R., Bittencourt, J. A., and Abdu, M. A., Occurrence of large scale equatorial F-region depletions during geo-magnetic disturbances, J. Atmos. Sol. Terr. Phys., 60, 1593-1604, 1998.
    Sastri, J.H., Post-midnight onset of spread-F at Kodaikanal during the June solstice of solar minimum, Ann. Geophys., 17(8), 1111-1115, 1999.
    Scherliess, L., and Fejer, B. G., Storm time dependence of equatorial disturbance dynamo zonal electric fields, J. Geophys. Res., 102, 24037-24046, 1997.
    Secan, J. A., Bussey, R. M., Fremouw, E. J., and Basu, Sa., An improved model of equatorial scintillation, Radio Sci., 30, 607-617, 1995.
    Stephen, A.W., Marlene Colerico, Mendillo, M., Bodo W.Reinisch and David Anderson: Suppression of equatorial spread F by sporadic E, J. Geophys. Res., 107 (A2), 1021, 2002.
    Su, S. Y., Liu, C. H., Ho, H. H., and Chao, C. K., Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions, J. Geophys. Res., 111, A06305, doi:10.1029/2005JA011330, 2006.
    Sultan, P. J., Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F, J. Geophys. Res., 101, 26, 875-891, 1996.
    Tanaka, T., Severe ionospheric disturbance caused by the sudden response of evening subequatorial ionosphere to geomagnetic storms, J Geophys. Res., 86, 11,335-11,349, 1981.
    Taur, R. R., Ionospheric scintillations at 4 to 6 GHz, COMSAT Tech. Rev., 3, 145-163, 1973.
    Thomas, R. M., Cervera, M. A., Eftaxiadis, K., et al., A regional GPS receiver network for monitoring equatorial scintillation and total electron content, Radio Sci., 36(6), 1545-1557, 2001.
    Tsunoda, R. T., Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pederson conductivity, J. Geophys. Res., 90, 447-456, 1985.
    Tsunoda, R., On polarized frontal structures, type-1 and quasi-periodic echoes in midlatitude sporadic E, Geophys. Res. Lett., 25, 2614, 1998.
    Tsunoda, R. T., and Cosgrove, R. B., Coupled electrodynamics in the nighttime midlatitude ionosphere, Geophys. Res. Lett., 28, 4171, 2001.
    Van Dierendonck, A. J., John Klobuchar and Quyen Hua, Ionosphere Scintillation Monitoring Using Commercial Single Frequency C/A Code Receivers, Proceedings of ION GPS-93, Salt Lake City, UT, September, 1333-1342, 1993.
    Vyas, G. D. and Chandra, H., VHF scintillation and spread-F in the anomaly crest region, Ind. J. Radio Space Phys., 23, 157-164, 1994.
    Weber, E. J., Aarons, J., Johnson, A. L., Conjugate studies of an isolated equatorial irregularity region, J. Geophys. Res., 88(A3), 3175-3180, 1983.
    Woodman, R. F., and LaHoz, C. L., Radar observations of F region equatorial irregularities, J. Geophys. Res., 81, 5447-5466, 1976.
    Yeh, C. C., S. Y. Ma, and K. H. Lin, Global ionospheric effects of the October 1989 geomagnetic storm, J. Geophys. Res., 99, 6201-6218, 1994.
    Yeh K. C., and Liu, C. H., Theory of Ionospheric Waves, Academic Press, New York, 1972.
    Yeh, K. C., and Liu, C. H., Radio-wave scintillations in the ionosphere, Proc. IEEE, 70, 324-360, 1982.
    Zalesak, S.T., Ossakow, S. L., On the prospects for artificially inducing equatorial spread F, Memo. Rep. 4899, Naval Research Lab., Washington, D. C., 1982.
    Zhao, B., Wan, W., and Liu, L., Responses of equatorial anomaly to the October – November 2003 superstorms, Ann. Geophys., 23, 693-706, 2005.
    马淑英,梁百先等,电离层闪烁研究,中国地球物理学会地磁与高空物理研究进展方向座谈会, 1986.
    马淑英,徐继生等,1986 年 2 月强磁暴对中低纬 VHF 电波闪烁影响的初步分析,地球物理学报,31(3), 241-247, 1988.
    雷源汉,张凌等,武昌同步卫星信号振幅闪烁功率谱,地球物理学报,31(6),630-636, 1988.
    甑卫民,刘瑞源,电离层闪烁谱特征分析,空间科学学报,12(2), 146-152,1992.
    马冠一,韩文焌等,薄相位屏闪烁的数值分析,电波科学学报, 9(3), 26-32, 1994.
    甄卫民,龙其利等,磁赤道异常电离层 F 区不均匀体发展过程中的闪烁谱研究,空间科学学报,15(2),143-147, 1995.
    龙其利,马健敏,海口 VHF 幅度闪烁观测结果,电波与天线,2,1-4,1996.
    甑卫民,吴健等,电离层不均匀性对 GPS 系统的误差影响分析,电波科学学报, 13(2), 123-126, 1998.
    甑卫民,陈丽,中国电离层闪烁监测和预报,电波科学学报,19,2004。
    李国主,宁百齐等,GPS 电离层闪烁时实监测系统的设计与实现,电波科学学报, 20(6), 758-765, 2005.
    尚社平,史建魁等,海南地区电离层闪烁监测及初步统计分析,空间科学学报,25(1),23-28,2005.
    徐继生,朱劼等,2004 年 11 月强磁暴期间武汉电离层 TEC 的响应和振幅闪烁特征的 GPS 观测,地球物理学报,49(4),950-956,2006.
    尚社平,史建魁等,赤道地区 L-波段电离层闪烁的形态特性,电波科学学报,21(3),410-415,2006.
    曲江华,基于软件无线电构架的北斗卫星导航信号捕获跟踪算法的研究,硕士学位论文,中科院武汉物理与数学研究所,2005.
    赵必强,中低纬电离层年度异常与暴时特性研究,博士学位论文,中科院武汉物理与数学研究所,2006.
    李莉,桂林和武汉地区电离层闪烁与 TEC 起伏特征的比较,硕士学位论文,武汉大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700