用户名: 密码: 验证码:
渭河中滩段河流阶地的分布、时代及其地貌学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流地貌一直是地貌学界的主要研究对象之一,它记录着其所处时空环境下的气候变化、构造活动信息,以及河流对外界因子变化而引起系统内部不断调整的响应过程。河流阶地作为过去的河床被废弃后形成的一种最基本的河流地貌形态,不仅可以用来恢复河流地貌的发育过程,还可以用来反演区域的气候变化和构造活动历史。
     通过对渭河上游中滩段河流地貌详细的野外考察,我们发现该区河流阶地极其发育,保存完好,是研究区域气候变化和构造活动的绝佳载体。
     该区河流阶地大致分布在三个构造单元内:卦台山南侧黄家坪一带、卦台山北侧谢家坪-小湾一带和中滩盆地沉降区。其中:黄家坪一带发育6级阶地;谢家坪-小湾一带共发育9级阶地;中滩盆地内部保存着4级阶地。
     由于该区地处黄土高原,各级阶地之上均覆盖着不同厚度的黄土地层,它们为确定阶地形成时代提供了便利。但是由于大多研究剖面与农业梯田相间,我们仅对部分阶地序列进行了年代学研究:其中高级阶地主要运用阶地上覆黄土地层的古地磁及黄土-古土壤气候地层学对比,低级阶地则采用光释光测年法,结合阶地年龄-高程线性关系计算了其余各级阶地的年龄。结果发现,更新世期间渭河中滩段共发育13级河流阶地,阶地上覆黄土地层的最底部古土壤分别为:S14、S13、S11、S10、S9、S8、S7、S6、S5、S4、S1、Sm、S0,从而可以推断阶地形成时代分别为1.24Ma、1.19Ma、1.08Ma、1.03Ma、982ka、866ka、790ka、712ka、621ka、424ka、130ka、57ka、10ka。这表明,更新世期间轨道尺度的41ka、100ka周期气候旋回控制着渭河中滩段河流阶地的发育,并且河流下切、阶地形成发生在冰期-间冰期过渡阶段。根据中国黄土-古土壤序列的研究可知,1.24Ma以来该区共经历16次冰期-间冰期旋回,而中滩段阶地序列记录了其中的13次。阶地序列与气候转型并非一一对应,可能表明气候变化并不是控制阶地发育的唯一主控因素。
     通过对小湾一带阶地断面的研究,获得了1.24-0.62Ma间的河流下切历史,平均下切速率为0.46m/ka,该时段河流的强烈下切可能是对青藏高原东北缘昆黄运动造就的地表隆升的响应。黄家坪一带0.13Ma以来河流下切61m,平均下切速率为0.47m/ka,可能是河流过程对秦岭北缘造山带强烈抬升的响应。
     而中滩盆地内部与黄家坪、小湾一带阶地序列的不对称性表明,距今621ka左右汾渭地堑的西向扩展影响至渭河中滩段,引起该段北侧形成小型差异性断裂,中滩盆地形成。其后,在渭河及其支流发育中,盆地不断沉降并接受沉积。
     余家峡T2阶地上覆砾石,刘家坪T4阶地所在山坡之上披覆的砾石均磨圆差、无分选,为阶地形成后发生的非正常河流堆积。考察发现,中滩上游段新阳T2阶地沉积物记录了四期较大的洪水事件。对比分析可知,上述堆积反映了距今5万年左右的多次堰塞堆积事件。
Fluvial Geomorphology is one of the main objects of study in Geomorphology. It records the information of climate and tectonic change, and also the process that the river response to the external changes. River terrace, as the palaeo-floodplain, is a basic river landform that formed by the river bed abandoned, not only can be used to restore the developmental of fluvial geomorphology, but also the history of climate and tectonic changes where the river drianaged.
     Through detailed fieldwork on the Weihe River upstream basin-Zhongtan Basin, we find that the river terrace in this area is extremely well preserved and is a perfect carrier of regional climate change and tectonic activity.
     Terraces in this region are distributed in three different tectonic units:Huangjiaping section, south of the river; Xiejiaping-Xiaowan section, north of the river; and the Zhongtan basin. There are6terraces in Huangjiaping section,9terraces in Xiejiaping-Xiaowan section, and4terraces in the basin.
