用户名: 密码: 验证码:
相域中电离层TEC参数的分析、建模与预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电离层电子浓度总含量TEC是最为重要的电离层参数之一。由于采用卫星探测技术,TEC探测空间范围广阔,时间连续不断,因而在电离层物理和电离层电波传播研究中日益重要起来。无论是基础理论方面还是工程应用方面,TEC的探测与研究都极具价值。在基础理论研究中,与其他电离层参数一样,TEC受到太阳活动、磁层、大气中性风等各种因素的显著影响,具有复杂的和不同尺度的空间分布与时间变化。对其所做的深入研究,可揭示电离层的基本物理过程的规律,帮助了解电离层和磁层,电离层和中高层大气层之间的相互耦合与相互作用。在工程应用方面,TEC的大小和分布变化直接影响在其中传播的电磁波的特性,影响无线电通信、导航、测量等人类空间活动。通过对TEC参数的分析、建模和预报,可大大增强对空间资源开发利用的效率,例如,利用TEC的现报和预报进行电离层电波传播的修正,可极大提高卫星定位导航的精度。
     对电离层TEC参数的研究,特别是在数据分析、建模和预测等三个重要方面的研究已有多年历史,并积累了大量的成果。必须指出,现有的关于TEC参数的分析、建模和预测工作,大部分都是在真实的物理空间进行,虽然结果直观,应用方便,但难以深入揭示发生在TEC参数变化中的复杂过程,例如不同过程之间的非线性相互作用。根据不同的研究目的,采用不同的相空间分析方法,将可克服简单的物理空间分析中的不足,是揭示TEC参数的非线性过程等复杂现象的一种行之有效的方法。
     本文利用混沌等相空间的分析方法,着重研究TEC参数的数据分析、建模和预测等三个重要环节的内容。本文的主要工作和结果如下:
     (1)在TEC时间序列的相空间特性分析中,揭示出电离层TEC中的行星波特征和混沌现象特性。
     采用小波分析和混沌相空间分析两种法,对1996-2004年期间,经度为120oE,纬度从-40o到60o子午线上的电离层TEC观测数据进行了相空间特性分析。
     首先,通过小波变换的方法,从原始时间信号中分离出TEC中存在着周期不同的行星波波谱。发现不同的周期行星波的出现频率和振幅的比率分布很有规律;同时,不同的周期的行星波的振幅也随季节和纬度变化。必须指出,这些变化规律和人们对行星波的现有认识基本一致,表明大气行星波可能通过每种机理耦合到电离层F2区。
     其次,通过混沌相空间分析方法,获得了电离层TEC参数的关联维数、李雅普诺夫指数等混沌特征参量。实际计算表明,在指定经纬度的TEC时序数据中存在混沌特性,其关联维数在2.7661 ~ 5.0334之间,李雅普诺夫指数在0.0007 ~ 0.7554之间。关联维数和李雅普诺夫指数比较典型的值出现在磁赤道上空的,分别为3.6092和0.3369,确定TEC存在混沌现象。
     上述结果表明了利用小波分析法和混沌分析法对TEC数据进行分析,可成功地揭示出直接物理空间分析时难以得到的一些电离层重要物理过程的特性。
     (2)探讨了基于混沌相空间理论的TEC参数建模问题,引入相空间TEC参数的几何预测模型,并创立了相空间TEC参数的解析预测模型。
     首先,我们引入“加权一阶局域法”作为TEC参数建模问题中的相空间几何预测模型。时间序列的相空间几何预测模型有全域法、局域法、加权零阶局域法、加权一阶局域法、基本李雅普诺夫指数的时间序列预测方法,及基于神经网络的时间序列预测方法等。其中加权一阶局域法是较有效和较精确的方法。因此,“加权一阶局域法”成为电离层TEC参数相空间几何预测模型的首选。
     其次,我们建立了电离层TEC参数的相空间解析预测模型。该模型从一组相空间中理想的偏微分控制方程出发,用相矢量为变量,导出其离散形式,再通过变换到实际的物理空间,得到最后要的电离层TEC参数的相空间解析预测模型。该模型能将需要预测的某一时间点上的TEC值用这一时间点之前N个时间点上的TEC值表示出来。该模型不仅可单步预测,还可实现多步预测。
     (3)分别利用上述TEC参数的几何和解析预测模型,对实际的电离层TEC参数的观测值进行了预测。
     首先,采用了“加权一阶局域法”这一混沌相空间几何法,对TEC时间序列进行了预测。要预测的地点选在120oE磁赤道上空,具体预测的时间是2004年年底的最后500个小时和2500个小时,预测时间点分别为1000和5000。根据这一地点的李雅普诺夫指数,算出理论上有效预测点数为144个。在这个范围内进行了有效的预测,对最后1000点做预测时,标准差为8.3123 TECU,相关系数0.8664;对最后5000点做预测时,标准差为7.6438 TECU,相关系数为0.9172。
     其次,采用混沌相空间解析法对TEC时间序列进行了预测。要预测的地点同样选在120oE磁赤道上空,预测的时间是2007年1月。当预测点取第48点和144点时(相当于1-3天),标准差分别为6.1063和7.4431 TECU,相关系数分别为0.81594和0.73501。
     上述预测结果表明,我们采用的几何与解析预测模型,均能对电离层TEC参数进行较好地预测。对预测误差分析表明,预测点在1-144之间误差相对较小,标准差范围约为7.4431-8.3123TECU之间,相关系数范围约为0.73501-0.9172之间。
     总之,本文的研究工作和成果丰富了对电离层TEC进行研究的途径和方法。对TEC采用相空间方法分析及新分析,不仅可获得TEC在相空间中的特性,更重要的是在通过这些特性加深对TEC参数所反应的电离层基本物理过程特性的理解。本文提出得相空间几何预测模型和相空间解析预测模型,提供了两种TEC参数的有效预测工具。本文运用这些模型,基于电离层TEC参数的实际观测值进行的预报研究,具有精度较高,稳定性较好等突出优点,可望在实际的电离层环境的现报与预报中推广使用。
Total Electron Content (TEC) is one of the most important ionospheric parameters. As ground-based GPS-TEC network provides a powerful tool to monitor ionospherie continuously in a wide range, GPS-TEC is playing an important role in the research of ionospheric physics and the theory of radio wave propagation. It is valuable in the fields of both theory and engineering. Based on the previous investigation, TEC is influenced by sun activities, magnetic fields, atmospheric winds, and so on. As the same with others ionospheric parameters, TEC’s change is also complex in both space and time. The study of TEC reveals the rules of ionospheric-physics processing, and helps us to know the relations between ionosphere and magnetic field, ionosphere and atmosphere. In engineering application, the values of TEC influence the radio wave propagation directly, and influence the human activities just like radio-communication, navigation, measurement and so on. Through the data-analysis, modeling and predicting of TEC, we can obtain space-resource more efficiently. For example, we can increase precision of satellite navigation.
     It has been many years since TEC was studied, especially in data-analysis, modeling and predicting, and large numbers of fruits are accumulated. It must be pointed out that most of works about the analysis, modeling and predicting of TEC are dealed with in real physics-space, and this method is directly and convenient in use, but not able to open out the complex process in the changes of TEC parameter deeply, for example, the nonlinear reciprocity between varied processes. According to different research purposes, the varied analysis methods in phase-space are adopted and these will be effective methods to open out complex phenomena just like the nonlinear processes and so on.
     The phase-space analysis like chaos was applied to study TEC analysis, TEC modeling and TEC predicting in this paper. The results of our work are followed:
     (1) Analysesing the property of TEC time series in phase space to open out the property of planetary wave-type oscillations (PWTO) and chaos existed in ionospheric TEC.
     Using the two methods of wavelet-analysis and chaos-analysis, we analyses the TEC data, during year 1996-2004,at longitude 120oE, and latitude from -40o to 60o to attain their phase-space properties.
     At the first, using the method of wavelet-analysis, we separate the spectrum of varied-periodic PWTO from the original temporal signal existed in TEC time series. It is found that the appeared rates and amplitudes of varied-periodic PWTO are distributed quite follow some certain law. At the same time, the amplitudes of varied-periodic PWTO are changed by seasons and latitude. It must be pointed out that these laws are in accord with people’s knowledge to PWTO today. This says that planetary waves (PW) are coupled with ionospheric F2 by some mechanism.