     The study area is located in the Loess Plateau. Terraces are capped by loess of different thickness, which is convenient for the dating. As most of the sections are accompanied by agriculture terraces, we dated only some of these terraces. Palaeomagnetic and climate stratigraphy analysis for the high terraces, OSL dating for the lower ones, and age-height analysis for others. We find that, there are13terraces of staircase since the Pleistocene, the lowest paleosol of the loess stratigraphy are S14, S13, S11, S10, S9, S8, S7, S6, S5, S4, S1, Sm, S0, so we speculate the terrace formation ages are respectively1.24Ma,1.19Ma,1.08Ma,1.03Ma,982ka,866ka,790ka,712ka,621ka,424ka,130ka,57ka,10ka. It suggests that the terrace formation is controlled by the41ka and100ka climate cycle and the incision is occured in the glacial-interglacial transition. The staircase records13of16times glacial-interglacial cycle sine1.24Ma. Terrace sequence and climatic transition is not a one-to-one correspondence. It indicates that climate change is not the only main controlling factors to the development of the terraces.
     We obtained the incision history of Weihe river during1.24-0.62Ma, the average incision rate is0.46m/ka. The extreme incision may indicate the response to the surface uplift was forced by the Kunhuang movement. The river incised61m since0.13Ma in the Huangjiaping section, the rate is0.47m/ka, this may imply the response to the uplift of North Qinling orogen.
     The asymmetry among the Zhongtan basin, Huangjiaping and Xiejiaping-Xiaowan section indicate that the west extension of Fenwei graden affected the Zhongtan basin in621k a B.P., formed a series of little faults in the north of this region, and the Zhongtan basin is formed. After this, the basin is continued subsiding and depositing.
     The gravels above Yujiaxia T2and Liujiaping T4are bad roundness and sorting, It is a non-normal aggradation after the terrace formation. The Xinyang T2recorded four times of paleo-floods. We concluded that these gravels indicate many times of damming around50ka.
引文
1. Antoine P., Munaut A.-V., Limondin-Lozouet N., et al. Response of the Selle River to climatic modifications during the Lateglacial and Early Holocene (Somme Basin-Northern France)[J]. Quaternary Science Reviews.2003,22(20):2061-2076.
    2. Pratt-Sitaula B., Burbank D.W., Heimsath A., et al. Landscape disequilibrium on 1000-10,000 year scales Marsyandi River, Nepal, central Himalaya[J]. Geomorphology. 2004,58:223-241.
    3. Blum M.D., Guccione M.J., Wysocki D.A., et al. Late Pleistocene evolution of the lower Mississippi River valley, southern Missouri to Arkansas[J]. Geological Society of America Bulletin.2000,112(2):221-235.
    4. Bridgland D.R. River terrace systems in north-west Europe:an archive of environmental change, uplift and early human occupation[J]. Quaternary Science Reviews.2000,19(13): 1293-1303.
    5. Bridgland D.R. Quaternary of the Thames[M]. Chapman&Hall, London.1994,441 pp.
    6. Bridgland D.R.. River terrace systems in Northwest Europe:an archive of environmental change, uplift and early human occupation[J]. Quaternary Science Reviews.2000, 19:1293-1303.
    7. Bridgland D., Westaway, R. Climatically co ntrolled river terrace staircases:a worldwide Quaternary phenomenon[J]. Geomorphology.2008,98:285-315.
    8. Brunnacker K., Loscher M., Tillmans W., et al. Correlation of the Quaternary terrace sequence in the Lower Rhine valley and northern Alpine foothills of central Europe[J]. Quaternary Research.1982,18(2):152-173.
    9. Busschers F.S., Kasse C, van Balen R.T., et al. Late Pleistocene evolution of the Rhine-Meuse system in the southern North Sea basin:imprints of climate change, sea-level oscillation and glacio-isostacy[J]. Quaternary Science Reviews.2007,26:3216-3248.
    10. Claessens L., Veldkamp A., ten Broeke E.M., et al. A Quaternary uplift record for the Auckland region, North Island, New Zealand, based on marine and fluvial terraces. Global and Planetary Change[J].2009,68(4):383-394.
    11. Chappell J. A revised sea level record for the last 300 000 years from Papua New Guinea[J]. Search.1983,14(3-4):99-101.
    12. Cohen K.M. and Gibbard P. Global chronostratigraphical correlation table for the last 2.7 million years[C]. Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy), Cambridge, England.2011.
    13. Davis W.M. The Geographical Cycle[J]. The Geographical Journal.1899,14(5):481-504.
    14. Davis W.M. Baselevel, Grade and Peneplain[J]. The Journal of Geology.1902,10(1):77-111.
    15. Ding Z.L., Derbyshire E., Yang S.L., et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea 8180 record[J]. Paleoceanography,2002,17(3),1033.
    16. Duller GAT. Equivalent dose determination using single aliquots[J]. Nuclear Tracks and Radiation Measurements.1991,18:371-378.
    17. Fisk H.N. Geological Investigation of the alluvial valley of the Lower Mississippi River[C]. Mississippi River Commission, Vicksburg.1944.
    18. Fisk H.N. Loess and Quaternary geology of the Lower Mississippi Valley[J]. Journal of Geology.1951,59:333-356.
    19. Frankel K.L., Pazzaglia F.J., and Vaughn J.D. Knickpoint evolution in a vertically bedded substrate,upstream-dipping terraces, and Atlantic slope bedrock channels[J]. Geological Society of America Bulletin.2007,119:476-486.
    20. Gao H.S., Liu X.F., Pan B.T., et al. Stream response to Quaternary tectonic and climatic change:Evidence from the upper Weihe River, central China[J]. Quaternary International 2008,186(1):123-131.
    21. Gardner T.W. Experimental study of knickpoint and longitudinal profile evolution in cohesive, homogeneous material[J]. Geological Society of America Bulletin.1983, 84:664-672.
    22. Gibbard P.L., Lewin J. River incision and terrace formation in the Late Cenozoic of Europe[J]. Tectonophysics.2009,474:41-55.
    23. Gilbert G.K. Report on geology of the Henry Mountain[M]. Government Printing Office, Washington D.C.,1877,160p.
    24. Hack J.T. Interpretation of erosional topography in humid temperate regions[J]. American Journal of Science.1960,258-A:80-97.
    25. Hack J.T. Stream-Profile Analysis and Stream-Gradient Index[J]. Journal of Research of the U S Geological Survey.1973,1(4):421-429.
    26. Hancock G.S. and Anderson R.S. Numerical modeling of fluvial strath-terrace formation in response to oscillating climate. Geological Society of America Bulletin.2002,114:1131-1142.
    27. Hattingh J. and Rust I. Drainage evolution and morphological development of the late Cenozoic Sundays River, South Africa[C]. In:Miller A., Gupta A.(Eds.),Varieties of Fluvial Form. International Association of Geomorphologists Geomorpohology Publication.1999, 7:145-166.
    28. Hays J.D., Imbrie J.,Shackleton N.J. Variations in the earth's orbit:pacemaker of the Ice Ages[J]. Science.1976,194:1121-1132.
    29. Howard A.D. A detachment-limited model of drainage basin evolution[J]. Water Resources Research.1994,30(7):2261-2285.
    30. Huntington E. Some characteristics of the glacial period in non-glaciated regions[J]. Geological Society of America Bulletin.1907,18:351-388.
    31. Huntley D.J., Godfrey Smith D.I., The Walt M.L.W. Optical dating of sediments[J]. Nature. 1985,313:105-107.
    32. Imbrie J., Boyle E.A. Clemens S.C., et al. On the structure and origin of major glaciations cycles 1.Linear responses to Milankovitch forcing[J]. Paleoceanography.1992,7:701-738.
    33. Jain M., Tandon S.K. Fluvial response to Late Quaternary climate changes, western India[J]. Quaternary Science Reviews.2003,22:2223-2235.
    34. Jelgersmsa S. Vulnerability of the coastal lowlands of the Netherlands to a future sea-level rise. In:Tooley, M.J., Jelgersma, S.(Eds.), Impacts of Sea-level Rise on European Coastal Lowlands[M].Blackwell, Oxford,1992.
    35. Kelson K.I. Long-term tributary adjustments to base-level lowering, northern Rio Grande Rift, New Mexico[M].Albuquerque, University of New Mexico,1986.