     Secondly, using the method of chaos-analysis, we get the values of the correlation dimension and the Lyapunov exponent of TEC. By fact calculating, it says that the chaotic properties exist in some certain TEC time series and its correlation dimensions are between 2.6592 ~ 5.0334 , its Lyapunov exponents are between 0.0007 ~ 0.7554. The typical correlation dimension and the typical Lyapunov exponent, appeared over magnet equator, are 3.6092 and 0.3369 separately on. These make sure that TEC time series have chaotic property.
     Follow these results, It says that, using wavelet-analysis and chaos-analysis to analyses TEC data, we can get the characteristic of some important processes of ionospheric physics which are difficult to be got in real physics-space..
     (2) This paper discusses the modeling problem based on chaotic phase-space theory. Phase-space geometry predicting model is introduced and phase-space analytic predicting model is created.
     At the first, we introduce one-rank local-region method (ORLRM) to be the model of TEC parameter as geometry predicting model in phase-space. There are many geometry predicting models in phase-space, such as globe-region method, local-region method, zero-rank local-region method, one-rank local-region method, Lyapunov exponent method, NN method and so on. Here, the method, whose precise is the most high, is one-rank local-region method.
     Secondly, we set up an phase-space analytic predicting model. This model, based on a perfect group of partial differential equations, taking phase vectors as variables, is educed as a discrete one and, at last, is changed into real physics-space. It can express the TEC value in some future time point using the TEC values of N time points before the time we predict at. It can predict not only one step, but also multiple steps.
     (3) This paper used two models, geometry one and analysis one, to predict real TEC time series detected.
     At the first, we use weighted one-rank local-region forecasting model, a kind of geometry ones, to predict the TEC time series. The place we predict is chosen at 120oE over magnet equator, and the time we predict is the time points, 500 hours and 2500 hours, or 1000 time points and 5000 time points, that before the bottom of 2004 year. According to the Lyapunov exponent in this area, we reckon the efficient time points are 144 in theory. In this score, our prediction is successful. To 1000 time points, its standard deviation is 8.3123 TECU and the correlation coefficient is about 0.8664. To 5000 points, its standard deviation is 7.6438 TECU and the correlation coefficient is about 0.9172.
     Secondly, we use chaos phase-space analysis forecasting model to predict the TEC time series. The place we predict is chosen at 120oE over magnet equator, and the time we predict is in January 1997. Its standard deviation is 6.1063~7.4431 TECU and Its correlation coefficient is 0.81594~0.73501 when the prediction step is 48 and 144 point (equal 1~3 day).
     It says that, we can take the models, geometry model and analysis model, to predict ionospheric TEC parameter preferably. Error analysis shows that, if predicted point is between 1- 144, the error is less. Its standard deviation is between 7.4431 and 8.3123 TECU and the correlation coefficient is between 0.73501 and 0.9172.
     In conclusion, this investigation provides us with a new method to study TEC of ionosphere. We can not only obtain the characters of TEC, but also enrich our understanding on the ionospheric physics by analyzing in phase-space. Two methods to forecast TEC including phase-space geometry predicting model and phase-space analytic predicting model are put forward. Based on these models, the practical TEC can be predicted with high precision and good stability by our test. We suggest that these models can be used in ionospheric weather nowcast and forecast.
引文
A. Krankowski, W. Kosek, L.W. Baran and W. Popinski, Wavelet analysis and forecasting of VTEC obtained with GPS observations over European latitudes, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 67, Issue 12, August 2005, Pages 1147-1156;
    Anthony J. Mannucci, Byron Iijima, Lawrence Sparks, Xiaoqing Pi, Brian Wilson, Ulf Lindqwister, Assessment of global TEC mapping using a three-dimensional electron density model, Journal of Atmospheric and Solar-Terrestrial Physics 61 (1999) 1227-1236;
    Arian Ojeda, Alexander Calzadilla, Bienvenido Lazo, Katy Alazo, Siomel Savio, Analysis of behavior of solar wind parameters under different IMF conditions using nonlinear dynamics techniques, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 67, Issues 17-18, December 2005, Pages 1859-1864;
    B.A. Iijima, I.L. Harris, C.M. Ho, U.J. Lindqwister, A.J. Mannucci, X. Pi, M.J. Reyes, L.C. Sparks, B.D. Wilson, Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data, Journal of Atmospheric and Solar-Terrestrial Physics, 61 (1999) 1205-1218;
    B. Lazo, K. Alazo, M. Rodríguez and A. Calzadilla, TEC variability over Havana for different solar activity conditions, Advances in Space Research, Volume 34, Issue 9, 2004, Pages 2044-2048;
    B. J. Fraser, C. T. Russell, J. D. Means, F. W. Menk, and C. L. Waters, FedSat -An Australian research microsatellite, Adv. Space Res., Vol. 25, No. 7/8 pp. 1325-1336,2000;
    Bhattacharyya, A., Chaotic behavior of ionospheric turbulence from scintillation measurements, Geophys. Res. Lett., 17, 733, 1990.