    36. Kelson K.I., and Wells S.G. Geologic influences on fluvial hydrology and bedload transport in small mountainous watersheds, northern New Mexico, USA[J]. Earth Surface Processes and Landforms.1989,14:671-690.
    37. Knox J.C. Valley Alluviation in Southwestern Wisconsin[J]. Annals of the Association of American Geographers.1972,62(3):401-410.
    38. Knox J.C. Large increases in flood magnitude in response to modest changes in climate[J]. Nature.1993,361:430-432.
    39. Knox J.C. Late Quaternary Upper Mississippi River alluvial episodes and their significance to the Lower Mississippi River system.[J]. Engineering Geology.1996,45:263-285.
    40. Kukla G, An Z.S. Loess stratigraphy in central China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology.1989,72:203-225.
    41. Lamothe L. Les anciennes nappes alluviales et lignes de Rivage du basin de la Somme et leurs rapports aveccelles de la Meditarranee occidentale[J]. Bulletin de la Societe Geologique de France.1918,18(4):3-58.
    42. Leopold L.B., Wolman M.G., Miller J.P. Fluvial processes in geomorphology[M]. San Francisco, W.H. Freeman and Co.,1964.
    43. Leopold L. B., Bull W.B. Base Level, Aggradation, and Grade[J]. Proceedings of the American Philosophical Society.1979,123(3):168-202.
    44. Li J.J. The environmental effects of the uplift of the Qinghai-Xizang Plateau[J]. Quaternary Science Reviews.1991,10(6):479-483.
    45. Li J.J., Fang X.M., et al. Magnetostratigraphic dating of river terraces:Rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary[J]. Journal of Geophysical Research.1997,102(B5):10121-10132.
    46. Lisiecki L.E., and Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography.2005,20:3-17.
    47. Liu X.M., Liu T.S., Xu T.C., et al. The Chinese loess in Xifeng, I:The primary study on magnetostratigraphy of a loess profile in Xifeng area, Gansu province[J]. Geophysical Journal International.1988,92:345-348.
    48. Liu X.M., Liu T.S., Shaw J., et al. Paleomanetic and paleoclimatic studies of Chinese loess, In:Liu T.S., eds. Loess, Environment and Global Change[M]. Beijing, Science Press.1991, 61-81.
    49. Heller F, Liu T.S. Magnetism of Chinese loess deposits[J]. Geophysical Journal International.1984,77:125-141.
    50. Mackin H.J. Erosional history of the Big Gorn Basin, Wyoming[J]. Geological Society of America Bulletin.1937,48:813-893.
    51. Mackin H.J. Concept of the graded river[J]. Geological Society of America Bulletin.1948, 59(5):463-512.
    52. Maddy D. Uplift-driven valley incision and river terrace formation in southern England[J]. Journal of Quaternary Science.1997,12(6):539-545.
    53. Maddy, D., Bridgland D., Westaway R. Uplift-driven valley incision and climate-controlled river terrace development in the Thames Valley, UK[J]. Quaternary International.2001, 79(1):23-36.
    54. Maddy D., Demir T., Bridgland D.R., et al. An obliquity-controlled Early Pleistocene river terrace record from Western Turkey?[J]. Quaternary Research.2005,63(3):339-346.
    55. Maddy D., Demir T., Veldkamp A., et al. The obliquity-controlled early Pleistocene terrace sequence of the Gediz River, western Turkey:a revised correlation and chronology[J]. Journal of the Geological Society.2012,169(1):67-82.
    56. McMillan I.K. A foraminiferal biostratigraphy and chronostratigraphy for the Pliocene to Pleistocene Upper Algoa group, Eastern Cape, South African[J]. Journal of Geology.1990, 93:622-644.
    57. Montgomery D.R. Obervations on the role of lithology in strath terrace formation and bedrock channel width[J]. American Journal of Science.2004,304:454-476.
    58. Nott J., Price D., Nanson G. Stream response to Quaternary climate change:evidence from the Shoalhaven River catchment, southeastern highlands, temperate Australia[J]. Quaternary Science Reviews.2002,21:965-974.
    59. Pan B.T., Burbank D., Wang Y.X., et al. A 900 k.y. record of strath terrace formation during glacial-interglacial transitions in northwest China[J]. Geology.2003,31(11):957-960.
    60. Pan B.T., Gao H.S., Wu GJ., et al. Dating of erosion surface and terraces in the eastern Qilian Shan, northwest China[J]. Earth Surface Processes and Landforms.2007,32(1):143-154.
    61. Pan B.T, S H, H Z.H., et al. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River:evidence from a 1.24Ma terrace record near Lanzhou, China[J]. Quaternary Science Reviews.2009,28(27-28):3281-3290.
    62. Pan Y.X., Zhu R.X., Liu Q.S., et al. Geomagnetic episodes of the last 1.2 Myr recorded in Chinese loess[J]. Geophysical Research Letters.2002, doi:10.1029/2001GL014024.
    63. Partridge T.C. Of diamonds,dinosaurs and diastrophism:150 million years of landscape development in southern Africa[J]. South African Journal of Geology.1998,101:167-184.
    64. Penck A., Bruckner E. Die Alpen im Eiszeitalter Tauchnitz[M]. Leipzig.1909.
    65. Raymo M.E., Lisiecki L.E., Nisancioglu K.H. Plio-Pleistocene Ice Volume, Antarctic Climate, and the Global δ18O Record[J]. Science.2006,313:492-495.
    66. Porter S.C., An Z.S., et al. Cyclic Quaternary alluviation and terracing in a nonglaciated drainage basin on the north flank of the Qinling Shan, central China[J]. Quaternary Research. 1992,38(2):157-169.
    67. Saucier R.T. Geomorphology and Quaternary Geologic History of the Lower Mississippi Valley[C]. Mississippi River Commission,Vicksburg,1994.
    68. Saucier R.T. A contemporary appraisal of some key Fiskian concepts with emphasis on Holocene meander belt formation and morphology[J]. Engineering Geology.1996,45:67-86.
    69. Semeniuk V. The Pilbara coast:a riverine coastal plain in a tropical arid setting, Northwestern Australia[J]. Sediment.Geology.1993,83:235-256.
    70. Starkel L. Climatically controlled terraces in uplifting mountain areas[J]. Quatern.Sciecce. Reviews.2003,22:218-2198.
    71. Strahler A.N. Quantitative analysis of watershed geomorphology[J]. American Geophysical Union Transactions.1957,38(6):912-920.
    72. Summerfield M.A. Plate tectonics and landscape development on the African continent[J]. Tectonic Geomorphology, Boston.1985:27-51.
    73. Sun J.M. Long-term fluvial archives in the Fen Wei Graben, central China, and their bearing on the tectonic history of the India-Asia collision system during the Quaternary[J]. Quaternary Science Reviews.2005,24(10-11):1279-1286.
    74. Tebbens L.A., Veldkamp A., Westerhoff W. Fluvial incision and channel downcutting as a response to Late-glacial and Early Holocene climate change:the lower reach of the River Meuse (Maas), The Netherlands[J]. Journal of Quaternary Science.1999,14(1):59-75.
    75. Thompson R. Palaeomagnetic dating. In Quaternary Dating Methods-a User's Guide(edited by P. L. Smart & P. D. Frances) Technical Guide 4[M]. Quaternary Research Association, Cambridge,1991,177-198.
    76. Dogan U. Climate-controlled river terrace formation in the Kizilirmak Valley, Cappadocia section, Turkey:Inferred from Ar-Ar dating of Quaternary basalts and terraces stratigraphy [J]. Geomorphology.2011,126(1-2):66-81.
    77. Vandenberghe J. Timescales, climate and river development[J]. Quaternary Science Reviews. 1995,14:631-638.
    78. Van den Berg M.W. Fluvial sequences of the Mass[D]. Landbouwuniversiteit,1996,181p.
    79. Van den Berg M.W. and van Goof T. The Mass Terrace sequence at Masastricht, SE Netherlands; evidence for 200m of late Neogene and Quaternary surface uplift. in, Maddy D., Macklin M.G., Woodward J.C., eds.,River basin sediment systems;archives of environmental change[M]. A.A. Balkema Publishers,Netherlands,2001,45-86.