    Box, G.E.P., Jenkins, G.M., Time Series Analysis: Forecasting and Control, Holden-Day, New York, 1976.
    Broomhead D. S., and G. P. King, Extracting qualitative dynamics from experimental data, Physica 20D, 217~236, 1986.
    Cander, L.R., M. M. Milosavljevic, S. S. Stankovic, and S. Tomasevic, Ionospheric forecasting technique by artificial neural network, Electronic Letters 34 (16), 1573–1574, 1998.
    Chen Yanhong, Weixing Wan, Libo Liu, and Libin Li, A statistical TEC model based on the observation at Wuhan ionospheric observatory, Chinese Journal of Space Science, 22(1), 2002.
    Casdagli M. Nonlinear prediction of chaotic time series. Physica D, 1989, 35: 335~356.
    Coco D., GPS-satellites of opportunity for ionospheric monitoring, GPS world, Oct. 1991, 47-50, 1991.
    D. A. Matsoukas, M. D. Papagiannis, J. Aarons and J. A. Klobuchar, Correlation of solar radio bursts and sudden increases of the total electron content (SITEC) of the ionosphere, Journal of Atmospheric and Terrestrial Physics, Volume 34, Issue 7, July 1972, Pages 1275-1283;
    D. Yeboah-Amaukwah, Increases of equatorial total electron content (TEC) during magnetic storms, Journal of Atmospheric and Terrestrial Physics, Volume 38, Issue 1, January 1976, Pages 45-50;
    Daubechies, I., 1992. Ten Lectures on Wavelets, CBMS-NSF Regional Conference (Series in Applied Mathematics), vol.61. SIAM, Philadelphia, PA.
    Dieter Bilitza, International Reference Ionosphere 2000, Radio science, 36(2), 261-275, 2001.
    E.A. Araujo-Pradere, T.J. Fuller-Rowell and P.S.J. Spencer, Consistent features of TEC changes during ionospheric storms, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 68, Issue 16, November 2006, Pages 1834-1842;
    E.L. Afraimovich?, E.A. Kosogorov, O.S. Lesyuta, Effects of the August 11, 1999 total solar eclipse as deduced from total electron content measurements at the GPS network, Journal of Atmospheric and Solar-Terrestrial Physics 64 (2002) 1933 – 1941;
    Ersin Tulunay, Erdem Turker Senalp, Sandro Maria Radicella, and Yurdanur Tulunay, Forecasting total electron content maps by neural network technique, RADIO SCIENCE, VOL. 41, RS4016, doi:10.1029/2005RS003285, 2006;
    Ezquer R. G.., N. Jakowski, and A. Jadur, Predicted and measured total electron content over Havana, J. Atmos. Sol. Terr. Phys., 59, 591, 1997.
    F. Ding, W. Wan, B. Ning, and M. Wang, Large-scale traveling ionospheric disturbances observed by GPS total electron content during the magnetic storm of 29–30 October 2003, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, XXXXXX, doi:10.1029/2006JA012013, 2007;
    Farmer J D and Sidorowich J J. Predicting chaotic time series. Phys. Rev. Lett., 1987, 59: 845~848.
    Feltens, J., Schaer, S., 1998. IGS products for the ionosphere. In: Proceedings of the IGS Analysis Center Workshop, ESA/ESOC Darmstadt, Germany, pp. 225±232.
    Fraser A. M., and H. L. Swinney, Independent coordinates for strange attractors from mutual information, Phys. Rev. A, 33, 1134, 1986.
    G.A. Mansilla, M. Mosert and R.G. Ezquer, Seasonal variation of the total electron content, maximum electron density and equivalent slab thickness at a South-American station, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 67, Issues 17-18, December 2005, Pages 1687-1690;
    G. I. Gordienko, D. E. Zachateiskiy, M. Z. Kaliev, S. N. Mukasheva and V. V. Vodyannikov, Nighttime increases in ionosphere electron content (a statistical and experimental study), Journal of Atmospheric and Solar-Terrestrial Physics, Volume 63, Issue 6, April 2001, Pages 617-625;
    Gao Yu-fen, and Rong-mao Zhou. Chaotic Behaviour of magnetosphere revealed by AE index. Chinese Journal of Speace Science, 14(2), 1994.
    Gao Yu-fen, Rong-mao Zhou, and Dong-mei Yang, Phase space reconstruction of magnetosphere from AE index - Discussion of the problems existed, Chinese Journal of Speace Science, 17(2), 1997.
    Giovani Occhipinti, Jerome Helbert, Guilhelm Moreaux and Pierre-Emmanuel Godet,Ground-based GPS imaging of ionospheric post-seismic signal,Planetary and Space Science, Volume 54, Issue 5, April 2006, Pages 528-540;
    Gulyaeva T L, Regional analytical model of ionospheric total electron content: Monthly mean and standard deviation, Radio Sci., 34(6), 1507-1512, 1999.
    Grassberger P. and I. Procaccia, Measuring the strangeness of strange attractors, Physica D, 9, 189~208, 1983.
    H. Kantz and Th. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press, 1997.
    H.D.I. Abarbanel, Analysis of Observed Chaotic Data, Springer, 1996.
    Hassam, A. B., W. Hall, J. D. Huba, and M. J. Keskinen, Spectral characteristics of interchange turbulence, J. Geophys. Res., 91, 13,513, 1986.
    Henry D. and I. Abarbanel, Analysis of Observed Chaotic Data, Springer, ISBN 0-387-98372-4, 1996.
    Hernandez-Pajares M., J. M. Juan and J. Sanz, New approaches in global ionospheric determination using ground GPS data, Journal of Atmospheric and Solar-Terrestrial Physics 61 (1999) 1237±1247
    Huba, J. D., A. B. Hassam, I. B. Schwartz, and M. J. Keskinen, Ionospheric turbulence: interchange instabilities and chaotic fluid behaviour, Geophys. Res. Lett., 12, 65, 1985.
    Holzfuss, J., and G. Mayer-Kress, An approach to error estimation in the application of dimension algorithms, in dimensions and entropies in chaotic systems: quantification of complex behavior, Springer-Verlag, New York, 32, 114, 1986.
    Jiang He-rong, Zeng-yu Yang, Mei-hua Yang, Chaotic characteristic of the ionospheric parameters and the predictable time scale, Chinese Journal of Speace Science, 14(3), 1994.
    J. Xiong, W. Wan, B. Ning, L. Liu, Y. Gao, Planetary wave-type oscillations in the ionosphere and their relationship to mesospheric/lower thermospheric and geomagnetic disturbances at Wuhan (30.61N, 114.51E), Journal of Atmospheric and Solar-Terrestrial Physics 68 (2006) 498–508;
    J.Y.Liu,Y.J.Chuo,S.J.Shan,Y.B.Tsai,Y.I.Chen,S.A.Pulinets,S.B.Yu,借助连续的 GPS TEC 测量记录到的地震前电离层异常,国际地震动态,2005 年 11 月第 11 期(总第 323 期);
    J. Y. Liu, H. F. Tsai, L. -C. Tsai and M. Q. Chen, Ionospheric total electron content observed during the 24 October 1995 solar eclipse, Advances in Space Research, Volume 24, Issue 11, 1999, Pages 1495-1498;
    Jakowski N., TEC monitoring by using satellite positioning systems, Modern Ionospheric Science, EGS, Katlenburg-Lindau, FRG 1996, pp371-390.