    80. Vandenberghe J. The relation between climate and river processes, landforms and deposits during the Quaternary [J]. Quaternary International.2002,91:17-23.
    81. Vandenberghe J. The fluvial cycle at cold-warm-cold transition in lowland regions:a re-finement of theory[J]. Geomorphology.2008,98:275-284.
    82. Veldkamp A. and Vermeulen S. E. J. W. River terrace formation, modelling, and 3-D graphical simulation[J]. Earth Surface Processes and Landforms.1989,14(6):641-654.
    83. Veldkamp A. A 3-d model of quaternary terrace development, simulations of terrace stratigraphy and valley asymmetry:A case study for the allier terraces (limagne, France)[J]. Earth Surface Processes and Landforms.1995,17(5):487-500.
    84. Veldkamp A. and van den Berg M. W. Three-dimensional modelling of Quaternary fluvial dynamics in a climo-tectonic dependent system. A case study of the Maas record (Maastricht, TheNetherlands)[J]. Global and Planetary Change.1993,8(4):203-218.
    85. Veldkamp A. and van Dijke J. J. Simulating internal and external controls on fluvial terrace stratigraphy:a qualitative comparison with the Maas record[J]. Geomorphology.2000, 33(3-4):225-236.
    86. Wang X.S., Yang Z.Y., Lovlie R., et al. A magnetostratigraphic reassessment of correlation between Chinese loess and marine oxygen isotope records over the last 1.1Ma[J]. Physics of the Earth and Planetary Interiors.2006,159(1-2):109-117.
    87. Wegmann K. and Pazzaglia F.J. Holocene strath terrace,climate change,and active tectonics; the Clearwater River basin, Olympic Peninsula, Washington State[J]. Geological Society of America Bulletin.2002,114:731-744.
    88. Wegmann K. and Pazzaglia F.J. Late Quaternary fluvial terraces of the Romagna and Marche Apennines, Italy[J]. Quaternary Science Reviews.2009,28:137-165.
    89. Westaway R. Flow in the lower continental crust as a mechanism for the Quaternary uplift of the Rhenish Massif, north-west Europe[J]. River Basin Sediment Systems-Archives of Environmental Change. Balkema, Abingdon, England,2001,87-167.
    90. Westaway R., Maddy D., Bridgland D. Flow in the lower continental crust as a mechanism for the Quaternary uplift of south-east England:constraints from the Thames terrace record.[J] Quaternary Science Reviews.2002,21(4-6):559-603.
    91. Westaway R., Bridgland D., Mishra S. Rheological differences between Archaean and younger crust can determine rates of Quaternary vertical motions revealed by fluvial geomorphology[J]. Terra Nova.2003,15:287-298.
    92. Willgoose G., Bras R.L., Rodriguez-Iturbe I. The relationship between catchment and hillslope properties:implications of a catchment evolution model[J]. Geomorphology,1992, 5:21-37.
    93. Whipple K.X., Kirby E., Brocklehurst S.H. Geomorphic limits to climate-induced increases in topographic relief[J]. Nature.1999,401:39-43.
    94. Zhou L.P., Dodonov A.E., Shackleton N.J. Thermoluminescence dating of the Orkutsay loess section in Tashkent region, Uzbekistan, Central Asia[J].Quaternary Science Reviews,1995, 14:721-730.
    95. Zheng H.B., An Z.S., John S., et al. A detailed terrestrial geomagnetic record for the interval 0-5Ma. In:Liu Tungsheng eds. Leoss, Environment and Global Change[M], Beijing:Science Press,1991:147-156.
    96.陈云,童国榜,曹家栋,等.渭河宝鸡段河谷地貌的构造气候响应[J].1999,5(4):49-56.
    97.崔之久,伍永秋,刘耕年.关于“昆仑—黄河运动”[J].中国科学(D辑).1998,28(1):53-59.
    98.范俊喜.鄂尔多斯地块运动特征研究[博士论文].北京:中国地震局地质研究所.2002.
    99.贾耀锋,黄春长,庞奖励,等.释光测年在应用研究方面的新进展[J].陕西师范大学学报(自然科学版).2005,(04):115-121.
    100.吉亚鹏.渭河陇西段早更新世河流阶地研究[硕士论文].兰州:兰州大学.2011.