    Jr., Odim Mendes, Margarete Oliveira Domingues, Aracy Mendes da Costa and Alicia L. Clua de Gonzalez, Wavelet analysis applied to magnetograms: Singularity detections related to geomagnetic storms, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 67, Issues 17-18, December 2005, Pages 1827-1836;
    Krankowskia, A., W. Kosekb, L.W. Barana, and W. Popinski, Wavelet analysis and forecasting of VTEC obtained with GPS observations over European latitudes, Journal of Atmosphere and Solar-Terrestrial Physics, 67(12), 1147 - 1156, 2005.
    Kumar K. Satheesh, C. V. A. Kumar, Benny George, G. Renuka, and C. Venugopal, Analysis of the fluctuations of the total electron content (TEC) measured at Goose Bay using tools of nonlinear methods, Journal of Geophysical Research, 109, A02308, doi:10.1029/ 2002JA009768, 2004.
    Kumar K S, Kumar C V A, George B, et al. Analysis of the fluctuations of the total electron content (TEC) measured at Goose Bay using tools of nonlinear methods. Journal of Geophysical Research, 2004, 109, A02308, doi: 10.1029/2002JA009768
    Kosuke Heki, Jinsong Ping, Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array,Earth and Planetary Mao Tian, Weixing Wan, and Libo Liu, An EOF-based empirical model of TEC over Wuhan, Chinese Journal of Geophysics, 48(4), 751-758, 2005.
    Leteinger R., Hartmann.G.K, Lohmar.F.J, and Putz.E, Electron content measurements with geodetic Doppler receivers, Radio Science, 19(3), 789-797, 1984.
    M. Hernandez-Pajares, J. M. Juan. J. Sanz, D. Bilitza, Combining GPS Measurements And IRI Model Values For Space Weather Specification, Adv Space Res. Vol. 29. No. 6, pp. 949-958, 2002;
    M. Mallis and E. A. Essex, Diurnal and seasonal variability of the southern-hemisphere main ionospheric trough from differential-phase measurements, Journal of Atmospheric and Terrestrial Physics, Volume 55, Issue 7, June 1993, Pages 1021-1037;
    Mauricio Jose Alves Bolzan, Reinaldo Roberto Rosa, Fernando Manuel Ramos, Paulo Roberto Fagundes and Yogeshwar Sahai, Generalized thermostatistics and wavelet analysis of solar wind and proton density variability, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 67, Issues 17-18, December 2005, Pages 1843-1851;
    Mannucci A.J., Wilson B.D., Yuan D.N., Ho C.H., Lindqwister U.J., Runge T.F., 1998. A global mapping technique for GPS-derived ionospheric total electron con-tent measurements. Radio Science 33, 565±582.
    Mannucci A. J., B. A. Iijima, L. Sparks, X. Pi, B. D. Wilson, and U. J. Lindqwister (1999), Assessment of global TEC mapping using a three-dimensional electron density model, J. Atmos. Sol. Terr. Phys., 61, 1227–1236.
    N. Jakowski, S. Heise, A. Wehrenpfennig, S. Schl4uter, R. Reimer, GPS/GLONASS-based TEC measurements as a contributor for space weather forecast, Journal of Atmospheric and Solar-Terrestrial Physics 64 (2002) 729–735;
    N. Jakowski, S. Schlüter and E. Sardon, Total electron content of the ionosphere during thegeomagnetic storm on 10 January 1997, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 61, Issues 3-4, 1 February 1999, Pages 299-307;
    Oru R., M. Hernandez-Pajares, J.M. Juan, J. Sanz, Improvement of global ionospheric VTEC maps by using kriging interpolation technique, Journal of Atmospheric and Solar-Terrestrial Physics 67 (2005) 1598–1609
    Osborne R. A. and A. Provenzale, Finite correlation dimension for stochastic systems with power-law spectra, Physica D, 35(3) , 357-381, 1989.
    Packard N. H., J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Geometry from a time series, Phys. Rev. Lett., 45, 712-716, 1980.