    101.赖忠平.基于光释光测年的中国黄土中氧同位素阶段2/1和3/2界限位置及年代的确定[J].第四纪研究.2008,28(05):883-891.
    102.雷祥义,张猛刚.渭河中游水系的阶地形成年代.见卢演俦主编,新构造运动与环境[M].北京:地震出版社,2001,149-157.
    103.李吉均,方小敏,马海洲,等.晚新生代黄河上游地貌演化与青藏高原隆起[J].中国科学(D辑:地球科学).1996,26(04):316-322.
    104.刘嘉麒,倪云燕,储国强.第四纪的主要气候事件[J].第四纪研究.2001,21(03):239-248.
    105.刘维明,张立原,孙继敏.高分辨率洛川剖面黄土磁性地层学[J]I地球物理学报.2010,53(4):888-894.
    106.刘东生.黄土与环境[M].北京:科学出版社,1985.
    107.刘小凤,刘百篪.应用“构造-气候旋回”年代学方法确定河流阶地形成时代的初步研究[J].西北地震学报.2001,23(4):395-403.
    108.刘小丰.渭河上游河流阶地的成因与地貌演化[博士论文].兰州:兰州大学.2007.
    109.潘保田,李吉均,曹继秀.黄河中游的地貌与地文期问题[J].兰州大学学报.1994,30(1):115-123.
    110.潘保田,李吉均,陈发虎.青藏高原:全球气候变化的驱动机与放大器—Ⅰ新生代气候变化的基本特征[J].兰州大学学报.1995,31(03):120-128.
    111.潘保田,李吉均,曹继秀,陈发虎.化隆盆地地貌演化与黄河发育研究[J].山地研究.1996,14(03):153-158.
    112.潘保田,王均平,高红山,等.从三门峡黄河阶地的年代看黄河何时东流入海[J].自然科学进展.2005,15(06):700-705.
    113.潘保田,苏怀,刘小丰.兰州东盆地最近1.2Ma的黄河阶地序列与形成原因[J].第四纪研究.2007,27(02):172-180.
    114.潘保田,刘小丰,高红山,等.渭河上游陇西段河流阶地的形成时代及其成因[J].自然科学进展.2007,17(08):1063-1068.
    115.陕西省地震局.秦岭北缘活动断裂带[M].北京:地震出版社.1996.
    116.孙继敏,许立亮.汾渭地堑的河流阶地对第四纪时期印度-欧亚板块碰撞带的构造响应[J].第四纪研究.2007,27(01):20-26.
    117.徐叔鹰.陇中西部黄土区黄河及其支流阶地发育的若干问题[J].兰州大学学报.1965,01:116-143.
    118.袁宝印,郭正堂,郝青振,等.天水-秦安一带中新世黄土堆积区沉积-地貌演化[J].第四纪研究.2007,27(02):161-171.
    119.杨达源,谢悦波.古洪水平流沉积[J].沉积学报.1997,15(3):29-32.
    120.杨景春,李有利.地貌学原理[M].北京:北京大学出版社.2001.
    121.岳乐平,雷祥义,屈红军.黄河中游水系的阶地发育时代[J].地质论评.1997,43(2):186-192.
    122.张景昭,赖忠平.光释光测年:黄土样品IRSL信号的晒退实验[J].核技术.1997,20(08):485-488.
    123.张猛刚.渭河中下游河流阶地的演化模式[硕士论文].西安:西北大学.2001.
    124.张国伟等.秦岭造山带的形成及其演化[M].西北大学出版社.1988.
    125.赵梅,查小春,黄春长,等.渭河流域全新世古洪水滞流沉积物地球化学特征[J].水土保持学报.2012,26(1):106-111.
    126.王娟,黄春长,庞奖励,等.渭河下游全新世古洪水滞流沉积物研究[J].水土保持通报.2011,31(05):32-36.
    127.王修喜,李吉均,宋春晖.天水盆地古近纪地层年代及其意义[J].兰州大学学报(自然科学版).2007,43(5):1-10.
    128.杨巍然.东秦岭“开”“合”史[J].地球科学.1987,12(5):487-493.
    129.中国地质学编辑委员会.中国区域地层表(草案)[M].北京:科学出版社.1956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700