    P.A. Webb, E.A. Essex, A dynamic global model of the plasmasphere, Journal of Atmospheric and Solar-Terrestrial Physics 66 (2004) 1057– 1073;
    Qina Zhoua, John D. Mathewsa, Qiang Dub, Clark A. Miller, A preliminary investigation of the pseudo-spectral method numerical solution of the Perkins instability equations in the homogeneous TEC case, Journal of Atmospheric and Solar-Terrestrial Physics 67 (2005) 325–335;
    R. Orus, M. Hernandez-Pajares, J.M. Juan, J. Sanz, Improvement of global ionospheric VTEC maps by using kriging interpolation technique, Journal of Atmospheric and Solar-Terrestrial Physics, 2005;
    Rawer K., and D. Bilitza, International Reference Ionosphere, Adv. Space Res., 10, #8,5 (1990).
    SardFon, E., Rius, A., Zarraoa, N., Estimation of the transmitter and receiver di7erential biases on the ionospheric total electron content from global positioning system observations. Radio Science 29, 577–586, 1994.
    Sharma Surjalal A., Assessing the magnetosphere’s nonlinear behavior: Its dimension is low, its predictability, high, Reviews of Geophysics, 33 (S1), 645–650, 1995.
    Sugihara G and May R M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 1990, 344: 734~741.
    Takens F., D. A. Rand, and L. S. Young, Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898 Springer, Berlin, p. 336, 1981.
    Theiler James, Spurious dimension from correlation algorithms applied to limited time-series data, Phys. Rev. A, 34, 2427–2432, 1986.
    T. L. Gulyaeva, Regional analytical model of ionospheric total electron content: Monthly mean and standard deviation, Radio Science, Volume 34, Number 6, Pages 1507-1512, November-December 1999;
    T. Joseph Fitzgerald, Observations of total electron content perturbations on GPS signals caused by a ground level explosion, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 59, Issue 7, May 1997, Pages 829-834;
    Titheridge J E. Determination of ionospheric electron content from the Faraday rotation of geostationary satellite signals, Planet. Space Sci, 20(3), 1972.
    Ukhorskiy Y. A., M. I. Sitnov, A. S. Sharma, B. J. Anderson, S. Ohtani and A. T. Y. Lui, Data-derived forecasting model for relativistic electron intensity at geosynchronous orbit, Geophysical Research Letters, 31, L09806, doi:10.1029/2004GL019616, 2004.
    Unnikrishnan, K., R. Balachandran Nair, and C. Venugopal, Harmonic analysis and empirical model for TEC over Palehua, J. Atmos. Sol. Terr. Phys., 64, 1833, 2002.
    Vassiliadis D., A. J. Klimas, D. N. Baker, and D. A. Roberts, A description of the solar wind-magnetosphere coupling based on nonlinear filters, Journal of Geophysical Research, 100(A3), 3495-3512, 1995.
    Weixing Wan, Libo Liu, Hong Yuan, Baiqi Ning and Shunrong Zhang, The GPS measured SITEC caused by the very intense solar flare on July 14, 2000, Advances in Space Research, Volume 36, Issue 12, 2005, Pages 2465-2469;
    Wernik, A. W., and K. C. Yeh, Chaotic behaviour of ionospheric scintillation-Modeling and observations, Radio Sci., 29, 135, 1994.
    Wolf A., J. B. Swift, H. L. Swinney and J. A. Vastano, Determing Lyapunov exponents from a time Series, Physica D, 16, 285-317, 1985.
    Y. Zaslavski, M. Parrot, E. Blanc, Analysis of TEC measurements above active seismic regions, Physics of the Earth and Planetary Interiors 105 1998 219–228;
    陈斌,刘立波,万卫星,宁百齐,丁锋,1996-2003 年大耀斑事件引起的 TEC 突然增强的统计分析,空间科学学报,2005,25(1):6-16;
    陈志宇,张东和,肖佐,电离层 TEC 日落阶段涨落异常增强现象研究,空间科学学报,2003 年 1 月第 23 卷第 1 期;
    陈艳红,万卫星,刘立波,李利斌,武汉地区电离层电子浓度总含量的统计经验模式研究,空间科学学报,第 22 卷第 1 期 2002 年 1 月;
    蔡昌盛,李征航,张小红,GPS 系统硬件延迟修正方法的探讨,测绘通报,2002年第 4 期;
    蔡昌盛,李征航,张小红,利用 GPS 载波相位观测值建立区域电离层模型研究,测绘通报,2002 年第 11 期;
    蔡昌盛,李征航,赵晓峰,利用 GPS 组合观测值建立区域电离层模型研究,测绘工程,第 12 卷第 1 期 2003 年 3 月;
    蔡昌盛,李征航,赵晓峰,太阳耀斑的 GPS 监测方法及实例分析,武汉大学学报(信息科学版),第 28 卷第 4 期,2003 年 8 月,422-424;
    高玉芬, 周荣茂. AE 指数表现出的磁层的浑沌行为. 空间科学学报, 1994, 14(2): 102~108;
    高玉芬, 周荣茂, 杨冬梅. 利用AE指数重构磁层相空间——存在问题的讨论, 空间科学学报, 1997, 17(2): 189~192;
    黄智,袁洪,万卫星,GPS-TEC 硬件偏差估计方法的有效性,电波科学学报,2003 年 8 月第 18 卷第 4 期;
    黄智,孟跃红,用 GPS 测定 TEC 的硬件偏差估计方法及其计算结果分析,徐州师范大学学报(自然科学版),第 20 卷第 4 期 2002 年 12 月;
    蒋和荣, 杨征宇, 杨美华. 电离层参数的混沌特性及可预报的时间尺度. 空间科学学报. 1994, 14(3): 221~226
    雷谭汉,马淑英,叶冬英,梁百先,武昌和广州夜间电离层闪烁的观测,武汉大学学报(自然科学版),1989 年第 3 期;
    李利斌,吴振华,王炳康,武昌地区急始型磁暴期间电离层电子总含量的变化,空间科学学报,第 16 卷第 2 期 l996 年 4 月;
    毛田,万卫星,刘立波,用经验正交函数构造武汉地区电子浓度总含量的经验模式.地球物理学报,2005,48(4):751—758。
    马安新,程炎明,NNSS 卫星测量参数求解 TEC,空间科学学报,1996 年 4 月第 16 卷第 2 期;
    乔学军,郭利民,杜瑞林,王琪,吴云,2003 年 10 月 29-31 日太阳耀斑对中国大陆电离层扰动的 GPS 监测与分析,大地测量与地球动力学,2005 年 5 月第 25 卷第 2 期;
    吴云,乔学军,周义炎,利用地基 GPS 探测震前电离层 TEC 异常,大地测量与地球动力学,第 25 卷第 2 期 2005 年 5 月;
    王一举,吴礼燕,电离层 TEC 预报中同化编辑器的设计,广西民族学院学报(自然科学版),2003 年 11 月第 9 卷第 4 期;
    王一举,万卫星,袁洪,基于 WEB 的电离层 TEC 信息系统构架设计,湘潭大学自然科学学报,2003 年 9 月第 25 卷第 3 期;
    王贵刚, 孙学金, 赵世军. 利用地基GPS测量电离层TEC的方法. 气象仪器装备, 2004, 4: 33~35
    万卫星 宁百齐 刘立波 丁锋 毛田 李国主 熊波,中国电离层 TEC 现报系统,待发;
    熊波,GPS 信标在电离层研究中的若干应用[硕士],中科院地质与地球物理研究所,2006;
    夏淳亮,万卫星,袁洪,赵必强,丁锋,2000 年 7 月和 2003 年 10 月大磁暴期间东亚地区中低纬电离层的 GPS TEC 的响应研究,空间科学学报,2005 Vol.25 No.4 P.259-266;
    萧佐, 张东和. 通过 GPS 测量数据研究电离层电子总含量的逐日变化. 空间科学学报, 2000, 20(2): 97~102
    许大欣, 三广运. GPS 监测电离层变化. 导航, 1997, 2: 94~98
    余涛,万卫星,刘立波,唐伟,栾晓莉,杨光林,利用IGS数据分析全球TEC的周年和半年变化特性,地球物理学报,2006 年 49 卷 4 期;
    张东和,萧佐,太阳耀斑期间向日面电离层相关扰动现象与分析,科学通报,2002年,47 卷,2 期,96-98;
    张东和, 萧佐. 利用GPS计算TEC的方法及其对电离层扰动的观测. 地球物理学报, 2000, 43(4): 451~458
    章红平,朱文耀,彭军还,黄珹,利用 GPS 分析电离层波动现象,科学通报,2005年,50 卷,10 期,起止页码:1032-1039;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700